15-826: Multimedia Databases and Data Mining

Lecture #10: Fractals - case studies - I

C. Faloutsos

Must-read Material

• Christos Faloutsos and Ibrahim Kamel, *Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension*, Proc. ACM SIGACT-SIGMOD-SIGART PODS, May 1994, pp. 4-13, Minneapolis, MN.

Optional Material

Optional, but very useful: Manfred Schroeder *Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise* W.H. Freeman and Company, 1991 (on reserve in the WeH library)
Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining

Indexing - Detailed outline
- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - z-ordering
 - R-trees
 - misc
- fractals
 - intro
 - applications
- text
- disk accesses for R-trees (range queries)
- dimensionality reduction
- selectivity in M-trees
- dim. curse revisited
- “fat fractals”
- quad-tree analysis (Gaede+)
(Fractals mentioned before:)

• for performance analysis of R-trees
• fractals for dim. reduction

Case study#1: R-tree performance

Problem
• Given
 – N points in E-dim space
 – Estimate # disk accesses for a range query
 \((q_1 \times \cdots \times q_E)\)

(assume: ‘good’ R-tree, with tight, cube-like MBRs)

Typically, in DB Q-opt: uniformity + independence
Examples: World’s countries

- neither uniform, nor independent!

For fun: identification
Examples: TIGER files

• neither uniform, nor independent!

MG county LB county

How to proceed?

• recall the [Pagel+] formula, for range queries of size $q_1 \times q_2$

$$#\text{DiskAccesses}(q_1,q_2) = \sum (x_{i,1} + q_1) * (x_{i,2} + q_2)$$

But:

formula needs to know the $x_{i,j}$ sizes of MBRs!

How to proceed?

But:

formula needs to know the $x_{i,j}$ sizes of MBRs!

Answer (jumping ahead):

$$s = \left(\frac{C}{N}\right)^{1/D_0}$$
How to proceed?

But:
formula needs to know the x_{ij} sizes of MBRs!

Answer (jumping ahead):

$$s = \left(\frac{C}{N}\right)^{1/D_0}$$

Let’s see the rationale

$$s = \left(\frac{C}{N}\right)^{1/D_0}$$

R-trees - performance analysis

I.e: for range queries - how many disk accesses, if we just now that we have
- N points in E-d space?
A: can not tell! need to know distribution
R-trees - performance analysis

Q: OK - so we are told that the Hausdorff fractal dim. = D0 - Next step?
(also know that there are at most C points per page)

D0=1

\[\text{ } \]

D0=2

\[\text{ } \]

Proof

Reminder:

Hausdorff or box-counting fd:

- Box counting plot: Log(N(r)) vs Log(r)
- r: grid side
- N(r): count of non-empty cells
- (Hausdorff) fractal dimension D0:

\[D_0 = - \frac{\partial \log(N(r))}{\partial \log(r)} \]
Reminder

• Hausdorff fd:
 \[\log(\#\text{non-empty cells}) \]

 \[\log(r) \]

proof

15-826 Copyright: C. Faloutsos (2009)

R-trees - performance analysis

Q (rephrased): what is the side s1, s2, ... of parent nodes, given N data points, packed by C, with f.d. = D0
R-trees - performance analysis

Q (rephrased): what is the side \(s_1, s_2, \ldots\) of parent nodes, given \(N\) data points, packed by \(C\), with f.d. \(= D_0\)

\[
\begin{align*}
s_2 & \quad \swarrow \quad s_1 \\
D_0=1 & \quad \bullet \quad \bullet \\
D_0=2 & \quad \bullet \quad \bullet \\
\end{align*}
\]

A: (educated guess)
- \(s = s_1 = s_2 = \ldots\) - square-like MBRs
- \(N/C\) non-empty cells = \(K \times s^{-D_0}\)
R-trees - performance analysis

Details of derivations: in [PODS 94].
Finally, expected side s of parent MBRs:

$$s = \frac{C}{N^{1/D_0}}$$

Q: sanity check: how does s change with D_0?
A:

Q: does it make sense?

Q: does it suffer from (intrinsic) dim. curse?

R-trees - performance analysis

Q: Final-final formula (# disk accesses for range queries $q_1 \times q_2 \times ...$):
A:

R-trees - performance analysis

Q: Final-final formula (# disk accesses for range queries $q_1 \times q_2 \times ...$):
A: # of parent-node accesses:
 \[\frac{N}{C} \times (s + q_1) \times (s + q_2) \times ... \times (s + q_E) \]
A: # of grand-parent node accesses

\[\frac{N}{(C^2)} \times (s' + q_1) \times (s' + q_2) \times ... \times (s' + q_E) \]

$s' = (C^2/N)^{1/D_0}$

R-trees - performance analysis

Results:

IUE (x-y star coordinates)

leaf accesses

R-trees - performance analysis

Results:

IUE (x-y star coordinates)
R-trees - performance analysis

Results: LB County

leaf accesses

query side

R-trees - performance analysis

Results: MG-county

leaf accesses

query side

R-trees - performance analysis

Results: 2D-uniform

leaf accesses

query side
R-trees - performance analysis

Conclusions: usually, <5% relative error, for range queries

Indexing - Detailed outline

- fractals
 - intro
 - applications
 - disk accesses for R-trees (range queries)
 - dimensionality reduction
 - selectivity in M-trees
 - dim. curse revisited
 - "fat fractals"
 - quad-tree analysis [Gaede+]
 - ...

Case study #2: Dim. reduction

Problem definition: ‘Feature selection’
- given \(N \) points, with \(E \) dimensions
- keep the \(k \) most ‘informative’ dimensions [Traina+,SBBD’00]
Dim. reduction - w/ fractals

(a) Quarter-circle \(y \) \(x \) \(0 \) \(1 \) not informative
(b) Line \(y \) \(x \) \(0 \) \(1 \)
(c) Spike \(y \) \(x \) \(0 \) \(1 \)

Dim. reduction

Problem definition: ‘Feature selection’
• given \(N \) points, with \(E \) dimensions
• keep the \(k \) most ‘informative’ dimensions
Re-phrased: spot and drop attributes with strong (non-)linear correlations
Q: how do we do that?

A: Hint: correlated attributes do not affect the intrinsic/fractal dimension, e.g., if
\[y = f(x,z,w) \]
we can drop \(y \)
(hence: ‘partial fd’ (PFD) of a set of attributes = the fd of the dataset, when projected on those attributes)
Dim. reduction - w/ fractals

(a) Quarter-circle
(b) Line
(c) Spike

PFD=0
PFD=1
PFD=1

global FD=1
Dim. reduction - w/ fractals

- (problem: given N points in E-d, choose k best dimensions)
- Q: Algorithm?

• A: e.g., greedy - forward selection:
 - keep the attribute with highest partial fd
 - add the one that causes the highest increase in pfd
 - etc., until we are within \(\epsilon \) from the full f.d.

• (backward elimination: ~ reverse)
 - drop the attribute with least impact on the p.f.d.
 - repeat
 - until we are \(\epsilon \) below the full f.d.
Dim. reduction - w/ fractals

• Q: what is the smallest # of attributes we should keep?

• A: we should keep at least as many as the f.d. (and probably, a few more)

Results: E.g., on the 'currency' dataset

(daily exchange rates for USD, HKD, BP, FRF, DEM, JPY - i.e., 6-d vectors, one per day - base currency: CAD)

e.g.: FRF USD
E.g., on the ‘currency’ dataset

\[\log(\#\text{pairs}(\leq r)) \]

log(radii)

E.g., on the ‘currency’ dataset

if unif + indep.

E.g., on the eigenface dataset

16-d vectors, one for each of ~1K faces
E.g., on the eigenface dataset

Dim. reduction - w/ fractals

Conclusion:
- can do non-linear dim. reduction
 - global FD=1

References