15-826: Multimedia Databases and Data Mining

Lecture #30: Data Mining - assoc. rules

C. Faloutsos

Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining
 - ...
 - Association Rules

Must-read Material
- Rakesh Agrawal, Tomasz Imielinski and Arun Swami, Mining Association Rules Between Sets of Items in Large Databases Proc. ACM SIGMOD, Washington, DC, May 1993, pp. 207-216
Association rules - idea

[Agrawal+SIGMOD93]

- Consider ‘market basket’ case:
 - (milk, bread)
 - (milk)
 - (milk, chocolate)
 - (milk, bread)
- Find ‘interesting things’, eg., rules of the form:
 - milk, bread -> chocolate | 90%

Association rules - idea

In general, for a given rule

I_j, I_k, ... I_m -> I_x | c

‘c’ = ‘confidence’ (how often people by I_x, given that they have bought I_j, ... I_m)

‘s’ = support: how often people buy I_j, ... I_m, I_x

Association rules - idea

Problem definition:

- given
 - a set of ‘market baskets’ (=binary matrix, of N rows/baskets and M columns/products)
 - min-support ‘s’ and
 - min-confidence ‘c’
- find
 - all the rules with higher support and confidence

Association rules - idea

Closely related concept: “large itemset”

I_j, I_k, ... I_m, I_x

is a ‘large itemset’, if it appears more than ‘min-support’ times

Observation: once we have a ‘large itemset’, we can find out the qualifying rules easily (how?)
Thus, let’s focus on how to find ‘large itemsets’
Association rules - idea

Naive solution: scan database once; keep $2^{|I|}$ counters

Drawback?

Improvement?

Association rules - idea

Naive solution: scan database once; keep $2^{|I|}$ counters

Drawback? 2^{1000} is prohibitive...

Improvement? scan the db $|I|$ times, looking for 1-, 2-, etc itemsets

Eg., for $|I|=3$ items only (A, B, C), we have

A, B A, C B, C

Association rules - idea

A B C

100 200 2

first pass

min-sup:10

Association rules - idea

A B C

100 200 2

first pass

min-sup:10
Association rules - idea

Anti-monotonicity property:
if an itemset fails to be ‘large’, so will every superset of it (hence all supersets can be pruned)

Sketch of the (famous!) ‘a-priori’ algorithm
Let \(L(i-1) \) be the set of large itemsets with \(i-1 \) elements
Let \(C(i) \) be the set of candidate itemsets (of size \(i \))

Association rules - outline

- Main idea [Agrawal+SIGMOD93]
- performance improvements
- Variations / Applications
- Follow-up concepts

Association rules - improvements

- Use the independence assumption, to second-guess large itemsets a few steps ahead
- eliminate ‘market baskets’, that don’t contain any more large itemsets
- Partitioning (eg., for parallelism): find ‘local large itemsets’, and merge.
- Sampling
- report only ‘maximal large itemsets’ (dfn?)
- FP-tree (seems to be the fastest)

Compute \(L(1) \), by scanning the database.
repeat, for \(i=2,3,... \),
‘join’ \(L(i-1) \) with itself, to generate \(C(i) \)
two itemset can be joined, if they agree on their first \(i-2 \) elements
prune the itemsets of \(C(i) \) (how?)
scan the db, finding the counts of the \(C(i) \) itemsets - set this to be \(L(i) \)
unless \(L(i) \) is empty, repeat the loop
(see example 6.1 in [Han+Kamber])
Association rules - improvements

- FP-tree: no candidate itemset generation - only two passes over dataset
- Main idea: build a TRIE in main memory
Specifically:
- first pass, to find counts of each item - sort items in decreasing count order
- second pass: build the TRIE, and update its counts

(eg., let A, B, C, D be the items in frequency order:)

\[
\begin{align*}
\text{A} & \quad \{\} & \quad 32 \\
\text{B} & \quad \{\text{A}\} & \quad 10 \quad \text{10 of them have A} \\
\text{C} & \quad \{\text{A}, \text{B}\} & \quad 4 \quad \text{4 have AB} \\
\text{D} & \quad \{\text{A}, \text{B}, \text{C}\} & \quad 2 \quad \text{2 have AC} \\
\text{E} & \quad \{\text{A}, \text{B}, \text{C}, \text{D}\} & \quad 1 \quad \text{1 has C}
\end{align*}
\]

Association rules - outline

- Main idea [Agrawal+SIGMOD93]
- performance improvements
- Variations / Applications
- Follow-up concepts
Association rules - variations

1) Multi-level rules: given concept hierarchy
 • ‘bread’, ‘milk’, ‘butter’ -> foods;
 • ‘aspirin’, ‘tylenol’ -> pharmacy
 look for rules across any level of the hierarchy, eg
 • ‘aspirin’ -> foods
 (similarly, rules across dimensions, like ‘product’,
 • ‘time’, ‘branch’:
 • ‘bread’, ‘12noon’, ‘PGH-branch’ -> ‘milk’

Association rules - variations

2) Sequential patterns:
 • ‘car’, ‘now’ -> ‘tires’, ‘2 months later’
 Also: given a stream of (time-stamped) events:
 A A B A C A B A C find rules like
 B, A -> C
 [Mannila+KDD97]

Association rules - variations

3) Spatial rules, eg:
 • ‘house close to lake’ -> ‘expensive’

Association rules - variations

4) Quantitative rules, eg:
 • ‘age between 20 and 30’, ‘chol. level <150’ ->
 ‘weight > 150lb’
 Ie., given numerical attributes, how to find rules?
Association rules - variations

4) Quantitative rules
Solution:
• bucketize the (numerical) attributes
• find (binary) rules
• stitch appropriate buckets together:

Association rules - outline

• Main idea [Agrawal+SIGMOD93]
• performance improvements
• Variations / Applications
 ➜ Follow-up concepts

Association rules - follow-up concepts

Associations rules vs. correlation.
Motivation: if milk, bread
is a ‘large itemset’, does this means that there is a positive correlation between ‘milk’ and ‘bread’ sales?

Association rules - follow-up concepts

Associations rules vs. correlation.
Motivation: if milk, bread
is a ‘large itemset’, does this means that there is a positive correlation between ‘milk’ and ‘bread’ sales?
NO!!
‘milk’ and ‘bread’ ANTI-correlated, yet milk+bread: frequent
Association rules - follow-up concepts

What to do, then?

A: report only pairs of items that are indeed correlated - ie, they pass the Chi-square test
The idea can be extended to 3-, 4- etc itemsets (but becomes more expensive to check)
See [Han+Kamber, §6.5], or [Brin+,SIGMOD97]

Association rules - Conclusions

Association rules: a new tool to find patterns
• easy to understand its output
• fine-tuned algorithms exist