15-826: Multimedia Databases and Data Mining

Lecture#2: Primary key indexing – B-trees
Christos Faloutsos - CMU
www.cs.cmu.edu/~christos

Reading Material
[Ramakrishnan & Gehrke, 3rd ed, ch. 10]

Problem
Given a large collection of (multimedia) records, find similar/interesting things, ie:
• Allow fast, approximate queries, and
• Find rules/patterns
Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
 ▶ Indexing - similarity search
 • Data Mining

Indexing - Detailed outline

• primary key indexing
 – B-trees and variants
 – (static) hashing
 – extendible hashing
• secondary key indexing
• spatial access methods
• text
• ...

In even more detail:

• B – trees
 • B+ – trees, B*-trees
 • hashing
Primary key indexing

- find employee with ssn=123

B-trees

- the most successful family of index schemes (B-trees, B⁺-trees, B*-trees)
- Can be used for primary/secondary, clustering/non-clustering index.
- balanced “n-way” search trees

Citation

- Received the 2001 SIGMOD innovations award
- among the most cited db publications
 - www.informatik.uni-trier.de/~ley/db/about/top.html
B-trees

Eg., B-tree of order 3:

```
<6
1 3 6
>6 <9
>9
7 9 13
```

B - tree properties:

- each node, in a B-tree of order \(n \):
 - Key order
 - at most \(n \) pointers
 - at least \(n/2 \) pointers (except root)
 - all leaves at the same level
 - if number of pointers is \(k \), then node has exactly \(k-1 \) keys
 - (leaves are empty)

Properties

- “block aware” nodes: each node -> disk page
- \(O(\log (N)) \) for everything! (ins/del/search)
- typically, if \(n = 50 - 100 \), then 2 - 3 levels
- utilization \(\geq 50\% \), guaranteed; on average 69\%
Queries

- Algo for exact match query? (eg., ssn=8?)

![Diagram of queries and data]

Queries

- Algo for exact match query? (eg., ssn=8?)

![Diagram of queries and data]

Queries

- Algo for exact match query? (eg., ssn=8?)

![Diagram of queries and data]
Queries

• Algo for exact match query? (eg., ssn=8?)

Queries

• Algo for exact match query? (eg., ssn=8?)

Queries

• what about range queries? (eg., 5<salary<8)
 • Proximity/ nearest neighbor searches? (eg., salary ~ 8)
Queries

- what about range queries? (e.g., \(5 < \text{salary} < 8\))
- Proximity/ nearest neighbor searches? (e.g., \(\text{salary} \sim 8\))

B-trees: Insertion

- Insert in leaf; on overflow, push middle up (recursively)
- split: preserves B-tree properties
B-trees

Easy case: Tree T0; insert ‘8’

Hardest case: Tree T0; insert ‘2’
B-trees

Hardest case: Tree T0; insert ‘2’

push middle up

B-trees

Hardest case: Tree T0; insert ‘2’

Ovf; push middle

B-trees

Hardest case: Tree T0; insert ‘2’

Final state
B-trees: Insertion

- Q: What if there are two middles? (eg, order 4)
- A: either one is fine

B-trees: Insertion

- Insert in leaf; on overflow, push middle up (recursively – ‘propagate split’)
- split: preserves all B - tree properties (!!!)
- notice how it grows: height increases when root overflows & splits
- Automatic, incremental re-organization

Overview

- B – trees
 - Dfn, Search, insertion, deletion
- B+ - trees
- hashing
Deletion

Rough outline of algo:
• Delete key;
• on underflow, may need to merge

In practice, some implementors just allow underflows to happen…

B-trees – Deletion

Easiest case: Tree T0; delete '3'

B-trees – Deletion

Easiest case: Tree T0; delete '3'
B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

```
<6  6  9  >9
1  7 13
```

B-trees – Deletion

- Case 1: delete a key at a leaf – no underflow
- Case 2: delete non-leaf key – no underflow
- Case 3: delete leaf-key; underflow, and ‘rich sibling’
- Case 4: delete leaf-key; underflow, and ‘poor sibling’

B-trees – Deletion

- Case 2: delete a key at a non-leaf – no underflow (eg., delete 6 from T0)

```
<6  6  9  >9
1  7 13
```

Delete & promote, ie:
B-trees – Deletion

- Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)

Delete & promote, i.e:

```
<6
1 3
>6 9
>9
```

FINAL TREE

```
<3
1 3 9
>3 9
>9
1 7 13
```
B-trees – Deletion

• Case2: delete a key at a non-leaf – no underflow (eg., delete 6 from T0)
• Q: How to promote?
• A: pick the largest key from the left sub-tree (or the smallest from the right sub-tree)
• Observation: every deletion eventually becomes a deletion of a leaf key

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich sibling’
• Case4: delete leaf-key; underflow, and ‘poor sibling’

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

Delete & borrow, i.e:
B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

Rich sibling

\[\begin{array}{c}
1 \\
3 \\
6 \\
9 \\
13 \\
\end{array} \]

Delete & borrow, ie:

\[\begin{array}{c}
<6 \\
>6 \\
<9 \\
>9 \\
\end{array} \]

Delete & borrow, ie:

\[\begin{array}{c}
<6 \\
>6 \\
<9 \\
>9 \\
\end{array} \]

Delete & borrow, ie:

\[\begin{array}{c}
<6 \\
>6 \\
<9 \\
>9 \\
\end{array} \]

\[\begin{array}{c}
1 \\
3 \\
6 \\
9 \\
13 \\
\end{array} \]

`NO!!`
B-trees – Deletion

- Case 3: underflow & 'rich sibling' (e.g., delete 7 from T0)

Delete & borrow, i.e:

```
1 3
<6

>6 <9

9

>9

6

13
```
B-trees – Deletion

- Case1: delete a key at a leaf – no underflow
- Case2: delete non-leaf key – no underflow
- Case3: delete leaf-key; underflow, and ‘rich sibling’
- Case4: delete leaf-key; underflow, and ‘poor sibling’

FINAL TREE

Delete & borrow, through the parent

B-trees – Deletion

- Case3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

B-trees – Deletion

- Case4: underflow & ‘poor sibling’ (eg., delete 13 from T0)
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (e.g., delete 13 from T0)

- Merge, by pulling a key from the parent
- exact reversal from insertion: ‘split and push up’, vs. ‘merge and pull down’
- I.e.,
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

 \[
 \begin{array}{c}
 <6 \\
 1 & 3 \\
 \end{array} \quad \begin{array}{c}
 \geq 6 \\
 7 & 9 \\
 \end{array}
 \]

 A: merge w/ ‘poor’ sibling

B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

 \[
 \begin{array}{c}
 <6 \\
 1 & 3 \\
 \end{array} \quad \begin{array}{c}
 \geq 6 \\
 7 & 9 \\
 \end{array}
 \]

 \text{FINAL TREE}

B-trees – Deletion

• Case 4: underflow & ‘poor sibling’
• \Rightarrow ‘pull key from parent, and merge’
• Q: What if the parent underflows?
B-trees – Deletion

- Case4: underflow & ‘poor sibling’
- \(\Rightarrow \) ‘pull key from parent, and merge’
- Q: What if the parent underflows?
- A: repeat recursively

Overview

- B – trees
- B+ - trees, B*-trees
- hashing

B+ trees - Motivation

if we want to store the whole record with the key \(\Rightarrow \) problems (what?)
Solution: B+ - trees

- They string all leaf nodes together
- AND
- replicate keys from non-leaf nodes, to make sure every key appears at the leaf level

B+ trees

```
<6   6  9
≥6   <9
1 3 6 7 9 13
```

B+ trees - insertion

Eg., insert '8'

```
<6   6  9
≥6   <9
1 3 6 7 9 13
```
Overview

• B – trees
• B⁺ - trees, B*-trees
 • hashing

B*-trees

• splits drop util. to 50%, and maybe increase height
• How to avoid them?

B*-trees: deferred split!

• Instead of splitting, LEND keys to sibling! (through PARENT, of course!)
B*-trees: deferred split!

- Instead of splitting, LEND keys to sibling! (through PARENT, of course!)

\[\begin{array}{c}
\text{FINAL TREE} \\
\text{<3} & | & 3 & | & 9 & | & >9 \\
1 & & 2 & & 6 & & 7 \\
1 & & 2 & & 13 & & 1
\end{array} \]

- Notice: shorter, more packed, faster tree
- It’s a rare case, where space utilization and speed improve together
- BUT: What if the sibling has no room for our ‘lending’?

B*-trees: deferred split!

- BUT: What if the sibling has no room for our ‘lending’?
- A: 2-to-3 split: get the keys from the sibling, pool them with ours (and a key from the parent), and split in 3.
- Details: too messy (and even worse for deletion)
Conclusions

- Main ideas: recursive; block-aware; on overflow -> split; defer splits
- All B-tree variants have excellent, \(O(\log N) \) worst-case performance for ins/del/search
- B+ tree is the prevailing indexing method
- More details: [Knuth vol 3.] or [Ramakrishnan & Gehrke, 3rd ed, ch. 10]