Outline
Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining

Indexing - Detailed outline
- primary key indexing
 - B-trees and variants
 - (static) hashing
 - extendible hashing
- secondary key indexing
- spatial access methods
- text
- ...

(Static) Hashing
Problem: “find EMP record with ssn=123”
What if disk space was free, and time was at premium?

Hashing
A: Brilliant idea: key-to-address transformation:

123; Smith; Main str

#0 page
#123 page
#999,999,999

Hashing
Since space is NOT free:
- use M, instead of 999,999,999 slots
- hash function: $h(key) = slot-id$

123; Smith; Main str

#0 page
#123 page
#999,999,999
Hashing

Typically: each hash bucket is a page, holding many records:

Notice: could have clustering, or non-clustering versions:

Hashing - design decisions?

- eg., IRS, 200M tax returns, by SSN

Indexing- overview

- B-trees
- hashing
 - hashing functions
 - size of hash table
 - collision resolution
- Hashing vs B-trees
- Indices in SQL

Design decisions

1) formula \(h() \) for hashing function
2) size of hash table \(M \)
3) collision resolution method
Design decisions - functions

• Goal: uniform spread of keys over hash buckets
• Popular choices:
 – Division hashing
 – Multiplication hashing

Division hashing

\[h(x) = (a \cdot x + b) \mod M \]

• eg., \(h(ssn) = (ssn) \mod 1,000 \)
 – gives the last three digits of ssn
• \(M \): size of hash table - choose a prime number, defensively (why?)

Division hashing

• eg., \(M=2 \); hash on driver-license number (dln), where last digit is ‘gender’ (0/1 = M/F)
• in an army unit with predominantly male soldiers
• Thus: avoid cases where \(M \) and keys have common divisors - prime \(M \) guards against that!

Multiplication hashing

\[h(x) = \lfloor \text{fractional-part-of} \left(x \cdot \varphi \right) \rfloor \cdot M \]

• \(\varphi \): golden ratio (0.618... = (sqrt(5)-1)/2)
• in general, we need an irrational number
• advantage: \(M \) need not be a prime number
• but \(\varphi \) must be irrational

Other hashing functions

• quadratic hashing (bad)
• ...
• conclusion: use division hashing

Design decisions

1) formula \(h() \) for hashing function
2) size of hash table \(M \)
3) collision resolution method
Size of hash table

- eg., 50,000 employees, 10 employee-records/page
- Q: $M=??$ pages/buckets/slots

Size of hash table

- eg., 50,000 employees, 10 employees/page
- Q: $M=??$ pages/buckets/slots
- A: utilization ~ 90% and
 - M: prime number
 Eg., in our case: $M=$ closest prime to $50,000/10 / 0.9 = 5,555$

Design decisions

1) formula $h()$ for hashing function
2) size of hash table M
3) collision resolution method

Collision resolution

- Q: what is a ‘collision’?
- A: ??

Collision resolution

- Q: what is a ‘collision’?
- A: ??
- Q: why worry about collisions/overflows? (recall that buckets are ~90% full)
 - A: ‘birthday paradox’
Collision resolution

- open addressing
 - linear probing (ie., put to next slot/bucket)
 - re-hashing
- separate chaining (ie., put links to overflow pages)

Design decisions - conclusions

- function: division hashing
 - \(h(x) = (ax+b) \mod M \)
- size \(M \): ~90% util.; prime number.
- collision resolution: separate chaining
 - easier to implement (deletions!);
 - no danger of becoming full

Indexing- overview

- B-trees
- hashing
 - Hashing vs B-trees
- Indices in SQL
- extendible hashing
Hashing vs B-trees:

Hashing offers
- speed \(\mathcal{O}(1) \) average search time

..but:

Hashing vs B-trees:

..but B-trees give:
- key ordering:
 - range queries
 - proximity queries
 - sequential scan
- \(\mathcal{O}(\log(N)) \) guarantees for search, ins./del.
- graceful growing/shrinking

thus:
- B-trees are implemented in most systems

footnotes:
- hashing is rarely implemented (why not?)
- `dbm` and `ndbm` of UNIX: offer one or both

Indexing- overview

- B-trees
- hashing
 - Hashing vs B-trees
- Indices in SQL
 - extendible hashing

Indexing in SQL

- `create index <index-name> on <relation-name> (<attribute-list>)`
- `create unique index <index-name> on <relation-name> (<attribute-list>)`
- `drop index <index-name>`

- eg.,
 - create index ssn-index on STUDENT (ssn)
- or (eg., on `TAKES(ssn,cid, grade)`):
 - create index sc-index on TAKES (ssn, c-id)
Indexing- overview

• B-trees
• hashing
• Indices in SQL
• extensible hashing
 – 'extendible' hashing [Fagin, Pipenger +]
 – 'linear' hashing [Litwin]

Problem with static hashing

• problem: overflow?
• problem: underflow? (underutilization)

Solution: Dynamic/extendible hashing

• idea: shrink / expand hash table on demand..
• ..dynamic hashing
Details: how to grow gracefully, on overflow?
Many solutions - One of them: ‘extendible hashing’ [Fagin et al]

Extendible hashing

solution:
split the bucket in two

123; Smith; Main str

123; Smith; Main str

Extendible hashing

in detail:
• keep a directory, with ptrs to hash-buckets
• Q: how to divide contents of bucket in two?
• A: hash each key into a very long bit string;
 keep only as many bits as needed
Eventually:
Extendible hashing

directory

00...
01...
10...
11...

10101...
10110...
1101...
10011...

0111...
0001...
101001...
101101...

split on 3-rd bit

new page / bucket

BEFORE AFTER
Extendible hashing

• Summary: directory doubles on demand
• or halves, on shrinking files
• needs ‘local’ and ‘global’ depth

Indexing- overview

• B-trees
• hashing
• Hashing vs B-trees
• Indices in SQL
• extendible hashing
 – ‘extensible’ hashing [Fagin, Pipenger +]
 – ‘linear’ hashing [Litwin]

Linear hashing - overview

• Motivation
• main idea
• search algo
• insertion/split algo
• deletion
• performance analysis
• variations

Linear hashing

Motivation: ext. hashing needs directory etc etc; which doubles (ouch!)
Q: can we do something simpler, with smoother growth?
A: split buckets from left to right, regardless of which one overflowed
(‘crazy’, but it works well) - Eg.:

Linear hashing

Initially: \(h(x) = x \mod N \) (N=4 here)
Assume capacity: 3 records / bucket
Insert key ‘17’

<table>
<thead>
<tr>
<th>bucket-id</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>
Linear hashing
Initially: \(h(x) = x \mod N \)
\((N=4 \text{ here}) \)

\[
\begin{array}{|c|c|c|c|}
\hline
\text{bucket- id} & 0 & 1 & 2 & 3 \\
\hline
4 & 8 & 5 & 9 & 13 \\
\hline
\end{array}
\]

overflow of bucket\#1

Split #0, anyway!!!

Q: But, how?

A: use two h.f.:
\(h0(x) = x \mod N \)
\(h1(x) = x \mod (2\times N) \)

\[
\begin{array}{|c|c|c|c|}
\hline
\text{bucket- id} & 0 & 1 & 2 & 3 \\
\hline
4 & 8 & 5 & 9 & 13 \\
\hline
\end{array}
\]

Linear hashing - after split:
A: use two h.f.:
\(h0(x) = x \mod N \)
\(h1(x) = x \mod (2\times N) \)

\[
\begin{array}{|c|c|c|c|}
\hline
\text{bucket- id} & 0 & 1 & 2 & 3 & 4 \\
\hline
8 & 5 & 9 & 13 & 6 & 7 & 11 & 4 \\
\hline
\end{array}
\]

17

overflow
Linear hashing - after split:
A: use two h.f.:
\[h_0(x) = x \mod N \]
\[h_1(x) = x \mod (2*N) \]

bucket- id 0 1 2 3 4
split ptr

8 5 9 13 6 7 11 4
overflow

Linear hashing - overview
- Motivation
- main idea
- search algo
- insertion/split algo
- deletion
- performance analysis
- variations

Linear hashing - searching?
h_0(x) = x \mod N \hspace{1cm} \text{(for the un-split buckets)}
h_1(x) = x \mod (2*N) \hspace{1cm} \text{(for the splitted ones)}

bucket- id 0 1 2 3 4
split ptr

8 5 9 13 6 7 11 4
overflow

Q1: find key ‘6’? Q2: find key ‘4’?
Q3: key ‘8’?

Linear hashing - overview
- Motivation
- main idea
- search algo
- insertion/split algo
- deletion
- performance analysis
- variations

Linear hashing - searching?
Algo to find key ‘k’:
• compute \(b = h_0(k) \);
• if \(b < \text{split-ptr} \), compute \(b = h_1(k) \)
• search bucket \(b \)
Linear hashing - insertion?

Algo: insert key 'k'

• compute appropriate bucket 'b'
• if the overflow criterion is true
 • split the bucket of 'split-ptr'
 • split-ptr ++ (*)

• compute appropriate bucket 'b'
• if the overflow criterion is true
 • split the bucket of 'split-ptr'
 • split-ptr ++ (*)

• if the overflow criterion is true
 • split the bucket of 'split-ptr'
 • split-ptr ++ (*)

what if we reach the right edge??

Linear hashing - split now?

\[
\begin{align*}
 h_0(x) &= x \mod N \quad \text{(for the un-split buckets)} \\
 h_1(x) &= x \mod (2*N) \quad \text{(for the splitted ones)}
\end{align*}
\]

split ptr

0 1 2 3 4 5 6
Linear hashing - split now?

\[h_0(x) = x \mod N \quad (\text{for the un-split buckets}) \]
\[h_1(x) = x \mod (2^N) \quad (\text{for the splitted ones}) \]

split ptr

0 1 2 3 4 5 6 7

15-826 Copyright: C. Faloutsos (2006) 73

Linear hashing - split now?

\[h_0(x) = x \mod N \quad (\text{for the un-split buckets}) \]
\[h_1(x) = x \mod (2^N) \quad (\text{for the splitted ones}) \]

split ptr

0 1 2 3 4 5 6 7

15-826 Copyright: C. Faloutsos (2006) 74

Linear hashing - split now?

\[h_0(x) = x \mod N \quad (\text{for the un-split buckets}) \]
\[h_1(x) = x \mod (2^N) \quad (\text{for the splitted ones}) \]

split ptr

0 1 2 3 4 5 6 7

15-826 Copyright: C. Faloutsos (2006) 75

Linear hashing - split now?

\[h_0(x) = x \mod N \quad (\text{for the un-split buckets}) \]
\[h_1(x) = x \mod (2^N) \quad (\text{for the splitted ones}) \]

split ptr

0 1 2 3 4 5 6 7

15-826 Copyright: C. Faloutsos (2006) 76

In general, at any point of time, we have at most two h.f. active, of the form:

- \(h_n(x) = x \mod (N \times 2^n) \)
- \(h_{n+1}(x) = x \mod (N \times 2^{n+1}) \)

(after a full expansion, we have only one h.f.)

15-826 Copyright: C. Faloutsos (2006) 77

Linear hashing - overview

- Motivation
- main idea
- search algo
- insertion/split algo
- deletion
- performance analysis
- variations

15-826 Copyright: C. Faloutsos (2006) 78
Linear hashing - deletion?

• reverse of insertion:

• if the underflow criterion is met
 – contract!
Linear hashing - performance

- [Larson, TODS 1983]

search-time (avg # of d.a.)

split: if \(u > u_0 \) (say \(u_0 = 0.85 \))

1.01 d.a.

\[\text{??} \]

records

R 2R
Linear hashing - overview

- Motivation
- main idea
- search algo
- insertion/split algo
- deletion
- performance analysis
- variations

Linear hashing - performance

- Q: How to shorten the maximum?
- A: 2-3 splits - partial expansions!

Linear hashing - variations

Two split pointers! On split:

0 1 2 3

Linear hashing - variations

2nd split:

0 1 2 3
Linear hashing - variations

2nd split: Partial expansion! (50% larger table)

0 1 2 3 4 5

Q: how to do the third split?
A: 3-to-4 splits now!

0 1 2 3 4 5

Linear hashing - overview

- Motivation
- main idea
- search algo
- insertion/split algo
- deletion
- performance analysis
- variations

Linear hashing - performance

- Q1: Which of the two red peaks is higher?
- Q2: Why?

search-time

R 2R # records

Linear hashing - variations

- 'order preserving'
- 'perfect hashing' (no collisions!) [Ed. Fox, et al]

Other hashing variations
Primary key indexing - conclusions

- hashing is O(1) on the average for search
- linear hashing: elegant way to grow a hash table
- B-trees: major contenders for primary-key indexing (O(log(N) w.c.))

References for primary key indexing

References, cont’d