15-826: Multimedia Databases and Data Mining

Lecture#2: Primary key indexing – B-trees

Christos Faloutsos - CMU

www.cs.cmu.edu/~christos

Reading Material

[Ramakrishnan & Gehrke, 3rd ed, ch. 10]

Problem

Given a large collection of (multimedia) records, find similar/interesting things, ie:
• Allow fast, approximate queries, and
• Find rules/patterns
Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining

Indexing - Detailed outline
• primary key indexing
 – B-trees and variants
 – (static) hashing
 – extendible hashing
• secondary key indexing
• spatial access methods
• text
• ...

In even more detail:
• B – trees
• B+ – trees, B*-trees
• hashing
Primary key indexing

• find employee with ssn=123

B-trees

• the most successful family of index schemes (B-trees, B⁺-trees, B*-trees)
• Can be used for primary/secondary, clustering/non-clustering index.
• balanced “n-way” search trees

Citation

• Received the 2001 SIGMOD innovations award
• among the most cited db publications
 • www.informatik.uni-trier.de/~ley/db/about/top.html
B-trees

Eg., B-tree of order 3:

```
<6
1 3
```
```
6 9
```
```
7
```
```
>9
13
```

B-tree properties:

- each node, in a B-tree of order \(n \):
 - Key order
 - at most \(n \) pointers
 - at least \(n/2 \) pointers (except root)
 - all leaves at the same level
 - if number of pointers is \(k \), then node has exactly \(k-1 \) keys
 - (leaves are empty)

Properties

- “block aware” nodes: each node -> disk page
- \(O(\log (N)) \) for everything! (ins/del/search)
- typically, if \(n = 50 - 100 \), then 2 - 3 levels
- utilization >= 50%, guaranteed; on average 69%
Queries

• Algo for exact match query? (eg., ssn=8?)
Queries

- Algo for exact match query? (eg., ssn=8?)

- What about range queries? (eg., 5<salary<8)
- Proximity/nearest neighbor searches? (eg., salary ~ 8)
Queries
- what about range queries? (eg., \(5 < \text{s}a\text{l}\text{a}ry < 8\))
- Proximity/nearest neighbor searches? (eg., \(\text{s}a\text{l}\text{a}ry \sim 8\))

B-trees: Insertion
- Insert in leaf; on overflow, push middle up (recursively)
- split: preserves B-tree properties
B-trees

Easy case: Tree T0; insert ‘8’

```
  6  9
<6  >9
<6  >9
1  3
7
13
```

B-trees

Tree T0; insert ‘8’

```
  6  9
<6  >9
<6  >9
1  3
7
13
```

B-trees

Hardest case: Tree T0; insert ‘2’

```
  6  9
<6  >9
<6  >9
1  3
7
13
2
```
B-trees

Hardest case: Tree T0; insert ‘2’

push middle up

B-trees

Hardest case: Tree T0; insert ‘2’

Ovf; push middle

Final state
B-trees: Insertion

• Q: What if there are two middles? (eg, order 4)
• A: either one is fine

B-trees: Insertion

• Insert in leaf; on overflow, push middle up (recursively – ‘propagate split’)
• split: preserves all B - tree properties (!!)
• notice how it grows: height increases when root overflows & splits
• Automatic, incremental re-organization

Overview

• B – trees
 – Dfn, Search, insertion, deletion
• B+ – trees
• hashing
Deletion

Rough outline of algo:
• Delete key;
• on underflow, may need to merge

In practice, some implementors just allow underflows to happen…

B-trees – Deletion

Easiest case: Tree T0; delete '3'

Easiest case: Tree T0; delete '3'
B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

Case 1: delete a key at a leaf – no underflow
Case 2: delete non-leaf key – no underflow
Case 3: delete leaf-key; underflow, and ‘rich sibling’
Case 4: delete leaf-key; underflow, and ‘poor sibling’

B-trees – Deletion

• Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)

Delete & promote, i.e.
B-trees – Deletion

- Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)

```
<6  |  9  |  >9
1   3   |
    |
7   13   |
```

Delete & promote, i.e:

```
<6  |  >6  |  >9
1   9   |
    |
7   13   |
```

```
<3  |  9  |  >9
1   3   |
    |
7   13   |
```

FINAL TREE
B-trees – Deletion

- Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)
- Q: How to promote?
- A: pick the largest key from the left sub-tree (or the smallest from the right sub-tree)
- Observation: every deletion eventually becomes a deletion of a leaf key

B-trees – Deletion

- Case 1: delete a key at a leaf – no underflow
- Case 2: delete non-leaf key – no underflow
- Case 3: delete leaf-key; underflow, and ‘rich sibling’
- Case 4: delete leaf-key; underflow, and ‘poor sibling’

B-trees – Deletion

- Case 3: underflow & ‘rich sibling’ (e.g., delete 7 from T0)

Delete & borrow, ie:
B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (e.g., delete 7 from T0)

Rich sibling <6

1 3

Delete & borrow, i.e:

>6 <9

16 9

>9

13

Delete &

borrow, i.e:

<6

1 3

>6 <9

16 9

>9

13

B-trees – Deletion

• Case 3: underflow & ‘rich sibling’

• ‘rich’ = can give a key, without underflowing

• ‘borrowing’ a key: THROUGH the PARENT!

B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (e.g., delete 7 from T0)
B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (e.g., delete 7 from T0)

Delete & borrow, ie:

```
1 3 6
9
```

```
B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

```
1 3 9
<3 >3 <9 >9
```

Delete & borrow, through the parent

FINAL TREE

• Case 1: delete a key at a leaf – no underflow
• Case 2: delete non-leaf key – no underflow
• Case 3: delete leaf-key; underflow, and ‘rich sibling’
• Case 4: delete leaf-key; underflow, and ‘poor sibling’

B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

```
1 3 6
<3 >3 <9 >9
```

B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

```
1 3 6
<3 >3 <9 >9
```

B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (e.g., delete 13 from T0)

A: merge w/ ‘poor’ sibling

• Merge, by pulling a key from the parent
  • exact reversal from insertion: ‘split and push up’, vs. ‘merge and pull down’
  • I.e.:
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

A: merge w/ ‘poor’ sibling

FINAL TREE

B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

B-trees – Deletion

• Case 4: underflow & ‘poor sibling’
• \rightarrow ‘pull key from parent, and merge’
• Q: What if the parent underflows?
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’
• => ‘pull key from parent, and merge’
• Q: What if the parent underflows?
• A: repeat recursively

Overview

• B – trees
• B+ - trees, B*-trees
• hashing

B+ trees - Motivation

1st reason - B-tree – print keys in sorted order:
B+ trees - Motivation

B-tree needs back-tracking – how to avoid it?

Solution: B+ - trees

• facilitate sequential ops
• They string all leaf nodes together
• AND
• replicate keys from non-leaf nodes, to make sure every key appears at the leaf level
B+ trees

B+ trees - insertion

Overview

- B – trees
- B+ - trees, B*-trees
- hashing
**B*-trees**

- splits drop util. to 50%, and maybe increase height
- How to avoid them?

---

**B*-trees: deferred split!**

- Instead of splitting, LEND keys to sibling!
  (through PARENT, of course!)

---

**B*-trees: deferred split!**

- Instead of splitting, LEND keys to sibling!
  (through PARENT, of course!)

---

**Final Tree**
**B*-trees: deferred split!**

- Notice: shorter, more packed, faster tree
- It’s a rare case, where space utilization and speed improve together
- BUT: What if the sibling has no room for our ‘lending’?

---

**B*-trees: deferred split!**

- BUT: What if the sibling has no room for our ‘lending’?
- A: 2-to-3 split: get the keys from the sibling, pool them with ours (and a key from the parent), and split in 3.
- Details: too messy (and even worse for deletion)

---

**Conclusions**

- Main ideas: recursive; block-aware; on overflow -> split; **defer** splits
- All B-tree variants have excellent, $O(\log N)$ worst-case performance for ins/del/search
- B+ tree is the prevailing indexing method
- More details: [Knuth vol 3.] or [Ramakrishnan & Gehrke, 3rd ed, ch. 10]