15-826: Multimedia Databases and Data Mining

Text - part I
C. Faloutsos

Outline
Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining

Indexing - Detailed outline
• primary key indexing
• secondary key / multi-key indexing
• spatial access methods
• fractals
• text
• multimedia
• ...

Text - Detailed outline
• text
 – problem
 – full text scanning
 – inversion
 – signature files
 – clustering
 – information filtering and LSI

Problem - Motivation
• Eg., find documents containing “data”, “retrieval”
• Applications:

Problem - Motivation
• Eg., find documents containing “data”, “retrieval”
• Applications:
 – Web
 – law + patent offices
 – digital libraries
 – information filtering
Problem - Motivation

• Types of queries:
 – boolean ('data' AND 'retrieval' AND NOT ...)
 – additional features ('data' ADJACENT 'retrieval')
 – keyword queries ('data', 'retrieval')

• How to search a large collection of documents?

Full-text scanning

• Build a FSA; scan

 ABRACADABRA text
 CAB pattern

• for single term:
 – (naive: O(N*M))
 – Knuth Morris and Pratt (~'77)
 • build a small FSA; visit every text letter once only,
 by carefully shifting more than one step

 ABRACADABRA text
 CAB pattern
Full-text scanning

- for single term:
 - (naive: $O(N \times M)$)
 - Knuth Morris and Pratt (’77)
 - Boyer and Moore (’77)
 - preprocess pattern; start from right to left & skip!

ABRACADABRA text
CAB pattern

Full-text scanning

ABRACADABRA text
CAB pattern

Full-text scanning

ABRACADABRA text
OMINOUS pattern

Boyer+Moore: fastest, in practice
Sunday (‘90): some improvements

Full-text scanning

- For multiple terms (w/o “don’t care” characters): Aho+Corasic (’75)
 - again, build a simplified FSA in $O(M)$ time
- Probabilistic algorithms: ‘fingerprints’
 (Karp + Rabin ‘87)

Full-text scanning

- Approximate matching - string editing
distance:
 $d(‘survey’, ‘surgery’) = 2$
 = min # of insertions, deletions, substitutions to transform the first string into the second
SURVEY
SURGERY
Full-text scanning

- **string editing** distance - how to compute?
- A: dynamic programming

 \[
 \text{cost}(i, j) = \text{cost}(i-1, j-1)
 \]

 else

 \[
 \text{cost}(i, j) = \min (\begin{array}{l}
 1 + \text{cost}(i, j-1) // \text{deletion} \\
 1 + \text{cost}(i-1, j-1) // \text{substitution} \\
 1 + \text{cost}(i-1, j) // \text{insertion}
 \end{array})
 \]

String editing distance

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>U</th>
<th>R</th>
<th>V</th>
<th>E</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

String editing distance

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>U</th>
<th>R</th>
<th>V</th>
<th>E</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

String editing distance

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>U</th>
<th>R</th>
<th>V</th>
<th>E</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

String editing distance

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>U</th>
<th>R</th>
<th>V</th>
<th>E</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
String editing distance

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>U</th>
<th>R</th>
<th>V</th>
<th>E</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>U</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Full-text scanning

Complexity: $O(M^N)$ (when using a matrix to ‘memoize’ partial results)
Full-text scanning

Conclusions:
• Full text scanning needs no space overhead, but is slow for large datasets