15-826: Multimedia Databases and Data Mining

Lecture #16: Text - part IV (LSI)
C. Faloutsos

Must-read Material

Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
- Indexing - similarity search
- Data Mining
Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- fractals
- text
 - SVD: a powerful tool
 - multimedia
 - ...

Text - Detailed outline

- text
 - problem
 - full text scanning
 - inversion
 - signature files
 - clustering
 - information filtering and LSI

LSI - Detailed outline

- LSI
 - problem definition
 - main idea
 - experiments
Information Filtering + LSI

• [Foltz+,'92] Goal:
 – users specify interests (= keywords)
 – system alerts them, on suitable news-documents

• Major contribution: LSI = Latent Semantic Indexing
 – latent (‘hidden’) concepts

Main idea
• map each document into some ‘concepts’
• map each term into some ‘concepts’

‘Concept’: a set of terms, with weights, e.g.
 – “data” (0.8), “system” (0.5), “retrieval” (0.6) -> DBMS_concept

Pictorially: term-document matrix (BEFORE)
Information Filtering + LSI

Pictorially: concept-document matrix and...

<table>
<thead>
<tr>
<th>'DBMS-concept'</th>
<th>'medical-concept'</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>1</td>
</tr>
<tr>
<td>TR2</td>
<td>1</td>
</tr>
<tr>
<td>TR3</td>
<td>1</td>
</tr>
<tr>
<td>TR4</td>
<td>1</td>
</tr>
</tbody>
</table>

Information Filtering + LSI

... and concept-term matrix

<table>
<thead>
<tr>
<th>'DBMS-concept'</th>
<th>'medical-concept'</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>1</td>
</tr>
<tr>
<td>system</td>
<td>1</td>
</tr>
<tr>
<td>retrieval</td>
<td>1</td>
</tr>
<tr>
<td>lung</td>
<td>1</td>
</tr>
<tr>
<td>ear</td>
<td>1</td>
</tr>
</tbody>
</table>

Information Filtering + LSI

Q: How to search, eg., for ‘system’?
Information Filtering + LSI

A: find the corresponding concept(s); and the corresponding documents

<table>
<thead>
<tr>
<th>Concept</th>
<th>DBMS-concept</th>
<th>medical-concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>system</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>retrieval</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>lung</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ear</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus it works like an (automatically constructed) thesaurus:
we may retrieve documents that DON’T have the term ‘system’, but they contain almost everything else (‘data’, ‘retrieval’).
LSI - Detailed outline

• LSI
 – problem definition
 – main idea
 – experiments

LSI - Experiments

• 150 Tech Memos (TM) / month
• 34 users submitted ‘profiles’ (6-66 words per profile)
• 100-300 concepts

LSI - Experiments

• four methods, cross-product of:
 – vector-space or LSI, for similarity scoring
 – keywords or document-sample, for profile specification
• measured: precision/recall
LSI - Experiments

- LSI, with document-based profiles, were better

<table>
<thead>
<tr>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.25,0.65)</td>
<td></td>
</tr>
<tr>
<td>(0.50,0.45)</td>
<td></td>
</tr>
<tr>
<td>(0.75,0.30)</td>
<td></td>
</tr>
</tbody>
</table>

LSI - Discussion - Conclusions

- Great idea,
 - to derive 'concepts' from documents
 - to build a ‘statistical thesaurus’ automatically
 - to reduce dimensionality
- Often leads to better precision/recall
- but:
 - Needs ‘training’ set of documents
 - ‘concept’ vectors are not sparse anymore

Observations

- Bellcore (→ Telcordia) has a patent
- used for multi-lingual retrieval

How exactly SVD works? (Details, next)