15-826: Multimedia Databases and Data Mining

Lecture #12: Fractals - case studies Part III
 (quadtrees, knn queries)

C. Faloutsos

Must-read Material

- Alberto Belussi and Christos Faloutsos,
 Estimating the Selectivity of Spatial Queries Using the 'Correlation' Fractal Dimension
 Proc. of VLDB, p. 299-310, 1995

Optional Material

Optional, but very useful: Manfred Schroeder
Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise

Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining
Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - z-ordering
 - R-trees
 - misc
- fractals
 - intro
 - applications
- text

Fractals and Quadtrees

- Problem: how many quadtree nodes will we need, to store a region in some level of approximation? [Gaede+96]

Fractals and Quadtrees

- I.e.:
 \[\text{# of quadtree 'blocks'} = \text{# gray nodes} \]

Fractals and Quadtrees

- Datasets:
 - Franconia
 - Brain Atlas

Fractals and Quadtrees

- Hint:
 - assume that the boundary is self-similar, with a given fd
 - how will the quad-tree (oct-tree) look like?
Fractals and Quadtrees

Let \(p_g(i) \) the prob. to find a gray node at level \(i \).

If self-similar, what can we say for \(p_g(i) \)?

A: \(p_g(i) = p_g = \text{constant} \)

Fractals and Quadtrees

Assume only ‘gray’ and ‘white’ nodes (i.e., no volume’)

Assume that \(p_g \) is given - how many gray nodes at level \(i \)?

A: 1 at level 0;
\[
4^i \cdot p_g \cdot (4^i \cdot p_g)^i
\]

Fractals and Quadtrees

Assume only ‘gray’ and ‘white’ nodes (i.e., no volume’)

Assume that \(p_g \) is given - how many gray nodes at level \(i \)?

A: 1 at level 0;
\[
4^i \cdot p_g \cdot (4^i \cdot p_g)^i
\]
Fractals and Quadtrees

• I.e.:
 \[\text{# of quadtree 'blocks'} \sim (4^p_g)^i \]

Fractals and Quadtrees

• I.e.:
 \[\log(\text{# of quadtree 'blocks')} \sim \log((4^p_g)^i) \]

Fractals and Quadtrees

• Conclusion: Self-similarity leads to easy and accurate estimation
 \[\log_2(\text{#blocks}) \sim \text{level} \]

Fractals and Quadtrees

• Conclusion: Self-similarity leads to easy and accurate estimation
 \[\log_2(\text{#blocks}) \sim \text{level} \]
Fractals and Quadtrees

• Final observation: relationship between \(p_g \) and fractal dimension?

• A: very close:
 \[
 (4^i p_g) = \text{# of gray nodes at level } i = \text{# of Hausdorff grid-cells of side } (1/2)^i = r
 \]
 Eventually: \(D_H = 2 + \log_2(p_g) \)
 and, for E-d spaces: \(D_H = E + \log_2(p_g) \)
Fractals and Quadtrees

for E-d spaces: \(D_H = E + \log_2(p_g) \)

Sanity check:
- point in 2-d: \(D_H = 0 \) \(p_g = ?? \)
- line in 2-d: \(D_H = 1 \) \(p_g = ?? \)
- plane in 2-d: \(D_H = 2 \) \(p_g = ?? \)
- point in 3-d: \(D_H = 0 \) \(p_g = ?? \)

Sanity check:
- point in 2-d: \(D_H = 0 \) \(p_g = 1/4 \)
- line in 2-d: \(D_H = 1 \) \(p_g = 1/2 \)
- plane in 2-d: \(D_H = 2 \) \(p_g = 1 \)
- point in 3-d: \(D_H = 0 \) \(p_g = 1/8 \)

Fractals and Quadtrees

Final conclusions:
• self-similarity leads to estimates for # of z-values = # of quadtree/oct-tree blocks
• close dependence on the Hausdorff fractal dimension of the boundary

Indexing - Detailed outline

• fractals
 – intro
 – applications
 ✓ disk accesses for R-trees (range queries)
 ✓ dimensionality reduction
 ✓ dim. curse revisited
 ✓ quad-tree analysis [Gaede+]
• nn queries [Belussi+]
NN queries

- Q: in NN queries, what is the effect of the shape of the query region? [Belussi+95]

\[\text{log (#pairs-within (\leq d))} \]

\[\text{log} (d) \]

- Q: in NN queries, what is the effect of the shape of the query region?
- that is, for L2, and self-similar data:

\[\log (#\text{pairs-within}(\leq d)) \]

\[r \quad L_2 \quad D_2 \]

\[\log(d) \]

- Q: What about L1, Linf?

\[\log (#\text{pairs-within}(\leq d)) \]

\[\text{log}(d) \]

- A: Same slope, different intercept

\[\log (#\text{pairs-within}(\leq d)) \]

\[\text{log}(d) \]
NN queries

- Q: What about L_1, L_{inf}?
- A: Same slope, different intercept

\[
\log(\text{#neighbors}) \quad \log(d)
\]

- Q: What about the intercept? I.e., what can we say about N_2 and N_{inf}?

Consider sphere with volume V_{inf} and r' radius

\[
N_2 \text{ neighbors}
\]

\[
N_{\text{inf}} \text{ neighbors}
\]

\[
L_2
\]

\[
L_{\text{inf}}
\]

\[
N_2' = N_{\text{inf}} \quad \text{(since shape does not matter)}
\]

and finally:
NN queries

\[
\left(\frac{N_2}{N_{\text{inf}}} \right)^{1/D_2} = \left(\frac{V_2}{V_{\text{inf}}} \right)^{1/E}
\]

Optional

Conclusions: for self-similar datasets

• Avg # neighbors: grows like \((\text{distance})^{D_2}\), regardless of query shape (circle, diamond, square, e.t.c.)

Indexing - Detailed outline

• fractals
 – intro
 – applications
 • disk accesses for R-trees (range queries)
 • dimensionality reduction
 • dim. curse revisited
 • quad-tree analysis [Gaede+]
 • nn queries [Belussi+]
 – Conclusions

Fractals - overall conclusions

• self-similar datasets: appear often
• powerful tools: correlation integral, NCDF, rank-frequency plot
• intrinsic/fractal dimension helps in
 – estimations (selectivities, quadtrees, etc)
 – dim. reduction / dim. curse
• (later: can help in image compression...)
References

