15-826: Multimedia Databases and Data Mining

Lecture#2: Primary key indexing – B-trees

Christos Faloutsos - CMU

www.cs.cmu.edu/~christos

Problem

Given a large collection of (multimedia) records, find similar/interesting things, ie:

• Allow fast, approximate queries, and
• Find rules/patterns

Outline

Goal: ‘Find similar / interesting things’

• Intro to DB
• Indexing - similarity search
• Data Mining
Indexing - Detailed outline

- primary key indexing
 - B-trees and variants
 - (static) hashing
 - extendible hashing
- secondary key indexing
- spatial access methods
- text
- ...

Primary key indexing

- find employee with ssn=123

B-trees

- the most successful family of index schemes (B-trees, B⁺trees, B⁻trees)
- Can be used for primary/secondary, clustering/non-clustering index.
- balanced “n-way” search trees
Citation

• Received the 2001 SIGMOD innovations award
• among the most cited db publications
 • www.informatik.uni-trier.de/~ley/db/about/top.html

B-trees
Eg., B-tree of order 3:

![B-tree diagram](image)

B - tree properties:

• each node, in a B-tree of order \(n \):
 – Key order
 – at most \(n \) pointers
 – at least \(n/2 \) pointers (except root)
 – all leaves at the same level
 – if number of pointers is \(k \), then node has exactly \(k-1 \) keys
 – (leaves are empty)

![B-tree properties diagram](image)
Properties

• “block aware” nodes: each node -> disk page
• $O(\log(N))$ for everything! (ins/del/search)
• typically, if $m = 50 - 100$, then 2 - 3 levels
• utilization $\geq 50\%$, guaranteed; on average 69%
Queries

- Algo for exact match query? (eg., ssn=8?)

![Diagram](image)

Queries

- Algo for exact match query? (eg., ssn=8?)

![Diagram](image)

Queries

- Algo for exact match query? (eg., ssn=8?)

![Diagram](image)
Queries

• what about range queries? (eg., $5<salary<8$)
• Proximity/ nearest neighbor searches? (eg., $salary \sim 8$)
B-trees: Insertion

- Insert in leaf; on overflow, push middle up (recursively)
- split: preserves B-tree properties

B-trees

Easy case: Tree T0; insert ‘8’

```
<6

1 3

6 9

>6

7 13

<9

1 3

6 9

>9

7 13
```

B-trees

Tree T0; insert ‘8’

```
<6

1 3

6 9

>6

7 5

<9

1 3

6 9

>9

7 5
```
B-trees

Hardest case: Tree T0; insert ‘2’

```
<6  6  9  >9
1  3  7  13
  2
```

push middle up

B-trees

Hardest case: Tree T0; insert ‘2’

```
6  9
1  2  3  7  13
```

push middle up

B-trees

Hardest case: Tree T0; insert ‘2’

```
1  3  6  9  13
```

Ovf; push middle

B-trees

Hardest case: Tree T0; insert ‘2’

B-trees: Insertion

• Q: What if there are two middles? (eg, order 4)
• A: either one is fine

B-trees: Insertion

• Insert in leaf; on overflow, push middle up (recursively – ‘propagate split’)
• split: preserves all B - tree properties (!!!)
• notice how it grows: height increases when root overflows & splits
• Automatic, incremental re-organization
Overview

- B – trees
 - Dfn, Search, insertion, deletion
- B+ - trees
- hashing

Deletion

Rough outline of algo:
- Delete key;
- on underflow, may need to merge

In practice, some implementors just allow underflows to happen…

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

```
<6   >6
\|   /\n1 3 7 13
```

<6
```
6 9
```
>9
```
9
```
B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

- Case1: delete a key at a leaf – no underflow
- Case2: delete non-leaf key – no underflow
- Case3: delete leaf-key; underflow, and ‘rich sibling’
- Case4: delete leaf-key; underflow, and ‘poor sibling’
B-trees – Deletion

• Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)

Delete & promote, ie:

1 3
<6
6 9
>6
1 7
<9
7 13
>9
B-trees – Deletion

• Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)

![Tree Diagram](image)

Q: How to promote?
A: Pick the largest key from the left sub-tree (or the smallest from the right sub-tree)

Observation: Every deletion eventually becomes a deletion of a leaf key

B-trees – Deletion

• Case 1: Delete a key at a leaf – no underflow
• Case 2: Delete a non-leaf key – no underflow
• Case 3: Delete leaf-key; underflow, and ‘rich sibling’
• Case 4: Delete leaf-key; underflow, and ‘poor sibling’
B-trees – Deletion

- Case 3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

Delete & borrow, ie:

- Rich sibling

B-trees – Deletion

- Case 3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

Delete & borrow, ie:

B-trees – Deletion

- Case 3: underflow & ‘rich sibling’

- ‘rich’ = can give a key, without underflowing
- ‘borrowing’ a key: THROUGH the PARENT!
B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

Delete & borrow, ie:

Rich sibling

<6

6 9

>6

<9

>9

1

3

13

NO!!

1

3

6

9

13

<6

>6

<9

>9

Delete & borrow, ie:
B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (e.g., delete 7 from T0)

Delete & borrow, i.e.:

<6
1 9
>6
6
<9
13
>9

FINAL TREE

Delete & borrow, through the parent

B-trees – Deletion

• Case 1: delete a key at a leaf – no underflow
• Case 2: delete non-leaf key – no underflow
• Case 3: delete leaf-key; underflow, and ‘rich sibling’
 • Case 4: delete leaf-key; underflow, and ‘poor sibling’
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

A: merge w/ ‘poor’ sibling
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (e.g., delete 13 from T0)

• Merge, by pulling a key from the parent
• exact reversal from insertion: ‘split and push up’, vs. ‘merge and pull down’
• I.e.:

A: merge w/ ‘poor’ sibling

FINAL TREE
B-trees – Deletion

- Case 4: underflow & ‘poor sibling’
- => ‘pull key from parent, and merge’
- Q: What if the parent underflows?

- A: repeat recursively

Overview

- B – trees
- B+ - trees, B*-trees
- hashing
B+ trees - Motivation

B-tree – print keys in sorted order:

<table>
<thead>
<tr>
<th><6</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>>6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td><9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>>9</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

B+ trees - Motivation

B-tree needs back-tracking – how to avoid it?

<table>
<thead>
<tr>
<th><6</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>>6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td><9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>>9</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Solution: B+ - trees

- facilitate sequential ops
- They string all leaf nodes together
- AND
- replicate keys from non-leaf nodes, to make sure every key appears at the leaf level
B+ trees

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

B+ trees - insertion

Eg., insert '8'

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Overview

- B – trees
- B+ - trees, B*-trees
- hashing
B*-trees

- splits drop util. to 50%, and maybe increase height
- How to avoid them?

B*-trees: deferred split!

- Instead of splitting, LEND keys to sibling!
 (through PARENT, of course!)

B*-trees: deferred split!

- Instead of splitting, LEND keys to sibling!
 (through PARENT, of course!)

FINAL TREE
B*-trees: deferred split!

- Notice: shorter, more packed, faster tree
- It’s a rare case, where space utilization and speed improve together
- BUT: What if the sibling has no room for our ‘lending’?

B*-trees: deferred split!

- BUT: What if the sibling has no room for our ‘lending’?
- A: 2-to-3 split: get the keys from the sibling, pool them with ours (and a key from the parent), and split in 3.
- Details: too messy (and even worse for deletion)

Conclusions

- Main ideas: recursive; block-aware; on overflow -> split; defer splits
- All B-tree variants have excellent, O(logN) worst-case performance for ins/del/search
- B+ tree is the prevailing indexing method
- More details: [Knuth vol 3.] or [Ramakrishnan & Gehrke, 3rd ed, ch. 10]