Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
 - Data Mining

Data Mining - Detailed outline
- Statistics
- AI - decision trees
- DB
 - data warehouses; data cubes; OLAP
 - classifiers
 - association rules
 - misc. topics:
 - reconstruction of info
 - network databases; time sequence forecasting

Classifiers - outline
- Case study: ‘Interval Classifier’ (‘IC’)
 - recent developments and variations

Tree Classifiers

Database issues: how about huge (training) datasets?

Case study: Interval Classifier [Agrawal+92]
Goal: build a classifier (eg., for target mailing)
Differences from AI/ML:
- retrieval efficiency (could use DBMS indices!)
- generation efficiency (large training dataset)

Tree Classifiers - ‘IC’

Proposed method: use classification tree, but
- split a range (= num. attribute) into \(k \) sub-ranges, as opposed to just 2
- do ‘dynamic pruning’ (ie., don’t expand a node that is fairly homogeneous)
Tree Classifiers - ‘IC’

Sketch of algorithm
make-tree():
 partition set in groups by label
 obtain histograms for each group and each attribute
 Apply goodness function to pick winning attribute A
 Partition the domain of A into “strong” and “weak” intervals
 For each “strong” interval: assign it to majority label
 For each “weak” interval: make-tree()

Tree Classifiers - ‘IC’

• “strong” interval: = homogeneous (or close enough)
• k: depends on # of distinct values
• ‘interval’ = ‘range’ for a continuous attribute;
• ‘interval’ = ‘value’ for a categorical one
• histograms: equi-width

Classification accuracy: comparable to standard algorithms (ID3, C4)

Tree Classifiers - ‘IC’

Conclusions: compared to standard algorithms (ID3, C4):
• Faster, because of
 – k-way splitting and
 – dynamic pruning
• comparable classification accuracy

Classifiers - newer methods

• SLIQ [Mehta+96]
• SPRINT [Shafer+, vldb96]
• PUBLIC [Rastogi+Shim, vldb98]
• RainForest [Gehrke+, 2000]

Goal: how to make build decision trees, when the training set does not fit in memory

SLIQ: use vertical partitioning (att-value, record-id) for each attribute; keep the (label, record-id) list in main memory
SPRINT: like SLIQ, but attach ‘label’ on each attribute list: (attr-value, label, record-id)
Classifiers - conclusions
Recent methods: try to improve scalability/speed with
• ‘dynamic’ pruning
• elaborate file structures / data placement
• parallelism

Data Mining - Detailed outline
• Statistics
• AI - decision trees
• DB
 – data warehouses; data cubes; OLAP
 – classifiers
 – association rules
 – misc. topics:
 • reconstruction of info
 • network databases; time sequence forecasting

Association rules - outline
• Main idea [Agrawal+SIGMOD93]
 • performance improvements
 • Variations / Applications
 • Follow-up concepts

Association rules - idea
[Agrawal+SIGMOD93]
• Consider ‘market basket’ case:
 (milk, bread)
 (milk)
 (milk, chocolate)
 (milk, bread)
• Find ‘interesting things’, eg., rules of the form:
 milk, bread -> chocolate | 90%

Association rules - idea
In general, for a given rule
l_j, l_k, ... l_m -> l_x | c
‘c’ = ‘confidence’ (how often people buy l_x, given that they have bought l_j, ... l_m
‘s’ = support: how often people buy l_j, ... l_m, l_x

Association rules - idea
Problem definition:
• given
 – a set of ‘market baskets’ (=binary matrix, of N rows/baskets and M columns/products)
 – min-support ‘s’ and
 – min-confidence ‘c’
• find
 – all the rules with higher support and confidence

Parallelism

Follow-up concepts
’s’ = support: how often people buy I_j, ... I_m, I_x
‘c’ = ‘confidence’ (how often people buy I_x, given that they have bought I_j, ... I_m

Statistics

‘dynamic’ pruning

Association rules - idea
• elaborate file structures / data placement
Association rules - idea

Closely related concept: “large itemset”
I₁, I₂, ..., Iₘ, Iₙ
is a ‘large itemset’, if it appears more than ‘min-
support’ times
Observation: once we have a ‘large itemset’, we can
find out the qualifying rules easily (how?)
Thus, let’s focus on how to find ‘large itemsets’

Naive solution: scan database once; keep 2**|I|

Let L(i-1) be the set of large itemsets with

C(i) = \{I \subseteq I | support(I) \geq min-sup\}

Thus, let’s focus on how to find ‘large itemsets’

Eg., for |I|=3 items only (A, B, C), we have

A
B
C

100 200 2

min-sup:10

Antimonotonicity property:
if an itemset fails to be ‘large’, so will every superset
of it (hence all supersets can be pruned)

Sketch of the (famous!) ‘a-priori’ algorithm
Let L(i-1) be the set of large itemsets with i-1
elements
Let C(i) be the set of candidate itemsets (of size i)
Association rules - idea

Compute \(L(1) \), by scanning the database.
repeat, for \(i=2,3,... \),
'join' \(L(i-1) \) with itself, to generate \(C(i) \)
- two itemsets can be joined, if they agree on their first \(i-2 \) elements
- prune the itemsets of \(C(i) \) (how?)
- scan the db, finding the counts of the \(C(i) \) itemsets - set this to be \(L(i) \)
- unless \(L(i) \) is empty, repeat the loop
(see example 6.1 in [Han+Kamber])

Association rules - outline

- Main idea [Agrawal+SIGMOD93]
- performance improvements
- Variations / Applications
- Follow-up concepts

Association rules - improvements

- Use the independence assumption, to second-guess large itemsets a few steps ahead
- eliminate ‘market baskets’, that don’t contain any more large itemsets
- Partitioning (eg., for parallelism): find ‘local large itemsets’, and merge.
- Sampling
- report only ‘maximal large itemsets’ (dfn?)
- FP-tree (seems to be the fastest)

Association rules - improvements

- FP-tree: no candidate itemset generation - only two passes over dataset
- Main idea: build a TRIE in main memory
 Specifically:
 - first pass, to find counts of each item - sort items in decreasing count order
 - second pass: build the TRIE, and update its counts
 (eg., let A,B, C, D be the items in frequency order:)

Association rules - improvements

- eg., let A,B, C, D be the items in frequency order:

 - 32 records
 - 10 of them have A
 - 4 have AB
 - 2 have AC
 - 1 has C

- Traversing the TRIE, we can find the large itemsets (details: in [Han+Kamber, §6.2.4])
- Result: much faster than ‘a-priori’ (order of magnitude)
Association rules - outline
- Main idea [Agrawal+SIGMOD93]
- Performance improvements
- Variations / Applications
- Follow-up concepts

Association rules - variations
1) Multi-level rules: given concept hierarchy
- ‘bread’, ‘milk’, ‘butter’ -> foods;
- ‘aspirin’, ‘tylenol’ -> pharmacy

look for rules across any level of the hierarchy, eg
- ‘aspirin’ -> foods
(similarly, rules across dimensions, like ‘product’, ‘time’, ‘branch’:
- ‘bread’, ‘12noon’, ‘PGH-branch’ -> ‘milk’

2) Sequential patterns:
- ‘car’, ‘now’ -> ‘tires’, ‘2 months later’
Also: given a stream of (time-stamped) events:
A A B A C A B A C......
find rules like
B, A -> C
[Manilla+KDD97]

Association rules - variations
3) Spatial rules, eg:
- ‘house close to lake’ -> ‘expensive’

4) Quantitative rules, eg:
- ‘age between 20 and 30’, ‘chol. level <150’ ->
- ‘weight > 150lb’

I.e., given numerical attributes, how to find rules?

Association rules - variations
4) Quantitative rules
Solution:
- bucketize the (numerical) attributes
- find (binary) rules
- stitch appropriate buckets together:
 salary
 age
Association rules - outline

• Main idea [Agrawal+SIGMOD93]
• performance improvements
• Variations / Applications
• Follow-up concepts

Association rules - follow-up concepts

Associations rules vs. correlation.
Motivation: if milk, bread is a ‘large itemset’, does this mean that there is a positive correlation between ‘milk’ and ‘bread’ sales?

Association rules - follow-up concepts

What to do, then?
A: report only pairs of items that are indeed correlated - i.e., they pass the Chi-square test
The idea can be extended to 3-, 4- etc itemsets (but becomes more expensive to check)
See [Han+Kamber, §6.5], or [Brin+,SIGMOD97]

Association rules - Conclusions

Association rules: a new tool to find patterns
• easy to understand its output
• fine-tuned algorithms exist

Reference

• Han + Kamber, chapter 6; chapter 7.3.5