15-826: Multimedia Databases and Data Mining

Lecture #22: DSP tools – Fourier and Wavelets
C. Faloutsos

Must-read Material

• DFT/DCT: In PTVF ch. 12.1, 12.3, 12.4; in Textbook Appendix B.
• Wavelets: In PTVF ch. 13.10; in MM Textbook Appendix C

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining
Indexing - Detailed outline

- primary key indexing
- Multimedia –
 - Digital Signal Processing (DSP) tools
 - Discrete Fourier Transform (DFT)
 - Discrete Wavelet Transform (DWT)

DSP - Detailed outline

- DFT
 - what
 - why
 - how
 - Arithmetic examples
 - properties / observations
 - DCT
 - 2-d DFT
 - Fast Fourier Transform (FFT)

Introduction

Goal: given a signal (eg., sales over time and/ or space)
Find: patterns and/or compress

![Graph showing lynx caught per year over time](image)
What does DFT do?
A: highlights the periodicities

Why should we care?
A: several real sequences are periodic
Q: Such as?

– sales patterns follow seasons;
– economy follows 50-year cycle
– temperature follows daily and yearly cycles
Many real signals follow (multiple) cycles
Why should we care?

For example: human voice!
- Frequency analyzer
 http://www.relisoft.com/freeware/freq.html
- speaker identification
- impulses/noise -> flat spectrum
- high pitch -> high frequency

‘Frequency Analyzer’

DFT and stocks

- Dow Jones Industrial index
 6/18/2001-12/21/2001
DFT and stocks

- Dow Jones Industrial index, 6/18/2001-12/21/2001
- just 3 DFT coefficients give very good approximation

DFT: definition

- Discrete Fourier Transform (n-point):
 \[X_j = \frac{1}{\sqrt{n}} \sum_{t=0}^{n-1} x_t \cdot \exp(-j \cdot 2\pi \cdot f \cdot t / n) \quad f = 0, ..., n - 1 \]
 \[(j = \sqrt{-1}) \]
 reverse DFT

\[x_t = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} X_j \cdot \exp(+j \cdot 2\pi \cdot f \cdot t / n) \]

(Reminder)

\[\exp(j \cdot f) = \cos(\phi) + j \cdot \sin(\phi) \]

(fun fact: the equation with the 5 most important numbers:

\[e^{j\pi} + 1 = 0 \]
DFT: alternative definition

- Discrete Fourier Transform (n-point):

 \[a_j = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_i \cos\left(-2\pi f t / n\right) \quad f = 0, \ldots, n - 1 \]

 \[b_j = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_i \sin\left(-2\pi f t / n\right) \]

 \[x_t = \frac{1}{\sqrt{n}} \sum_{f=0}^{n-1} [a_f \cos(2\pi f t / n) + j^f b_f \sin(2\pi f t / n)] \]

How does it work?

Decomposes signal to a sum of sine (and cosine) waves.

Q: How to assess ‘similarity’ of \(x \) with a wave?

A: Consider the waves with frequency 0, 1, ...;
use the inner-product (~cosine similarity)
How does it work?

A: consider the waves with frequency 0, 1, ...; use the inner-product (~cosine similarity)

value

freq. f=2

0 1 n-1

0 1

time

How does it work?

‘basis’ functions
(vectors)

sine, freq =1

sine, freq = 2

0 1 n-1

0 1

cosine, f=1

cosine, f=2

How does it work?

• Basis functions are actually n-dim vectors, orthogonal to each other
• ‘similarity’ of x with each of them: inner product
• DFT: ~ all the similarities of x with the basis functions
DFT: definition

- **Good** news: Available in **all** symbolic math packages, eg., in 'mathematica'

 \[x = [1,2,1,2]; \]
 \[X = \text{Fourier}(x); \]
 \[\text{Plot}[\text{Abs}[X]]; \]
DFT: definition

Observation - SYMMETRY property:

\[X_f = (X_{n-f})^* \]

("*": complex conjugate: \((a + b j)^* = a - b j\))

DFT: definition

Definitions

- \(A_f = |X_f| \): amplitude of frequency \(f \)
- \(|X_f|^2 = \text{Re}(X_f)^2 + \text{Im}(X_f)^2 \): energy of frequency \(f \)
- phase \(\phi_f \) at frequency \(f \)

DFT: definition

Amplitude spectrum: \(|X_f|\) vs \(f=0, 1, \ldots n-1\)

SYMMETRIC (Thus, we plot the first half only)
DFT: definition

Phase spectrum $|\phi_f| \text{ vs } f (f=0, 1, \ldots n-1)$:

Anti-symmetric

(Rarely used)

DFT: examples

Low frequency sinusoid

time freq
DFT: examples

- Sinusoid - symmetry property: $X_f = X_{n-f}^*$

DFT: examples

- Higher freq. sinusoid

DFT: examples

examples
DFT: examples

Ampl.
Freq.

DFT: Amplitude spectrum

Amplitude: \(A_j = \text{Re}(X_j) + \text{Im}(X_j) \)

Freq.

DFT: Amplitude spectrum

Ampl.
DFT: Amplitude spectrum

- excellent approximation, with only 2 frequencies!
- so what?

• A1: compression
• A2: pattern discovery
• (A3: forecasting)
DFT: Amplitude spectrum

- excellent approximation, with only 2 frequencies!
- so what?
- A1: (lossy) compression
- A2: pattern discovery

DFT: Amplitude spectrum

- Let’s see it in action (defunct now…)
 - (http://www.math.umbc.edu/jameson/FT Spectrum/Analyser.html)
 - plain sine
 - phase shift
 - two sine waves
 - the ‘chirp’ function
 - http://ion.researchsystems.com/
Plain sine

Plain sine

Plain sine – phase shift
Plain sine – phase shift

Plain sine

Two sines
Two sines

Chirp

Chirp
Another applet

http://www.falstad.com/fourier/
(seems virus-free – but scan, before you install)
Local copy, INTERNAL @ CMU:
www.cs.cmu.edu/~christos/courses/826-resources/DEMOS/FFT_applet/

Properties

- Time shift sounds the same
 - Changes only phase, not amplitudes
- Sawtooth has almost all frequencies
 - With decreasing amplitude
- Spike has all frequencies

DFT: Parseval’s theorem

\[\sum x_i^2 = \sum |X_f|^2 \]

Ie., DFT preserves the ‘energy’
or, alternatively: it does an axis rotation:

\[x = \{x_0, x_1\} \]
DFT: Parseval’s theorem

\[\sum x_i^2 = \sum |X_f|^2 \]

Ie., DFT preserves the ‘energy’
or, alternatively: it does an axis rotation:

\[X_0 \]
\[X_f \]
\[x = \{x_0, x_1\} \]

DSP - Detailed outline

- DFT
 - what
 - why
 - how
- Arithmetic examples
 - properties / observations
 - DCT
 - 2-d DFT
 - Fast Fourier Transform (FFT)

Arithmetic examples

- Impulse function: \(x = \{0, 1, 0, 0\} \) (\(n = 4 \))
- \(X_0 = ? \)

\[x \]
\[X_f \]
Arithmetic examples

• Impulse function: \(x = \{ 0, 1, 0, 0 \} \ (n = 4) \)
• \(X_0 = ? \)
 • A: \(X_0 = 1/\sqrt{4} \ * \ 1 \ * \ \exp(-j \ 2 \ \pi \ 0 \ / \ n) = 1/2 \)
• \(X_1 = ? \)
• \(X_2 = ? \)
• \(X_3 = ? \)

Q: does the ‘symmetry’ property hold?
• A: Yes (of course)
Arithmetic examples

- Impulse function: \(x = \{ 0, 1, 0, 0 \} \) \((n = 4)\)
- \(X_0 = ? \)
- A: \(X_0 = 1/\sqrt{4} \times 1 \times \exp(-j \frac{2 \pi 0}{n}) = 1/2 \)
- \(X_f = -1/2 \ j \)
- \(X_f = 1/2 \)
- \(X_f = +1/2 \ j \)
- Q: check Parseval’s theorem

Arithmetic examples

- Impulse function: \(x = \{ 0, 1, 0, 0 \} \) \((n = 4)\)
- \(X_0 = ? \)
- A: \(X_0 = 1/\sqrt{4} \times 1 \times \exp(-j \frac{2 \pi 0}{n}) = 1/2 \)
- \(X_f = -1/2 \ j \)
- \(X_f = 1/2 \)
- \(X_f = +1/2 \ j \)
- Q: (Amplitude) spectrum?

• Amplitude spectrum?
• A: FLAT!
Arithmetic examples

• Q: What does this mean?

• A: All frequencies are equally important ->
 – we need \(n \) numbers in the frequency domain to
 represent just one non-zero number in the time
 domain!
 – “frequency leak”

DSP - Detailed outline

• DFT
 – what
 – why
 – how
 – Arithmetic examples
 – properties / observations
 – DCT
 – 2-d DFT
 – Fast Fourier Transform (FFT)
Observations

• DFT of 'step' function:
 \[x = \{ 0, 0, ..., 0, 1, 1, ... 1 \} \]

\[x \]
\[t \]
\[f = 0 \]

Observations

• DFT of 'step' function:
 \[x = \{ 0, 0, ..., 0, 1, 1, ... 1 \} \]

\[x \]
\[t \]
\[f = 0 \]

Observations

• DFT of 'step' function:
 \[x = \{ 0, 0, ..., 0, 1, 1, ... 1 \} \]

\[x \]
\[t \]
\[f = 1 \]
Observations

- DFT of ‘step’ function:
 \[x = \{ 0, 0, \ldots, 0, 1, 1, \ldots \} \]
 \[f = 1 \]
 - the more frequencies, the better the approx.
 \[f = 0 \]
 - ringing becomes worse
 - reason: discontinuities; trends

- Ringing for trends: because DFT ‘sub-consciously’ replicates the signal
Observations

- Ringing for trends: because DFT `sub-consciously` replicates the signal
Observations

- Q: DFT of a sinusoid, eg.
 \(x_t = 3 \sin(\frac{2\pi}{4} t) \)
 \(t = 0, \ldots, 3 \)
- Q: \(X_0 = ? \)
- Q: \(X_1 = ? \)
- Q: \(X_2 = ? \)
- Q: \(X_3 = ? \)

- \(X_0 = 0 \)
- \(X_1 = -3j \)
- \(X_2 = 0 \)
- \(X_3 = 3j \)

check 'symmetry'
check Parseval

Does this make sense?
Property

- Shifting x in time does NOT change the amplitude spectrum
- Eg., $x = \{0\ 0\ 0\ 1\}$ and $x' = \{0\ 1\ 0\ 0\}$: same (flat) amplitude spectrum
- (only the phase spectrum changes)
- Useful property when we search for patterns that may 'slide'

Summary of properties

- Spike in time: \rightarrow all frequencies
- Step/Trend: \rightarrow ringing (~ all frequencies)
- Single/dominant sinusoid: \rightarrow spike in spectrum
- Time shift \rightarrow same amplitude spectrum

DSP - Detailed outline

- DFT
 - what
 - why
 - how
 - Arithmetic examples
 - properties / observations
 - DCT
 - 2-d DFT
 - Fast Fourier Transform (FFT)
DCT

Discrete Cosine Transform

- motivation#1: DFT gives complex numbers
- motivation#2: how to avoid the ‘frequency leak’ of DFT on trends?

DCT

- brilliant solution to both problems: mirror the sequence, do DFT, and drop the redundant entries!

DCT

- (see Numerical Recipes for exact formulas)
DCT - properties

• it gives real numbers as the result
• it has no problems with trends
• it is very good when \(x_i \) and \(x_{i+1} \) are correlated

(thus, is used in JPEG, for image compression)

DSP - Detailed outline

• DFT
 – what
 – why
 – how
 – Arithmetic examples
 – properties / observations
 – DCT
 – 2-d DFT
 – Fast Fourier Transform (FFT)

2-d DFT

• Definition:

\[
X_{f_1,f_2} = \frac{1}{\sqrt{n_1}} \frac{1}{\sqrt{n_2}} \sum_{i=0}^{n_1-1} \sum_{j=0}^{n_2-1} x_{i,j} \exp(-2\pi j f_1 / n_1) \exp(-2\pi j f_2 / n_2)
\]
2-d DFT

• Intuition:
 - do 1-d DFT on each row
 - and then 1-d DFT on each column

2-d DFT

• Quiz: how do the basis functions look like?
 - for f1 = f2 = 0
 - for f1=1, f2=0
 - for f1=1, f2=1

2-d DFT

• Quiz: how do the basis functions look like?
 - for f1 = f2 = 0 flat
 - for f1=1, f2=0 wave on x; flat on y
 - for f1=1, f2=1 ~ egg-carton
2-d DFT

- Quiz: how do the basis functions look like?
- for \(f_1 = f_2 = 0 \) flat
- for \(f_1 = 1, f_2 = 0 \) wave on x; flat on y
- for \(f_1 = 1, f_2 = 1 \) ~ egg-carton

DSP - Detailed outline

- DFT
 - what
 - why
 - how
 - Arithmetic examples
 - properties / observations
 - DCT
- 2-d DFT
- Fast Fourier Transform (FFT)

FFT

- What is the complexity of DFT?

\[
X_f = \frac{1}{\sqrt{n}} \sum_{n=0}^{n-1} x_n \exp(-j2\pi fn / n)
\]
What is the complexity of DFT?

\[X_f = \frac{1}{\sqrt{n}} \sum_{n=0}^{n-1} x_n \exp(-j2\pi fn/n) \]

- A: Naively, \(O(n^2) \)

However, if \(n \) is a power of 2 (or a number with many divisors), we can make it \(O(n \log n) \).

Main idea: if we know the DFT of the odd time-ticks, and of the even time-ticks, we can quickly compute the whole DFT.

Details: in Num. Recipes

DFT - Conclusions

- It spots periodicities (with the 'amplitude spectrum')
- can be quickly computed (\(O(n \log n) \)), thanks to the FFT algorithm.
- standard tool in signal processing (speech, image etc signals)
Detailed outline

- primary key indexing
- ..
- multimedia
- Digital Signal Processing (DSP) tools
 - Discrete Fourier Transform (DFT)
 - Discrete Wavelet Transform (DWT)

Reminder: Problem:

Goal: given a signal (eg., #packets over time)
Find: patterns, periodicities, and/or compress

Wavelets - DWT

- DFT is great - but, how about compressing a spike?
Wavelets - DWT

• DFT is great - but, how about compressing a spike?
• A: Terrible - all DFT coefficients needed!

Similarly, DFT suffers on short-duration waves (e.g., baritone, silence, soprano)
Wavelets - DWT

- Solution#1: Short window Fourier transform (SWFT)
- But: how short should be the window?

Wavelets - DWT

- Answer: multiple window sizes! -> DWT

Haar Wavelets

- subtract sum of left half from right half
- repeat recursively for quarters, eight-ths, ...
Wavelets - construction

x₀ x₁ x₂ x₃ x₄ x₅ x₆ x₇

level 1 d₁,₀ s₁,₁ s₁,₁

x₀ x₁ x₂ x₃ x₄ x₅ x₆ x₇

level 2 d₂,₀ s₂,₀ s₁,₁ s₁,₁

x₀ x₁ x₂ x₃ x₄ x₅ x₆ x₇
Wavelets - construction

e tc ...

d2,0

d1,0

s1,0 x0 s1,1 d1,1 x1 s1,1 d1,1

x2 x3 x4 x5 x6 x7

Q: map each coefficient on the time-freq. plane

f

t

x0 x1 x2 x3 x4 x5 x6 x7
Haar wavelets - code

```perl
#!/usr/bin/perl5
# expects a file with numbers
# and prints the dwt transform
# the number of time-ticks should be a power of 2
# USAGE
#    haar.pl <fname>

my @vals = ();
my @smooth; # the smooth component of the signal
my @diff;   # the high-freq. component
# collect the values into the array @val
while(<>){
    @vals = (@vals, split);
}

my $len = scalar(@vals);
my $half = int($len/2);
while($half >= 1 ){
    for(my $i=0; $i<$half; $i++){
        $diff[$i] = ($vals[2*$i] - $vals[2*$i + 1] )/ sqrt(2);
        print 	, $diff[$i];
        $smooth[$i] = ($vals[2*$i] + $vals[2*$i + 1] )/ sqrt(2);
    }
    print 
;
    @vals = @smooth;
    $half = int($half/2);
}
print 	, $vals[0], 
;
```

Also at: www.cs.cmu.edu/~christos/SRC/DWT-Haar-all.tar

Wavelets - construction

Observation1:
- '+' can be some weighted addition
- '-' is the corresponding weighted difference
 ('Quadrature mirror filters')

Observation2: unlike DFT/DCT,
- there are many wavelet bases: Haar, Daubechies-4, Daubechies-6, Coifman, Morlet, Gabor, ...

Wavelets - how do they look like?

- E.g., Daubechies-4
Wavelets - how do they look like?

- E.g., Daubechies-4

Wavelets - Drill#1:

- Q: baritone/silence/soprano - DWT?
Wavelets - Drill#1:
• Q: baritone/silence/soprano - DWT?

Wavelets - Drill#2:
• Q: spike - DWT?
Wavelets - Drill#3:

- Q: weekly + daily periodicity, + spike - DWT?

\[f \]
\[t \]
Wavelets - Drill#3:

- Q: weekly + daily periodicity, + spike - DWT?
Wavelets - Drill:

Let’s see it live:
http://dsp.rice.edu/software/dsp-teaching-tools
delta; cosine; cosine2; chirp
• Haar vs Daubechies-4, -6, etc

Delta?

\[x(0)=1; \ x(t)= 0 \text{ elsewhere} \]
2 cosines?

\[x(t) = \cos\left(2 \pi \frac{4}{1024} t\right) + 5 \cos\left(2 \pi \frac{8}{1024} t\right) \]

Which one is for freq. = 4?
Chirp?

\[x(t) = \cos\left(2 \pi \frac{t^2}{1024}\right) \]
Chirp?

\[x(t) = \cos \left(\frac{2 \pi t^2}{1024} \right) \]

SWFT

More examples (BGP updates)

BGP-lens: Patterns and Anomalies in Internet Routing Updates B. Aditya Prakash et al, SIGKDD 2009

More examples (BGP updates)

Low freq.: omitted

Low freq.:

freq.
More examples (BGP updates)

freq.

More examples (BGP updates)

freq.

More examples (BGP updates)

15K msgs, for several hours: 6pm-4am
Wavelets - Drill

- Or use ‘R’, ‘octave’ or ‘matlab’ – R:

```r
install.packages("wavelets")
library("wavelets")
X1<-c(1,2,3,4,5,6,7,8)
dwt(X1, n.levels=3, filter="d4")
mra(X1, n.levels=3, filter="d4")
```

Wavelets - k-dimensions?

- easily defined for any dimensionality (like DFT, DCT)

Wavelets - example

Wavelets achieve "great" compression:

![Wavelet compression example](image)

20 100 400 16,000

coefficients
Wavelets - intuition

• Edges (horizontal; vertical; diagonal)

• Recurse

Advantages of Wavelets

- Better compression (better RMSE with same number of coefficients)
- Closely related to the processing of the mammalian eye and ear
- Good for progressive transmission
- Handle spikes well
- Usually, fast to compute (O(n)!)

Overall Conclusions

- DFT, DCT spot periodicities
- DWT: multi-resolution - matches processing of mammalian ear/eye better
- All three: powerful tools for compression, pattern detection in real signals
- All three: included in math packages (matlab, R, mathematica, ...)

Resources

- Numerical Recipes in C: great description, intuition and code for all three tools
- xwpl: open source wavelet package from Yale, with excellent GUI.
Resources (cont’d)

• (defunct?)
 http://www.dsptutor.freeuk.com/jsanalyser/FFTSpectrumAnalyser.html: Nice java applets
• http://www.relisoft.com/freeware/freq.html: voice frequency analyzer (needs microphone – MSwindows only)

Resources (cont’d)

• www-dsp.rice.edu/software/EDU/mra.shtml (wavelets and other demos)
• R (‘install.packages(“wavelets”)’)