15-826: Multimedia Databases and Data Mining

Lecture#1: Introduction
Christos Faloutsos
CMU
www.cs.cmu.edu/~christos

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining

Problem

Given a large collection of (multimedia) records, or graphs, find similar/interesting things, ie:
• Allow fast, approximate queries, and
• Find rules/patterns

Problem

Given a large collection of (multimedia) records, or graphs, find similar/interesting things, ie:
• Allow fast, approximate queries, and
• Find rules/patterns

Q1: Examples, for ‘similar’?
Sample queries

- Similarity search
 - Find pairs of branches with similar sales patterns
 - ???

Sample queries –cont’d

- Rule discovery
 - Clusters (of branches; of sensor data; …)
 - ???
Sample queries –cont’d

- Rule discovery
 - Clusters (of branches; of sensor data; ...)
 - Forecasting (total sales for next year?)
 - Outliers (eg., unexpected part failures; fraud detection)

Outline

Goal: ‘Find similar / interesting things’

- (crash) intro to DB
- Indexing - similarity search
- Data Mining

Example:

YahooWeb:
(a) In-degree vs. Out-degree
(b) Degree vs. Triangles
(c) Degree vs. PageRank

~1B nodes (web sites)
~6B edges (http links)
‘YahooWeb graph’

U Kang, Jay-Yoon Lee, Danai Koutra, and Christos Faloutsos.
Net-Ray: Visualizing and Mining Billion-Scale Graphs
PAKDD 2014, Tainan, Taiwan.

Detailed Outline

Intro to DB
- Relational DBMS - what and why?
Detailed Outline

Intro to DB

• Relational DBMS - what and why?
 – inserting, retrieving and summarizing data
 – views; security/privacy
 – (concurrency control and recovery)

What is the goal of rel. DBMSs

Electronic record-keeping:
Fast and convenient access to information.
Eg.: students, taking classes, obtaining grades;
 • find my gpa
 • <and other ad-hoc queries>

Main vendors/products

Commercial
Open source
Main vendors/products
Commercial
• Oracle
• IBM/DB2
• MS SQL-server
• Sybase
• (MS Access, ...
Open source
Postgres (UCB)
mySQL, sqlite,
miniBase (Wisc)
(www.sigmod.org)

Detailed Outline
Intro to DB
• Relational DBMS - what and why?
 – inserting, retrieving and summarizing data
 – views; security/privacy
 – (concurrency control and recovery)

How do DBs work?
We use sqlite3 as an example, from
http://www.sqlite.org

How do DBs work?
linux% sqlite3 mydb # mydb: file
sqlite> create table student (
 ssn fixed;
 name char(20));
How do DBs work?

SQLite>

```
insert into student
values (123, "Smith");
```

```
select * from student;
```

How do DBs work?

SQLite>

```
create table takes (ssn fixed, c_id char(5), grade fixed);
```

```
takes
ssn  c_id  grade
```

How do DBs work - cont'd

More than one tables - joins

Eg., roster (names only) for 15-826

```
student
ssn  name
123  Smith
```

```
takes
ssn  c_id  grade
```

How do DBs work - cont'd

SQLite>

```
select name from student, takes
where student.ssn = takes.ssn
and takes.c_id = "15826"
```

Copyright: C. Faloutsos (2017)
SQL-DML

General form:

```
select a1, a2, ... an
from r1, r2, ... rm
where P
[order by ....]
[group by ...]
[having ...]
```

Aggregation

Find ssn and GPA for each student

```
<table>
<thead>
<tr>
<th>student</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssn</td>
<td>name</td>
</tr>
<tr>
<td>123</td>
<td>603</td>
</tr>
<tr>
<td>123</td>
<td>412</td>
</tr>
<tr>
<td>234</td>
<td>603</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>takes</th>
<th>c_id</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>603</td>
<td>4</td>
</tr>
<tr>
<td>123</td>
<td>412</td>
<td>3</td>
</tr>
<tr>
<td>234</td>
<td>603</td>
<td>3</td>
</tr>
</tbody>
</table>
```

```
sqlite> select ssn, avg(grade)
from takes
group by ssn;
```

<table>
<thead>
<tr>
<th>ssn</th>
<th>avg(grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>3.5</td>
</tr>
<tr>
<td>234</td>
<td>3</td>
</tr>
</tbody>
</table>

Detailed Outline

Intro to DB

- Relational DBMS - what and why?
 - inserting, retrieving and summarizing data
- views; security/privacy
- (concurrency control and recovery)
Views - what and why?

- suppose you ONLY want to see ssn and GPA (e.g., in your data-warehouse)
- suppose secy is only allowed to see GPAs, but not individual grades
- (or, suppose you want to create a short-hand for a query you ask again and again)
- -> VIEWS!

Views

sqlite> create view fellowship as (select ssn, avg(grade) from takes group by ssn);

<table>
<thead>
<tr>
<th>ssn</th>
<th>c_id</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>603</td>
<td>4</td>
</tr>
<tr>
<td>123</td>
<td>412</td>
<td>3</td>
</tr>
<tr>
<td>234</td>
<td>603</td>
<td>3</td>
</tr>
</tbody>
</table>

Views = ‘virtual tables’
Views

```sql
sqlite> select * from fellowship;
```

<table>
<thead>
<tr>
<th>ssn</th>
<th>c_id</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>603</td>
<td>4</td>
</tr>
<tr>
<td>123</td>
<td>412</td>
<td>3</td>
</tr>
<tr>
<td>234</td>
<td>603</td>
<td>3</td>
</tr>
</tbody>
</table>

```sql
grant select on fellowship to secy;
```

<table>
<thead>
<tr>
<th>ssn</th>
<th>avg(grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>3.5</td>
</tr>
<tr>
<td>234</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Detailed Outline

Intro to DB
- Relational DBMS - what and why?
 - inserting, retrieving and summarizing data
 - views; security/privacy
 - (concurrency control and recovery)
- What if slow?
- Conclusions

What if slow?

```sql
sqlite> select * from irs_table where ssn=’123’;
```

Q: What to do, if it takes 2 hours?
What if slow?

sqlite> select * from irs_table where ssn='123';

Q: What to do, if it takes 2hours?
A: build an index
 Q': on what attribute?
 Q'': what syntax?

What if slow - #2?

sqlite> create table friends (p1, p2);

Q: Facebook-style: find the 2-step-away people

What if slow?

sqlite> select * from irs_table where ssn='123';

Q: What to do, if it takes 2hours?
A: build an index
 Q': on what attribute? A: ssn
 Q'': what syntax? A: create index

What if slow - #2?

sqlite> create table friends (p1, p2);
ssqlite> select f1.p1, f2.p2
 from friends f1, friends f2
 where f1.p2 = f2.p1;

Q: too slow – now what?
What if slow - #2?

sqlite> create table friends (p1, p2);
sqlite> select f1.p1, f2.p2
 from friends f1, friends f2
 where f1.p2 = f2.p1;

Q: too slow – now what?
A: 'explain': sqlite> explain select

Long answer:

• Check the query optimizer (see, say, Ramakrishnan + Gehrke 3rd edition, chapter15):

Conclusions

• (relational) DBMSs: electronic record keepers
• customize them with create table commands
• ask SQL queries to retrieve info

Conclusions cont’d

Data mining practitioner’s guide:
• create view, for short-hands / privacy
• group by + aggregates
• If a query runs slow:
 – explain select – to see what happens
 – create index – often speeds up queries
For more info:

- Sqlite3: www.sqlite.org - @ linux.andrew
- Postgres: also @ linux.andrew
 http://www.postgresql.org/docs/
- Ramakrishnan + Gehrke, 3rd edition
- 15-415/615 web page, eg,
 - http://www.cs.cmu.edu/~christos/courses/dbms.F16

We assume known:

- B-tree indices
- Hashing
- (also, [Ramakrishnan+Gehrke, ch. 10, ch.11])