15-826: Multimedia Databases and Data Mining

Project lecture #1: Graph mining - patterns
Christos Faloutsos

Must-read Material – 1-of-2

 - Part I (patterns)
Must-read Material 2-of-2

• Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005, Chicago, IL, USA

Problem

• Are real graphs random?
Conclusions

• Are real graphs random?
• NO!
 – Static patterns
 • Small diameters
 • Skewed degree distribution
 • Shrinking diameters
 – Weighted
 – Time-evolving

• Many power laws – log-logistic
• Take logarithms
• Time-evolving
Main outline

- Introduction
- Indexing
- Mining
 - Graphs – patterns
 - Graphs – generators and tools
 - Association rules
 - ...

Outline

- Introduction – Motivation
- Problem: Patterns in graphs
- Problem#2: Scalability
- Conclusions
Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

 \[\begin{align*}
 D_1 & \quad \cdots \quad D_N \\
 T_1 & \quad \cdots \quad T_M
 \end{align*} \]

• web: hyper-text graph

• ... and more:
Graphs - why should we care?

- ‘viral’ marketing
- web-log (‘blog’) news propagation
- computer network security: email/IP traffic and anomaly detection
-

Outline

- Introduction – Motivation
- Problem: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions
Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’ / ‘abnormal’?
- which patterns/laws hold?

- anomalies (rarities) <-> patterns
Problem #1 - network and graph mining

• What does the Internet look like?
• What does FaceBook look like?
• What is ‘normal’ / ‘abnormal’?
• which patterns/laws hold?
 – anomalies (rarities) \leftrightarrow \textbf{patterns}
 – \textbf{Large} datasets reveal patterns/anomalies
 that may be invisible otherwise…

Graph mining

• Are real graphs random?
Laws and patterns

• Are real graphs random?
• A: NO!!
 – Diameter (‘6 degrees’, ‘Kevin Bacon’)
 – in- and out- degree distributions
 – other (surprising) patterns

• So, let’s look at the data

Solution# S.1

• Power law in the degree distribution
[SIGCOMM99]

internet domains

log(rank) vs. log(degree)

att.com

ibm.com
Solution# S.1

• Power law in the degree distribution
 [SIGCOMM99]

 internet domains

 ![Graph showing log(rank) vs log(degree)]

 -0.82

- Q: So what?

 internet domains

 ![Graph showing log(rank) vs log(degree)]

 -0.82
Solution# S.1

• Q: So what?
• A1: # of two-step-away pairs: internet domains

Q: So what?
A1: # of two-step-away pairs: 100^2 * N = 10 Trillion internet domains

\[\text{att.com} \]
\[\text{ibm.com} \]

log(rank)

\(\log(\text{rank}) = 0.82 \)

\(\log(\text{degree}) \)
Solution# S.1

- Q: So what? = friends of friends (F.O.F.)

\[\log(\text{rank}) = \log(\text{degree}) - 0.82 \]

- IBM.com
- ATT.com

15-826
(c) C. Faloutsos, 2019

Solution# S.1

- Q: So what? = friends of friends (F.O.F.)
- A1: # of two-step-away pairs: \(O(d_{\text{max}}^2) \sim 10M^2 \)

\[\log(\text{rank}) = \log(\text{degree}) - 0.82 \]

- IBM.com
- ATT.com

\(\sim 0.8 \text{PB} \rightarrow \) a data center(!)

DCO @ CMU

15-826
(c) C. Faloutsos, 2019
Solution# S.1

- Q: So what?
- A1: \# of two-step-away internet domains: \(O(d_{\text{max}}^2) \approx 10M^2\)

Such patterns -> New algorithms

Observation – big-data:

- \(O(N^2)\) algorithms are \(~\text{intractable}~\) - \(N=1B\)
- \(N^2\) seconds = 31B years (>2x age of universe)
Observation – big-data:

- O(N^2) algorithms are ~intractable - N=1B
- N^2 seconds = 31B years
- 1,000 machines

(c) C. Faloutsos, 2019

Observation – big-data:

- O(N^2) algorithms are ~intractable - N=1B
- N^2 seconds = 31B years
- 1M machines

(c) C. Faloutsos, 2019
Observation – big-data:

• $O(N^2)$ algorithms are ~intractable - $N=1B$

And parallelism might not help

• N^2 seconds = 31B years
• 10B machines ~ 10Trillion

(c) C. Faloutsos, 2019
Solution# S.2: Eigen Exponent E

- **A2**: power law in the eigenvalues of the adjacency matrix

\[A \mathbf{x} = \lambda \mathbf{x} \]

- Eigenvalue
- Exponent = slope
- $E = -0.48$
- May 2001

[Mihail, Papadimitriou ’02]: slope is $\frac{1}{2}$ of rank exponent

15-826 (c) C. Faloutsos, 2019
But:
How about graphs from other domains?

More power laws:
- web hit counts [w/ A. Montgomery]
epinions.com

- who-trusts-whom
 [Richardson + Domingos, KDD 2001]

(count) degree

trusts-2000-people user

And numerous more

- # of sexual contacts
- Income [Pareto] – ’80-20 distribution’
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs (‘mice and elephants’)
- Size of files of a user
- …
- ‘Black swans’
List of Static Patterns

- S.1 degree
- S.2 eigenvalues
- S.3 small diameter
- S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- (S.7) eigen plots
- (S.8) radius plot

In textbook

S.3 small diameters

- Small diameter (~ constant!) –
 - six degrees of separation / ‘Kevin Bacon’
 - small worlds [Watts and Strogatz]
List of Static Patterns

- S.1 degree
- S.2 eigenvalues
- S.3 small diameter
 - S.4/5 Triangle laws
 - (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

Solution# S.4: Triangle ‘Laws’

- Real social networks have a lot of triangles
Solution# S.4: Triangle ‘Laws’

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?

Triangle Law: #S.4
[Tsourakakis ICDM 2008]

HEP-TH

ASN

Epinions

X-axis: # of participating triangles
Y: count (~ pdf)
Triangle Law: #S.4
[Tsourakakis ICDM 2008]

HEP-TH

ASN

X-axis: # of participating triangles
Y: count (~ pdf)

15-826
10^2

Triangle Law: #S.5
[Tsourakakis ICDM 2008]

Reuters

SN

Epinions

X-axis: degree
Y-axis: mean # triangles
n friends -> ~n^{1.6} triangles

15-826
outsos, 2019
Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?

#triangles = \(\frac{1}{6} \text{Sum} \ (\lambda_i^3) \)
(and, because of skewness (S2),
we only need the top few eigenvalues!)
Triangle Law: Computations

[Tsourakakis ICDM 2008]
Wikipedia graph 2006-Nov-04
≈ 3,1M nodes ≈ 37M edges
1000x+ speed-up, >90% accuracy

Triangle counting for large graphs?
Anomalous nodes in Twitter (~3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

(c) C. Faloutsos, 2019
Triangle counting for large graphs?

Anomalous nodes in Twitter (~3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

(c) C. Faloutsos, 2019
List of Static Patterns

- S.1 degree
- S.2 eigenvalues
- S.3 small diameter
- S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- (S.7) eigen plots
- (S.8) radius plot

In textbook

Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations.
U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.
(ICDM) 2009, Miami, Florida, USA.
Best Application Paper (runner-up).
S.6: NLCC

- Connected Components – 4 observations:

1) 10K x larger than next
S.6: NLCC

- Connected Components

Count

2) \(~0.7\)B singleton nodes

3) SLOPE!
S.6: NLCC

• Connected Components

4) Spikes!

300-size cmpt
X 500.
1100-size cmpt
X 65.

Why?

suspicious financial-advice sites
(not existing now)

(c) C. Faloutsos, 2019
S.6: persists over time

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

List of Static Patterns

- S.1 degree
- S.2 eigenvalues
- S.3 small diameter
- S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- (S.7) eigen plots
- (S.8) radius plot

In textbook
EigenSpokes

Useful for fraud detection!

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors
 (symmetric, undirected graph)

\[A = U \Sigma U^T \]
EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors
 (symmetric, undirected graph)

\[A = U \Sigma U^T \]

(c) C. Faloutsos, 2019
EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors
 (symmetric, undirected graph)

\[A = U \Sigma U^T \]

(c) C. Faloutsos, 2019
EigenSpokes

- EE plot:
- Scatter plot of scores of u_1 vs u_2
- One would expect
 - Many points @ origin
 - A few scattered ~randomly

(c) C. Faloutsos, 2019
EigenSpokes - pervasiveness

- Present in mobile social graph
 - across time and space

- Patent citation graph

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected
EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected
EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

So what?
- Extract nodes with high *scores*
- high connectivity
- Good “communities”

Bipartite Communities!

- patents from same inventor(s)
- `cut-and-paste` bibliography!

magnified bipartite community

Useful for fraud detection!
Bipartite Communities!

IP – port scanners

victims

Useful for fraud detection!

List of Static Patterns

- S.1 degree
- S.2 eigenvalues
- S.3 small diameter
- S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- (S.7) eigen plots
- (S.8) radius plot

In textbook
HADI for diameter estimation

- *Radius Plots for Mining Tera-byte Scale Graphs* U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM’10

- Naively: diameter needs \(O(N^{**2})\) space and up to \(O(N^{**3})\) time – **prohibitive** (\(N\sim 1B\))

- Our HADI: linear on \(E (~10B)\)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster

Count

- 19+ [Barabasi+]
- \(~1999, \sim 1M\) nodes
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
- Largest publicly available graph ever studied.

19+ [Barabasi+]
- ~1999, ~1M nodes

14 (dir.)
- ~7 (undir.)

19+? [Barabasi+]

(c) C. Faloutsos, 2019
YahooWeb graph (120Gb, 1.4B nodes, 6.6B edges)
• 7 degrees of separation (!)
• Diameter: shrunk

Q: Shape?
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
• effective diameter: surprisingly small.
• Multi-modality (?!)

Radius Plot of GCC of YahooWeb.
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
• effective diameter: surprisingly small.
• Multi-modality: probably mixture of cores.

Conjecture:
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

List of Static Patterns
- S.1 degree
- S.2 eigenvalues
- S.3 small diameter
- S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- (S.7) eigen plots
- (S.8) radius plot
- Other observations / patterns?
List of Static Patterns

- S.1 degree
- S.2 eigenvalues
- S.3 small diameter
- S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- (S.7) eigen plots
- (S.8) radius plot
- Other observations / patterns?

Any other ‘laws’?

Yes!
- Small diameter (≈ constant!) –
 - six degrees of separation / ‘Kevin Bacon’
 - small worlds [Watts and Strogatz]
Any other ‘laws’?

• Bow-tie, for the web [Kumar+ ‘99]
• IN, SCC, OUT, ‘tendrils’
• disconnected components
Any other ‘laws’?

- “Jellyfish” for Internet [Tauro+ ’01]
- core: ~clique
- ~5 concentric layers
- many 1-degree nodes

Outline

- Introduction – Motivation
- Problem: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - Triangles
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions
Observations on weighted graphs?

- A: yes - even more ‘laws’!

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected Components: Patterns and a Generator.
SIG-KDD 2008

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?
Observation W.1: Fortification

More donors, more $?

‘Reagan’

\$10

\$5

‘Clinton’

\$7

15-826

(c) C. Faloutsos, 2019

Observation W.1: fortification: Snapshot Power Law

• Weight: super-linear on in-degree
• Exponent ‘iw’ : 1.01 < iw < 1.26

More donors, even more $

\$10

\$5

In-weights ($)

15-826

(c) C. Faloutsos, 2019

Orgs-Candidates

e.g. John Kerry, $10M received, from 1K donors

Edges (# donors)
Outline

• Introduction – Motivation
• Problem: Patterns in graphs
 – Static graphs
 – Weighted graphs
 – Time evolving graphs
• Problem#2: Scalability
• Conclusions

Problem: Time evolution

• with Jure Leskovec (CMU -> Stanford)

• and Jon Kleinberg (Cornell – sabb. @ CMU)
List of Dynamic Patterns

• D.1 diameter
• D.2 densification
• D.3 gelling point
• D.4 NLCC over time
• D.5 Eigenvalue over time
• D.6 Popularity over time
• D.7 phonecall duration

D.1 Evolution of the Diameter

• Prior work on Power Law graphs hints at \textit{slowly growing diameter}:
 – \([\text{diameter} \sim O(N^{1/3})]\)
 – \(\text{diameter} \sim O(\log N)\)
 – \(\text{diameter} \sim O(\log \log N)\)
• What is happening in real data?
D.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - [diameter ~ O(N^{1/3})]
 - diameter ~ O(log N)
 - diameter ~ O(log log N)
- What is happening in real data?
- Diameter shrinks over time

D.1 Diameter – “Patents”

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges
List of Dynamic Patterns

- D.1 diameter
- D.2 densification
- D.3 gelling point
- D.4 NLCC over time
- D.5 Eigenvalue over time
- D.6 Popularity over time
- D.7 phonecall duration

In textbook

D.2 Temporal Evolution of the Graphs

- N(t) … nodes at time t
- E(t) … edges at time t
- Suppose that
 \[N(t+1) = 2 \times N(t) \]
- Q: what is your guess for
 \[E(t+1) =? 2 \times E(t) \]
D.2 Temporal Evolution of the Graphs

- $N(t)$ … nodes at time t
- $E(t)$ … edges at time t
- Suppose that $N(t+1) = 2 \times N(t)$
- Q: what is your guess for $E(t+1) =$? $2 \times E(t)$
- A: over-doubled!

- But obeying the "Densification Power Law"

D.2 Densification – Patent Citations

- Citations among patents granted
- @1999
 - 2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint
List of Dynamic Patterns

- D.1 diameter
- D.2 densification
 - D.3 gelling point
 - D.4 NLCC over time
 - D.5 Eigenvalue over time
 - D.6 Popularity over time
 - D.7 phonecall duration

In textbook

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos

Weighted Graphs and Disconnected Components: Patterns and a Generator.

SIG-KDD 2008
D.3 Gelling Point

- Diameter, over time

Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.
D.3 Gelling Point

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.

![Graph showing IMDB diameter over time at t=1914]

List of Dynamic Patterns

- D.1 diameter
- D.2 densification
- D.3 gelling point
- D.4 NLCC over time
- D.5 Eigenvalue over time
- D.6 Popularity over time
- D.7 phonecall duration

In textbook
Observation D.4: NLCC behavior

Q: How do NLCC’s emerge and join with the GCC?

(‘`NLCC’’ = non-largest conn. components)
– Do they continue to grow in size?
– or do they shrink?
– or stabilize?
Observation D.4: NLCC behavior

Q: How do NLCC’s emerge and join with the GCC?

(``NLCC’’ = non-largest conn. components)

YES – Do they continue to grow in size?
YES – or do they shrink?
YES – or stabilize?

• After the gelling point, the GCC takes off, but NLCC’s remain ~constant (actually, oscillate).
List of Dynamic Patterns

- D.1 diameter
- D.2 densification
- D.3 gelling point
- D.4 NLCC over time
 - D.5 Eigenvalue over time
 - D.6 Popularity over time
 - D.7 phonecall duration

Timing for Blogs

Cascading Behavior in Large Blog Graphs: Patterns and a model
Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie Glance, Matthew Hurst
SDM’07
D.6 : popularity over time

Post popularity drops-off – exponentially?

POWER LAW!
Exponent?
D.6 : popularity over time

Post popularity drops-off – exponentially?
POWER LAW!
Exponent? -1.6
 • close to -1.5: Barabasi’s stack model
 • and like the zero-crossings of a random walk

-1.5 slope

J. G. Oliveira & A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein.
Nature 437, 1251 (2005) . [PDF]
List of Dynamic Patterns

- D.1 diameter
- D.2 densification
- D.3 gelling point
- D.4 NLCC over time
 - D.5 Eigenvalue over time
- D.6 Popularity over time
- D.7 phonecall duration

D.7: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, Antonio A. F. Loureiro

PKDD 2010
Probably, power law (?)

No Power Law!
‘TLaC: Lazy Contractor’

• The longer a task (phonecall) has taken,
• The even longer it will take

Odds ratio =
\[
\frac{\text{Casualties(<x)}}{\text{Survivors(>=x)}}
\]

== power law

Log-logistic distribution

• CDF(t)/(1 - CDF(t)) == OR(t)
• For log-logistic: \(\log[\text{OR}(t)] = \beta + \rho \log(t)\)

Odds ratio =
\[
\frac{\text{Casualties(<x)}}{\text{Survivors(>=x)}}
\]

== power law
Log-logistic distribution

- CDF(t)/(1 - CDF(t)) = OR(t)
- For log-logistic: log[OR(t)] = β + ρ*log(t)

- PDF looks like hyperbola;
- and, if clipped, like power-law
Log-logistic distribution

- Logistic distribution: CDF -> sigmoid
- LOG-Logistic distribution: $x \rightarrow \ln(x)$

CDF$(x) = \frac{1}{1+\exp(-x)}$
CDF$(x) = \frac{1}{1+1/x}$
Log-logistic distribution

Nice 1 page description: section II of

Pravallika Devineni, Danai Koutra, Michalis Faloutsos, and Christos Faloutsos.
If walls could talk: Patterns and anomalies in Facebook wallposts.
ASONAM 2015, pp 367-374.
Data Description

- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records
- Over 96% of ‘talkative’ users obeyed a TLAC distribution (‘talkative’: >30 calls)
Outliers:

Conclusions

- Are real graphs random?
- NO!
 - Static patterns
 - Small diameters
 - Skewed degree distribution
 - Shrinking diameters
 - Weighted
 - Time-evolving
Conclusions

• Are real graphs random?
• NO!
 – Static patterns
 • Small diameters
 • Skewed degree distribution
 – Weighted
 – Time-evolving

• Many power laws – log-logistic
• Take logarithms

Next lecture:

• Anomaly detection tools (OddBall, etc)