15-826: Multimedia Databases and Data Mining

Lecture #10: Fractals - case studies - I

C. Faloutsos

Must-read Material

• Christos Faloutsos and Ibrahim Kamel, Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension, Proc. ACM SIGACT-SIGMOD-SIGART PODS, May 1994, pp. 4-13, Minneapolis, MN.

Optional Material

Optional, but very useful: Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise W.H. Freeman and Company, 1991 (on reserve in the WeH library)

Reminder

• Code at
 www.cs.cmu.edu/~christos/SRC/fdnq_h.zip

 Also, in ‘R’
 > library(fdim);
Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
 - z-ordering
 - R-trees
 - misc
- fractals
 - intro
 - applications
- text

(Fractals mentioned before:)

- for performance analysis of R-trees
- fractals for dim. reduction

• fractals
 - intro
 - applications
 • disk accesses for R-trees (range queries)
 • dimensionality reduction
 • selectivity in M-trees
 • dim. curve revisited
 • “fat fractals”
 • quad-tree analysis [Gaede+]
Case study#1: R-tree performance

Problem
• Given
 – N points in E-dim space
• Estimate # disk accesses for a range query
 \(q_1 \times \ldots \times q_E \)

(assume: ‘good’ R-tree, with tight, cube-like MBRs)

Typically, in DB Q-opt: uniformity + independence
Examples: World’s countries

For fun: identification
For fun: identification

Examples: TIGER files
- neither uniform, nor independent!
 - MG county
 - LB county

How to proceed?
- recall the [Page+] formula, for range queries of size \(q_1 \times q_2\)

\[
#\text{DiskAccesses}(q_1,q_2) = \sum (x_{i,1} + q_1) \times (x_{i,2} + q_2)
\]

But:
- formula needs to know the \(x_{ij}\) sizes of MBRs!
How to proceed?

But: formula needs to know the $x_{i,j}$ sizes of MBRs!

Answer (jumping ahead):

$$s = (C/N)^{1/D_0}$$

How to proceed?

But: formula needs to know the $x_{i,j}$ sizes of MBRs!

Answer (jumping ahead):

$$s = (C/N)^{1/D_0} \quad \text{Hausdorff fd}$$

Let’s see the rationale

$$s = (C/N)^{1/D_0}$$

R-trees - performance analysis

I.e: for range queries - how many disk accesses, if we just now that we have
- N points in E-d space?
A: can not tell! need to know distribution
R-trees - performance analysis

Q: OK - so we are told that the Hausdorff fractal dim. = D0 - Next step?
(also know that there are at most C points per page)

D0=1

D0=2

Assumption 1: square-like parents (s*s)
Assumption 2: fully packed (C points each)
Assumption 3: non-overlapping

D0=1

D0=2

s1=s2=s

Assumption 1: square-like parents (s*s)
Assumption 2: fully packed (N/C non-empty)
Assumption 3: non-overlapping

D0=1

s1=s2=s

Hint: dfn of Hausdorff f.d.:

Felix Hausdorff (1868-1942)
Reminder: Hausdorff or box-counting fd:
- Box counting plot: \(\log(N(r)) \) vs \(\log(r) \)
- \(r \): grid side
- \(N(r) \): count of non-empty cells
- (Hausdorff) fractal dimension \(D_0 \):
 \[
 D_0 = -\frac{\partial \log(N(r))}{\partial \log(r)}
 \]

Reminder:
- Hausdorff fd:
 \[
 r \quad \log(\text{#non-empty cells})
 \]
- \(N/C \)

Reminder:
- dfn of Hausdorff fd implies that
 \[
 N(r) \sim r^{-D_0}
 \]
 \# non-empty cells of side \(r \)

R-trees - performance analysis
Q (rephrased): what is the side \(s_1, s_2, \ldots \) of parent nodes, given \(N \) data points, packed by \(C \), with f.d. = \(D_0 \)

- \(D_0 = 1 \)
- \(D_0 = 2 \)
R-trees - performance analysis

Q (rephrased): what is the side \(s_1, s_2, \ldots \) of parent nodes, given \(N \) data points, packed by \(C \), with f.d. = \(D_0 \)

A: (educated guess)
- \(s = s_1 = s_2 = \ldots \) - square-like MBRs
- \(N/C \) non-empty cells = \(K \cdot s^{(-D_0)} \)

Details of derivations: in [PODS 94]. Finally, expected side \(s \) of parent MBRs:

\[
s = (C/N)^{1/D_0}
\]

Q: sanity check: how does \(s \) change with \(D_0 \)?
A:
R-trees - performance analysis

Details of derivations: in [Kamel+, PODS 94].

Finally, expected side s of parent MBRs:

$$s = \frac{C}{N}^{1/D_0}$$

Q: sanity check: how does s change with D_0?
A: s grows with D_0
Q: does it make sense?
Q: does it suffer from (intrinsic) dim. curse?

Q: Final-final formula (# disk accesses for range queries $q_1 \times q_2 \times \ldots$):
A:

$$N/C \times (s + q_1) \times (s + q_2) \times \ldots (s + q_E)$$
A: # of parent-node accesses

A: # of grand-parent node accesses

\[N/(C^2) \times (s' + q_1) \times (s' + q_2) \times \ldots (s' + q_E) \]

$s' = ??$
R-trees - performance analysis

Q: Final-final formula (# disk accesses for range queries $q_1 \times q_2 \times \ldots$):
A: # of parent-node accesses:
$$\frac{N}{C} \times (s + q_1) \times (s + q_2) \times \ldots \times (s + q_E)$$
A: # of grand-parent node accesses
$$\frac{N}{(C^2)} \times (s' + q_1) \times (s' + q_2) \times \ldots \times (s' + q_E)$$
$$s' = (C^2/N)^{1/D_0}$$

R-trees - performance analysis

Results:
IUE (x-y star coordinates)

leaf accesses

query side

R-trees - performance analysis

Results:
LB County

leaf accesses

query side

R-trees - performance analysis

Results:
MG-county

leaf accesses

query side
R-trees - performance analysis

Results: 2D - uniform

leaf accesses

query side

Indexing - Detailed outline

- fractals
 - intro
 - applications
 - disk accesses for R-trees (range queries)
 - dimensionality reduction
 - dim. curse revisited
 - quad-tree analysis [Gaede+]
 -

Case study #2: Dim. reduction

Problem definition: ‘Feature selection’
- given N points, with E dimensions
- keep the k most ‘informative’ dimensions

[Traina+, SBBD’00]

Optional

Caetano Traina
Agma Traina
Leejay Wu
Dim. reduction - w/ fractals

Problem definition: ‘Feature selection’

- given N points, with E dimensions
- keep the k most ‘informative’ dimensions

Re-phrased: spot and drop attributes with strong (non-)linear correlations

Q: how do we do that?

Dim. reduction

A: Hint: correlated attributes do not affect the intrinsic/fractal dimension, e.g., if

$y = f(x,z,w)$

we can drop y

(hence: ‘partial fd’ (PFD) of a set of attributes = the fd of the dataset, when projected on those attributes)
Dim. reduction - w/ fractals

- (problem: given N points in E-d, choose k best dimensions)
- Q: Algorithm?
 - A: e.g., greedy - forward selection:
 - keep the attribute with highest partial fd
 - add the one that causes the highest increase in pfd
 - etc., until we are within epsilon from the full f.d.
Dim. reduction - w/ fractals

• (backward elimination: ~ reverse)
 – drop the attribute with least impact on the p.f.d.
 – repeat
 – until we are \(\epsilon\) below the full f.d.

Dim. reduction - w/ fractals

• Q: what is the smallest # of attributes we should keep?

Dim. reduction - w/ fractals

• Q: what is the smallest # of attributes we should keep?
 • A: we should keep at least as many as the f.d. (and probably, a few more)

Dim. reduction - w/ fractals

• Results: E.g., on the ‘currency’ dataset
 • (daily exchange rates for USD, HKD, BP, FRF, DEM, JPY - i.e., 6-d vectors, one per day - base currency: CAD)

 e.g.: FRF

 USD
E.g., on the ‘currency’ dataset

\[\log(\text{#pairs}(<=r)) \quad \text{correlation integral} \]

1.98

Dim. reduction - w/ fractals

Conclusion:
- can do non-linear dim. reduction

References