15-826: Multimedia Databases and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees
C. Faloutsos

Must-read material

- Textbook, Chapter 5.2
- Ramakrishnan+Gehrke, Chapter 28.6

Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining
Indexing - Detailed outline

• primary key indexing
• secondary key / multi-key indexing
• spatial access methods
 – problem dfn
 – z-ordering
 – R-trees
 – ...
• text
• ...

Reminder: problem

• Given a collection of geometric objects
 (points, lines, polygons, ...)
• organize them on disk, to answer spatial queries (range, nn, etc)
R-trees

- z-ordering: cuts regions to pieces -> dup. elim.
- how could we avoid that?
- Idea: try to extend/merge B-trees and k-d trees

(first attempt: k-d-B-trees)

- [Robinson, 81]: if f is the fanout, split point-set in f parts; and so on, recursively

(first attempt: k-d-B-trees)

- But: insertions/deletions are tricky (splits may propagate downwards and upwards)
- no guarantee on space utilization
R-trees

- [Guttman 84] Main idea: allow parents to overlap!
 - => guaranteed 50% utilization
 - => easier insertion/split algorithms.
 - (only deal with Minimum Bounding Rectangles - MBRs)

Antonin (Toni) Guttman
http://www.baymoon.com/~tg2/

eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page
R-trees

- eg., w/ fanout 4:

P1
A C
B
P2
D

P3
E

P4
F

I

R-trees

- eg., w/ fanout 4:

P1
A C
B
P2
D

P3
E

P4
F

I

R-trees - format of nodes

- \{(MBR; obj-ptr)\} for leaf nodes

x-low; x-high
y-low; y-high
obj
ptr

A
B
C
R-trees - format of nodes

- \{(MBR; node-ptr)\} for non-leaf nodes

- For leaf nodes:
 - \{(point; node-ptr)\}

R-trees - range search?
R-trees - range search

Observations:
• every parent node completely covers its ‘children’
• a child MBR may be covered by more than one parent - it is stored under ONLY ONE of them. (ie., no need for dup. elim.)

R-trees - range search

Observations - cont’d
• a point query may follow multiple branches.
• everything works for any dimensionality

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...)

R-trees - insertion

• eg., rectangle ‘X’

R-trees - insertion

• eg., rectangle ‘X’

R-trees - insertion

• eg., rectangle ‘Y’
R-trees - insertion

- eg., rectangle ‘Y’: extend suitable parent.
- Q: how to measure ‘suitability’?

A: by increase in area (volume) (more details: later, under ‘performance analysis’)
Q: what if there is no room? how to split?
R-trees - insertion

- eg., rectangle ‘W’

R-trees - insertion

- eg., rectangle ‘W’ - focus on ‘P1’ - how to split?

R-trees - insertion

- eg., rectangle ‘W’ - focus on ‘P1’ - how to split?
 - (A1: plane sweep, until 50% of rectangles)
 - A2: ‘linear’ split
 - A3: quadratic split
 - A4: exponential split
R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’

Q: how to measure ‘closeness’?

A: by increase of area (volume)
R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’

• smart idea: pre-sort rectangles according to delta of closeness (ie., schedule easiest choices first!)
R-trees - insertion - pseudocode

- decide which parent to put new rectangle into ('closest' parent)
- if overflow, split to two, using (say,) the quadratic split algorithm
 - propagate the split upwards, if necessary
- update the MBRs of the affected parents.

R-trees - insertion - observations

- many more split algorithms exist (next!)

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...
R-trees - deletion

• delete rectangle
• if underflow
 – ??

R-trees - deletion

• delete rectangle
• if underflow
 – temporarily delete all siblings (!);
 – delete the parent node and
 – re-insert them

R-trees - deletion

• variations: later (eg. Hilbert R-trees w/ 2-to-1 merge)
Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

R-trees - range search

pseudocode:
check the root
for each branch,
 if its MBR intersects the query rectangle
 apply range-search (or print out, if this
 is a leaf)

R-trees - nn search
R-trees - nn search

• Q: How? (find near neighbor; refine...)

• A1: depth-first search; then, range query

R-trees - nn search

• A1: depth-first search; then, range query
R-trees - nn search

• A1: depth-first search; then, range query

• A2: [Roussopoulos+, sigmod95]:
 – priority queue, with promising MBRs, and their best and worst-case distance
 • main idea:

consider only P2 and P4, for illustration
R-trees - nn search

- best of P4
- worst of P2

• what is really the worst of, say, P2?

- A: the smallest of the two red segments!
R-trees - nn search

• variations: [Hjaltason & Samet] incremental nn:
 – build a priority queue
 – scan enough of the tree, to make sure you have the k nn
 – to find the $(k+1)$-th, check the queue, and scan some more of the tree
• ‘optimal’ (but, may need too much memory)

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...)
Spatial joins: find (quickly) all counties intersecting lakes

Assume that they are both organized in R-trees:
R-trees - spatial joins

for each parent P1 of tree T1
for each parent P2 of tree T2
 if their MBRs intersect,
 process them recursively (i.e., check their children)

R-trees - spatial joins

Improvements - variations:
- [Seeger+, sigmod 92]: do some pre-filtering; do plane-sweeping to avoid $N1 \times N2$ tests for intersection
- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees (FYI, many more papers on spatial joins, without R-trees: [Koudas+ Sevcik], e.t.c.)

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...
R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins
• why does it matter?

R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins
• why does it matter?
• A: because we can design split etc algorithms accordingly; also, do query-optimization

R-trees - performance analysis

• A: because we can design split etc algorithms accordingly; also, do query-optimization
• motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?
R-trees - performance analysis

• How many disk accesses for range queries?
 – query distribution wrt location?
 – “ “ wrt size?

R-trees - performance analysis

• How many disk accesses for range queries?
 – query distribution wrt location? uniform; (biased)
 – “ “ wrt size? uniform

R-trees - performance analysis

• easier case: we know the positions of parent MBRs, eg:
R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries)?

• How many times will P1 be retrieved (unif. POINT queries)?

A: x1*x2
R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size $q_1 \times q_2$)?

```
  1  
  x1

  0  
  x2

  0  
  q1

  1  
```

R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size $q_1 \times q_2$)?

```
  x1

  q1

  q2

  x2

  P1
```

R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size $q_1 \times q_2$)?

```
  P1

  q1

  q2
```

R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size $q_1 \times q_2$)?

```
  P1

  q1
```
R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size q1xq2)?

\[\text{A: } (x_1 + q_1)(x_2 + q_2) \]

R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size q1xq2)?

Thus, given a tree with N nodes (i=1, ... N) we expect

\[\text{#DiskAccesses(q1,q2) = } \]
\[= \text{sum (} x_{i,1} + q_1 \text{) } \times \text{sum (} x_{i,2} + q_2 \text{) + } q_2 \times \text{sum (} x_{i,1} \text{) + q1*sum (} x_{i,2} \text{) + q1*q2*N} \]
R-trees - performance analysis

Observations:
• for point queries: only volume matters
• for horizontal-line queries: (q2=0): vertical length matters
• for large queries (q1, q2 >> 0): the count N matters

Observations (cont’ed)
• overlap: does not seem to matter
• formula: easily extendible to n dimensions
• (for even more details: [Pagel +, PODS93], [Kamel+, CIKM93])

Berndt-Uwe Pagel
R-trees - performance analysis

Conclusions:
- splits should try to minimize area and perimeter
- i.e., we want few, small, square-like parent MBRs
- rule of thumb: shoot for queries with $q_1=q_2 = 0.1$ (or $=0.5$ or so).

R-trees - performance analysis

- How many disk (=node) accesses we’ll need for
 - range
 - *nn*
 - spatial joins

R-trees - performance analysis

Range queries - how many disk accesses, if we just now that we have
- *N* points in *n*-d space?
A: ?
R-trees - performance analysis

Range queries - how many disk accesses, if we just now that we have
- N points in n-d space?
A: can not tell! need to know distribution

R-trees - performance analysis

What are obvious and/or realistic distributions?

A: uniform
A: Gaussian / mixture of Gaussians
A: self-similar / fractal. Fractal dimension ~ intrinsic dimension
R-trees - performance analysis

Formulas for range queries and k-nn queries: use fractal dimension [Kamel+, PODS94], [Korn+ ICDE2000] [Kriegel+, PODS97]

Formulas for spatial joins of regions: open research question

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 ➜ variations (packed; hilbert;...)

R-trees - variations

Guttman’s R-trees sparked much follow-up work

➔ can we do better splits?
 • what about static datasets (no ins/del/upd)?
 • what about other bounding shapes?
R-trees - variations

Guttman’s R-trees sparked much follow-up work
• can we do better splits?
 – i.e., defer splits?

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]

Norbert Beckmann
Hans Peter Kriegel
Ralf Schneider
Bernhard Seeger

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]
• defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
• Which ones to re-insert?
• How many?
R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]
- defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
- Which ones to re-insert?
- How many? A: 30%

R-trees - variations

Q: Other ways to defer splits?

R-trees - variations

Q: Other ways to defer splits?
A: Push a few keys to the closest sibling node (closest = ??)
R-trees - variations

R*-trees: Also try to minimize area AND perimeter, in their split.
Performance: higher space utilization; faster than plain R-trees. One of the most successful R-tree variants.

R-trees - variations

Guttman’s R-trees sparked much follow-up work
• can we do better splits?
 • what about static datasets (no ins/del/ upd)?
 – Hilbert R-trees
• what about other bounding shapes?

R-trees - variations

• what about static datasets (no ins/del/ upd)?
• Q: Best way to pack points?
R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep
 - great for queries on ‘x’;
 - terrible for ‘y’

R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep
 - great for queries on ‘x’;
 - bad for ‘y’

R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep
 - great for queries on ‘x’;
 - terrible for ‘y’
- Q: how to improve?
R-trees - variations

• A: plane-sweep on HILBERT curve!

R-trees - variations

• A: plane-sweep on HILBERT curve!
• In fact, it can be made dynamic (how?), as well as to handle regions (how?)

R-trees - variations

• Dynamic (‘Hilbert R-tree):
 – each point has an ‘h’-value (hilbert value)
 – insertions: like a B-tree on the h-value
 – but also store MBR, for searches
R-trees - variations

• Data structure of a node?

LHV x-low, ylow
x-high, y-high ptr

h-value \geq LHV & MBRs: inside parent MBR

R-trees - variations

• Data structure of a node?

~B-tree

LHV x-low, ylow
x-high, y-high ptr

h-value \geq LHV & MBRs: inside parent MBR

R-trees - variations

• Data structure of a node?

~R-tree

LHV x-low, ylow
x-high, y-high ptr

h-value \geq LHV & MBRs: inside parent MBR
R-trees - variations

Guttman’s R-trees sparked much follow-up work

• can we do better splits?
• what about static datasets (no ins/del/upd)?
 – Hilbert R-trees - main idea
 – handling regions
 – performance/discussion
• what about other bounding shapes?

R-trees - variations

• What if we have regions, instead of points?
• I.e., how to impose a linear ordering (‘h-value’) on rectangles?

R-trees - variations

• What if we have regions, instead of points?
• I.e., how to impose a linear ordering (‘h-value’) on rectangles?

 A1: h-value of center
 A2: h-value of 4-d point (center, x-radius, y-radius)
• A3: ...
R-trees - variations

- What if we have regions, instead of points?
- I.e., how to impose a linear ordering (‘h-value’) on rectangles?

A1: h-value of center
- A2: h-value of 4-d point (center, x-radius, y-radius)
- A3: ...

R-trees - variations

- with h-values, we can have deferred splits, 2-to-3 splits (3-to-4, etc)
- experimentally: faster than R*-trees (reference: [Kamel Faloutsos vldb 94])

R-trees - variations

Guttman’s R-trees sparked much follow-up work
- can we do better splits?
- what about static datasets (no ins/del/upd)?
- what about other bounding shapes?
R-trees - variations

• what about other bounding shapes? (and why?)
• A1: arbitrary-orientation lines (cell-tree, [Guenther]
• A2: P-trees (polygon trees) (MB polygon: 0, 90, 45, 135 degree lines)

R-trees - variations

• A3: L-shapes; holes (hB-tree)
• A4: TV-trees [Lin+, VLDB-Journal 1994]
• A5: SR-trees [Katayama+, SIGMOD97] (used in Informedia)

Indexing - Detailed outline

• spatial access methods
 – problem dfn
 – z-ordering
 – R-trees
 – misc topics
 • grid files
 • dimensionality curse
 • metric trees
 • other nn methods
• text, ...
R-trees - conclusions

- Popular method; like multi-d B-trees
- Guaranteed utilization
- Good search times (for low-dim. at least)
- Informix (-> IBM-DB2) ships DataBlade with R-trees

References

- Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger: The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. ACM SIGMOD 1990: 322-331
References, cont’d

Other resources

- Code, papers, datasets etc:
 www.rtreeportal.org/

- Java applets and more info:
 donar.ummacs.umd.edu/quadtree/points/rtrees.html