15-826: Multimedia Databases and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees
C. Faloutsos

Must-read material

• MM-Textbook, Chapter 5.2
• Ramakrishnan+Gehrke, Chapter 28.6
• Guttman, A. (June 1984).
• Ibrahim Kamel and Christos Faloutsos,
 Hilbert R-tree: An improved R-tree using fractals

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining
Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - problem def
 - z-ordering
 - R-trees
 - ...
- text
- ...

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

Reminder: problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer spatial queries (range, nn, etc)
R-trees

• z-ordering: cuts regions to pieces -> dup. elim.
• how could we avoid that?
• Idea: try to extend/merge B-trees and k-d trees

(first attempt: k-d-B-trees)

• [Robinson, 81]: if \(f \) is the fanout, split point-set in \(f \) parts; and so on, recursively

(first attempt: k-d-B-trees)

• But: insertions/deletions are tricky (splits may propagate downwards and upwards)
• no guarantee on space utilization
R-trees

- [Guttman 84] Main idea: allow parents to overlap!

 Antonin Guttman
 [http://www.baymoon.com/~tg2/]

- => guaranteed 50% utilization
- => easier insertion/split algorithms.
- (only deal with Minimum Bounding Rectangles - MBRs)

eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page
R-trees

- eg., w/ fanout 4:

```
  P1
  A  C
  B
  D  E
  P2
  A  C
  B
  D  E
  P1
  A  C
  B
  D  E
  P2

  P3
  A  B  C
  H  I  J
  D  E  F  G
  P4
  A  B  C
  H  I  J
  D  E  F  G
```

R-trees - format of nodes

- \{(MBR; obj-ptr)\} for leaf nodes

```
x-low; x-high
y-low; y-high ...
obj ptr ...
P1
A  B  C
P2
P3
P4
P1
P2
P3
P4
```
R-trees - format of nodes

- \{(MBR; node-ptr)\} for non-leaf nodes

\[
\begin{array}{c|c|c}
\text{x-low; x-high} & \text{node} & \text{ptr} \\
\text{y-low; y-high} & \text{P1} & \text{P2} \\
\end{array}
\]

R-trees - range search?

- \{P1, P2, P3, P4\} for leaf nodes

- \{A, B, C, D, E, F, G, H, I, J\} for points

R-trees - range search?

- \{P1, P2, P3, P4\} for leaf nodes

- \{A, B, C, D, E, F, G, H, I, J\} for points
R-trees - range search

Observations:
• every parent node completely covers its ‘children’
• a child MBR may be covered by more than one parent - it is stored under ONLY ONE of them. (ie., no need for dup. elim.)

R-trees - range search

Observations - cont’d
• a point query may follow multiple branches.
• everything works for any dimensionality

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...)

R-trees - insertion

• eg., rectangle 'X'

R-trees - insertion

• eg., rectangle 'X'

R-trees - insertion

• eg., rectangle 'Y'
R-trees - insertion

- eg., rectangle ‘Y’: extend suitable parent.

Q: how to measure ‘suitability’?

- by increase in area (volume) (more details: later, under ‘performance analysis’)

Q: what if there is no room? how to split?
R-trees - insertion

• eg., rectangle ‘W’

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>W</td>
</tr>
</tbody>
</table>

P1 K P3

P2 D E P4

P1 P2 P3 P4

A B C K

H I J

D E F G

R-trees - insertion

• eg., rectangle ‘W’ - focus on ‘P1’ - how to split?

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>W</td>
</tr>
</tbody>
</table>

P1 K

R-trees - insertion

• eg., rectangle ‘W’ - focus on ‘P1’ - how to split?

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>W</td>
</tr>
</tbody>
</table>

P1 K

(A1: plane sweep, until 50% of rectangles)

• A2: ‘linear’ split

• A3: quadratic split

• A4: exponential split
R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’
- **Q**: how to measure ‘closeness’?
- **A**: by increase of area (volume)
R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’

- smart idea: pre-sort rectangles according to delta of closeness (ie., schedule easiest choices first!)
R-trees - insertion - pseudocode

- decide which parent to put new rectangle into (‘closest’ parent)
- if overflow, split to two, using (say,) the quadratic split algorithm
 - propagate the split upwards, if necessary
- update the MBRs of the affected parents.

R-trees - insertion - observations

- many more split algorithms exist (next!)

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

CMU SCS 15-826 Copyright: C. Faloutsos (2013)
R-trees - deletion

- delete rectangle
- if underflow
 - ??

R-trees - deletion

- delete rectangle
- if underflow
 - temporarily delete all siblings (!);
 - delete the parent node and
 - re-insert them

R-trees - deletion

- variations: later (eg. Hilbert R-trees w/ 2-to-1 merge)
Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

R-trees - range search

pseudocode:
check the root
for each branch,
 if its MBR intersects the query rectangle
 apply range-search (or print out, if this
 is a leaf)

R-trees - nn search
R-trees - nn search

• Q: How? (find near neighbor; refine...)

A1: depth-first search; then, range query

R-trees - nn search

• A1: depth-first search; then, range query

R-trees - nn search

• A1: depth-first search; then, range query
R-trees - nn search

• A1: depth-first search; then, range query

• A2: [Roussopoulos+, sigmod95]:
 – priority queue, with promising MBRs, and their best and worst-case distance

• main idea:

consider only P2 and P4, for illustration
R-trees - nn search

best of P4

worst of P2

q

$P2$

$P4$

H

J

D

E

$=>$ P4 is useless for 1-nn

R-trees - nn search

best of P4

worst of P2

q

$P2$

$P4$

H

J

D

E

$=>$ P4 is useless for 1-nn

R-trees - nn search

• what is really the worst of, say, P2?

worst of P2

q

$P2$

$P4$

H

J

D

E
R-trees - nn search

- what is really the worst of, say, P2?
- A: the smallest of the two red segments!

![Diagram](image_url)

R-trees - nn search

- variations: [Hjaltason & Samet] incremental nn:
 - build a priority queue
 - scan enough of the tree, to make sure you have the k nn
 - to find the (k+1)-th, check the queue, and scan some more of the tree
- ‘optimal’ (but, may need too much memory)

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)
R-trees - spatial joins

Spatial joins: find (quickly) all counties intersecting lakes
R-trees - spatial joins

Assume that they are both organized in R-trees:

for each parent P_1 of tree T_1
for each parent P_2 of tree T_2
if their MBRs intersect,
process them recursively (i.e., check their children)
R-trees - spatial joins

Improvements - variations:
- [Seeger+, sigmod 92]: do some pre-filtering; do plane-sweeping to avoid \(N1 \times N2 \) tests for intersection
- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees (FYI, many more papers on spatial joins, without R-trees: [Koudas+ Sevcik], e.t.c.)

Indexing - more detailed outline

• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...)

R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins
• why does it matter?
R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins
• why does it matter?
• A: because we can design split etc algorithms accordingly; also, do query-optimization

R-trees - performance analysis

• How many disk (=node) accesses we’ll need for
 – range
 – nn
 – spatial joins
• why does it matter?
• A: because we can design split etc algorithms accordingly; also, do query-optimization

R-trees - performance analysis

• motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?
R-trees - performance analysis

- How many disk accesses for range queries?
 - query distribution wrt location? uniform; (biased)
 - " " wrt size? uniform

• easier case: we know the positions of parent MBRs, eg:
R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries)?

![Diagram showing retrieval of P1 with a query range](image1)

A: $x_1 \times x_2$

R-trees - performance analysis

• How many times will P1 be retrieved (unif. POINT queries)?

![Diagram showing retrieval of P1 with a point query](image2)

A: $x_1 \times x_2$

R-trees - performance analysis

• How many times will P1 be retrieved (unif. POINT queries)? A: $x_1 \times x_2$

![Diagram showing retrieval of P1 with a point query and a constraint](image3)
R-trees - performance analysis

• How many times will P1 be retrieved (unif. queries of size \(q_1 \times q_2\))?
R-trees - performance analysis

• How many times will P_1 be retrieved (unif. queries of size $q_1 \times q_2$)?

A: $(x_1 + q_1) \times (x_2 + q_2)$

$$\sum (x_{i,1} + q_1) \times (x_{i,2} + q_2) = \sum x_{i,1} \times x_{i,2} + q_2 \sum x_{i,1} + q_1 \sum x_{i,2} + q_1 q_2 N$$

• Thus, given a tree with N nodes ($i=1, ... N$) we expect

$$\#DiskAccesses(q_1,q_2) = \sum (x_{i,1} + q_1) \times (x_{i,2} + q_2) = \sum x_{i,1} \times x_{i,2} + q_2 \sum x_{i,1} + q_1 \sum x_{i,2} + q_1 q_2 N$$
R-trees - performance analysis

- Thus, given a tree with N nodes (i=1, ... N) we expect

 $\text{#DiskAccesses}(q_1,q_2) = \sum (x_{i,1} + q_1) \times (x_{i,2} + q_2)$

 $= \sum (x_{i,1} \times x_{i,2}) + q_2 \times \sum (x_{i,1}) + q_1 \times \sum (x_{i,2}) + q_1 \times q_2 \times N$

 ‘volume’
 surface area
 count

Observations:

- for point queries: only volume matters
- for horizontal-line queries: (q2=0): vertical length matters
- for large queries (q1, q2 >> 0): the count N matters

Observations (cont’d):

- overlap: does not seem to matter
- formula: easily extendible to n dimensions
- (for even more details: [Pagel +, PODS93], [Kamel+, CIKM93])

Berndt-Uwe Pagel
R-trees - performance analysis

Conclusions:
• splits should try to minimize area and perimeter
• ie., we want few, small, square-like parent MBRs
• rule of thumb: shoot for queries with q1=q2 = 0.1 (or =0.5 or so).

R-trees - performance analysis

• How many disk (=node) accesses we'll need for
 – range
 – nn
 – spatial joins

R-trees - performance analysis

Range queries - how many disk accesses, if we just now that we have
- N points in n-d space?
A: ?
R-trees - performance analysis

Range queries - how many disk accesses, if we just now that we have
- N points in n-d space?
A: can not tell! need to know distribution

What are obvious and/or realistic distributions?
A: uniform
A: Gaussian / mixture of Gaussians
A: self-similar / fractal. Fractal dimension ~ intrinsic dimension
R-trees - performance analysis
Formulas for range queries and k-nn queries: use fractal dimension [Kamel+, PODS94], [Korn+ ICDE2000] [Kriegel+, PODS97]

Indexing - more detailed outline
• R-trees
 – main idea; file structure
 – algorithms: insertion/split
 – deletion
 – search: range, nn, spatial joins
 – performance analysis
 – variations (packed; hilbert;...)

R-trees - variations
Guttman’s R-trees sparked much follow-up work
 can we do better splits?
 • what about static datasets (no ins/del/upd)?
 • what about other bounding shapes?
R-trees - variations

Guttman’s R-trees sparked much follow-up work
• can we do better splits?
 – i.e., defer splits?

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]

Norbert Beckmann
Hans Peter Kriegel
Ralf Schneider
Bernhard Seeger

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]
• defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
• Which ones to re-insert?
• How many?
R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]
 • defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
 • Which ones to re-insert?
 • How many? A: 30%

Q: Other ways to defer splits?

A: Push a few keys to the closest sibling node (closest = ??)
R-trees - variations

R*-trees: Also try to minimize area AND perimeter, in their split.
Performance: higher space utilization; faster than plain R-trees. One of the most successful R-tree variants.

R-trees - variations

Guttman’s R-trees sparked much follow-up work
- can we do better splits?
- what about static datasets (no ins/del/upd)?
 - Hilbert R-trees
- what about other bounding shapes?

R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep
 - great for queries on ‘x’;
 - terrible for ‘y’

Q: how to improve?
R-trees - variations

• A: plane-sweep on HILBERT curve!

R-trees - variations

• A: plane-sweep on HILBERT curve!
• In fact, it can be made dynamic (how?), as well as to handle regions (how?)

R-trees - variations

• Dynamic (‘Hilbert R-tree):
 – each point has an ‘h’ value (hilbert value)
 – insertions: like a B-tree on the h-value
 – but also store MBR, for searches
R-trees - variations

• Data structure of a node?

LHV
\(x_{-}\text{low}, y_{-}\text{low} \)
\(x_{-}\text{high}, y_{-}\text{high} \)
\(\text{ptr} \)
\(h\text{-value} \geq LHV \& MBRs: \text{inside parent MBR} \)

~B-tree

~ R-tree

Details
R-trees - variations

Guttman’s R-trees sparked much follow-up work
• can we do better splits?
• what about static datasets (no ins/del/upd)?
 – Hilbert R-trees - main idea
 – handling regions
 – performance/discussion
• what about other bounding shapes?

R-trees - variations
• What if we have regions, instead of points?
 • I.e., how to impose a linear ordering (‘h-value’) on rectangles?

R-trees - variations
• What if we have regions, instead of points?
 • I.e., how to impose a linear ordering (‘h-value’) on rectangles?
 • A1: h-value of center
 • A2: h-value of 4-d point
 (center, x-radius, y-radius)
 • A3: ...
R-trees - variations

- What if we have regions, instead of points?
- I.e., how to impose a linear ordering (‘h-value’) on rectangles?
 - **A1: h-value of center**
 - **A2: h-value of 4-d point**
 (center, x-radius, y-radius)
 - **A3: ...**

R-trees - variations

- with h-values, we can have deferred splits, 2-to-3 splits (3-to-4, etc)
- experimentally: faster than R*-trees
 (reference: [Kamel Faloutsos vldb 94])

R-trees - variations

Guttman’s R-trees sparked much follow-up work

- can we do better splits?
- what about static datasets (no ins/del/upd)?
- what about other bounding shapes?
R-trees - variations

• what about other bounding shapes? (and why?)
• A1: arbitrary-orientation lines (cell-tree, [Guenther])
• A2: P-trees (polygon trees) (MB polygon: 0, 90, 45, 135 degree lines)

Indexing - Detailed outline

• spatial access methods
 – problem dfn
 – z-ordering
 – R-trees
 – misc topics
 • grid files
 • dimensionality curse
 • metric trees
 • other nn methods
• text, ...
R-trees - conclusions

• Popular method; like multi-d B-trees
• guaranteed utilization
• good search times (for low-dim. at least)
• Informix (-> IBM-DB2) ships DataBlade with R-trees
• R* variation is popular

References

• Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger: The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. ACM SIGMOD 1990: 322-331

References

• Jagadish, H. V. (May 23-25, 1990). Linear Clustering of Objects with Multiple Attributes. ACM SIGMOD Conf., Atlantic City, NJ.
• Ibrahim Kamel, Christos Faloutsos: On Packing R-trees, CIKM, 1993
References, cont’d

Other resources

- Code, papers, datasets etc:
- Java applets and more info:
 donar.umiacs.umd.edu/quadtree/points/rtrees.html