15-826: Multimedia Databases and Data Mining

Lecture #26: Graph mining - patterns

Christos Faloutsos

Must-read Material

- Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005, Chicago, IL, USA

Must-read Material (cont’d)

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability
- Conclusions

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)
- ... and more:
- web: hyper-text graph

Internet Map [lumeta.com]
Food Web [Martinez '91]
Friendship Network [Moody '01]
Linkedin, Facebook, Twitter

Graphs - why should we care?
Graphs - why should we care?

- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
- ...

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools
- Problem#3: Scalability
- Conclusions

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’/‘abnormal’?
- which patterns/laws hold?
 - To spot anomalies (rarities), we have to discover patterns

Large datasets reveal patterns/anomalies that may be invisible otherwise…

Are real graphs random?

- random (Erdos-Renyi) graph – 100 nodes, avg degree = 2
- before layout
- after layout
- No obvious patterns

(generated with: pajek
http://vlado.fmf.uni-lj.si/pub/networks/pajek/)
Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let’s look at the data

Solution# S.1

- Power law in the degree distribution
 [SIGCOMM99]

internet domains

log(degree) vs. log(rank)

<table>
<thead>
<tr>
<th>att.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm.com</td>
</tr>
</tbody>
</table>
Solution# S.1

- Power law in the degree distribution [SIGCOMM99]

\[\log(\text{rank}) = -0.82 \log(\text{degree}) \]

internet domains

Solution# S.2: Eigen Exponent E

- A2: power law in the eigenvalues of the adjacency matrix

\[E = -0.48 \]

Exponent = slope

Rank of decreasing eigenvalue

- \[\text{Mihail, Papadimitriou '02: slope is } \frac{1}{2} \text{ of rank exponent} \]

Exponent = slope

May 2001
But:
How about graphs from other domains?

More power laws:
- web hit counts [w/ A. Montgomery]

epinions.com
- who-trusts-whom
 [Richardson + Domingos, KDD 2001]
And numerous more

- # of sexual contacts
- Income [Pareto] – ‘80-20 distribution’
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs (‘mice and elephants’)
- Size of files of a user
- ...
- ‘Black swans’

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - triangles
 - cliques
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools

Solution# S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles
Solution# S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?

Triangle Law: #S.3
[Tsourakakis ICDM 2008]

X-axis: # of participating triangles
Y: count (~ pdf)
Triangle Law: #S.4
[Tsourakakis ICDM 2008]

X-axis: degree
Y-axis: mean # triangles

n friends -> ~$n^{1/2}$ triangles

Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?

A: Yes!

$\#\text{triangles} = \frac{1}{6} \text{Sum } (\lambda_i^3)$

(and, because of skewness (S2), we only need the top few eigenvalues!)
Triangle Law: Computations
[Tsourakakis ICDM 2008]
Wikipedia graph 2006-Nov-04
= 116M nodes = 77M edges

1000x+ speed-up, >90% accuracy

Triangle counting for large graphs?

Anomalous nodes in Twitter (~3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
Any other ‘laws’?

Yes!

• Small diameter (~ constant!) –
 – six degrees of separation / ‘Kevin Bacon’
 – small worlds [Watts and Strogatz]

Any other ‘laws’?

• Bow-tie, for the web [Kumar+ ‘99]
• IN, SCC, OUT, ‘tendrils’
• disconnected components
Any other ‘laws’?

- power-laws in communities (bi-partite cores) [Kumar+, ’99]

- “Jellyfish” for Internet [Tauro+ ’01]
 - core: ~clique
 - ~5 concentric layers
 - many 1-degree nodes

EigenSpokes

EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors
 (symmetric, undirected graph)

\[A = U \Sigma U^T \]
EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors
 (symmetric, undirected graph)

\[A = U \Sigma U^T \]

EE plot:
- Scatter plot of scores of \(u_1 \) vs \(u_2 \)
- One would expect
 - Many points @ origin
 - A few scattered ~randomly
EigenSpokes

- **EE plot:**
 - Scatter plot of scores of u1 vs u2
 - One would expect
 - Many points @ origin
 - A few scattered ~randomly

EigenSpokes - pervasiveness

- Present in mobile social graph
 - across time and space
- Patent citation graph

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected
Near-cliques, or near-bipartite-cores, loosely connected

So what?
- Extract nodes with high scores
- high connectivity
- Good “communities”
Bipartite Communities!

- patents from same inventor(s)
- 'cut-and-paste' bibliography!
- magnified bipartite community

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - triangles
 - cliques
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools

Observations on weighted graphs?

- A: yes - even more ‘laws’!

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected Components: Patterns and a Generator.
SIG-KDD 2008
Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

More donors, more $?

$10
$5
$7

'Reagan'

'Clinton'

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- Exponent ‘iw’: $1.01 < iw < 1.26$

More donors, even more $
Outline

• Introduction – Motivation
• Problem#1: Patterns in graphs
 – Static graphs
 – Weighted graphs
 – Time evolving graphs
• Problem#2: Tools
• …

Problem: Time evolution

• with Jure Leskovec (CMU -> Stanford)

• and Jon Kleinberg (Cornell – sabb. @ CMU)

T.1 Evolution of the Diameter

• Prior work on Power Law graphs hints at slowly growing diameter:
 – diameter ~ O(log N)
 – diameter ~ O(log log N)
• What is happening in real data?
T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$
- What is happening in real data?
- Diameter shrinks over time

T.1 Diameter – “Patents”

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges

T.2 Temporal Evolution of the Graphs

- $N(t)$ … nodes at time t
- $E(t)$ … edges at time t
- Suppose that
 $N(t+1) = 2 \times N(t)$
- Q: what is your guess for
 $E(t+1) = ? 2 \times E(t)$
T.2 Temporal Evolution of the Graphs

- \(N(t) \) … nodes at time \(t \)
- \(E(t) \) … edges at time \(t \)
- Suppose that \(N(t+1) = 2 \times N(t) \)
- Q: what is your guess for \(E(t+1) \)? \(\neq 2 \times E(t) \)
- A: over-doubled!
 - But obeying the "Densification Power Law"

T.2 Densification – Patent Citations

- Citations among patents granted
 - @1999
 - 2.9 M nodes
 - 16.5 M edges
 - Each year is a datapoint

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools
 - ...
More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected Components: Patterns and a Generator.
SIG-KDD 2008

[Gelling Point]

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.

Observation T.3: NLCC behavior

Q: How do NLCC’s emerge and join with the GCC?

(“NLCC” = non-largest conn. components)
- Do they continue to grow in size?
- or do they shrink?
- or stabilize?
Observation T.3: NLCC behavior

Q: How do NLCC’s emerge and join with the GCC?

("NLCC" = non-largest conn. components)
– Do they continue to grow in size?
– or do they shrink?
– or stabilize?

After the gelling point, the GCC takes off, but NLCC’s remain ~constant (actually, oscillate).
Timing for Blogs

- with Mary McGlohon (CMU->Google)
- Jure Leskovec (CMU->Stanford)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)

[SDM’07]

T.4 : popularity over time

Post popularity drops-off – exponentially?

POWER LAW!

Exponent?
T.4: popularity over time

-1.6 exponent?
- close to -1.5: Barabasi’s stack model
- and like the zero-crossings of a random walk

Post popularity drops-off – exponentially?

POWER LAW!

-1.6 days after post

Figure 1: The correspondence patterns of Darwin and Einstein.

T.5: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, Antonio A. F. Loureiro

PKDD 2010
'TLaC: Lazy Contractor'

- The longer a task (phonecall) has taken,
- The even longer it will take

Odds ratio =

\[
\text{Casualties(<x)} : \text{Survivors(\geq x)}
\]

\[== \text{power law}\]
Data Description

- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records
- Over 96% of ‘talkative’ users obeyed a TLAC distribution (‘talkative’: >30 calls)

Outliers:

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - OddBall (anomaly detection)
 - Belief Propagation
 - Immunization
- Problem#3: Scalability
- Conclusions
Main idea

For each node,
• extract ‘ego-net’ (=1-step-away neighbors)
• Extract features (#edges, total weight, etc etc)
• Compare with the rest of the population

What is an egonet?
Selected Features

- N_i: number of neighbors (degree) of ego i
- E_i: number of edges in egonet i
- W_i: total weight of egonet i
- λ_{max}: principal eigenvalue of the weighted adjacency matrix of egonet I
Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 – OddBall (anomaly detection)
 – Belief Propagation
 – Immunization
- Problem#3: Scalability
- Conclusions
E-bay Fraud detection - NetProbe

Popular press

The Washington Post
Los Angeles Times

And less desirable attention:
- E-mail from ‘Belgium police’ (‘copy of your code?’)

Outline
- Introduction – Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - OddBall (anomaly detection)
 - Belief Propagation – antivirus app
 - Immunization
- Problem#3: Scalability
- Conclusions
Polonium: Tera-Scale Graph Mining and Inference for Malware Detection

SDM 2011, Mesa, Arizona

Polo Chau
Machine Learning Dept
Carey Nachenberg
Vice President & Fellow
Jeffrey Wilhelm
Principal Software Engineer

Adam Wright
Software Engineer
Prof. Christos Faloutsos
Computer Science Dept

Polonium: The Data

- 60+ terabytes of data anonymously contributed by participants of worldwide Norton Community Watch program
- 50+ million machines
- 900+ million executable files

- Constructed a machine-file bipartite graph (0.2 TB+)
- 1 billion nodes (machines and files)
- 37 billion edges

Polonium: Key Ideas

- Use Belief Propagation to propagate domain knowledge in machine-file graph to detect malware
- Use “guilt-by-association” (i.e., homophily)
 - E.g., files that appear on machines with many bad files are more likely to be bad
- Scalability: handles 37 billion-edge graph
Polonium: One-Interaction Results

- True Positive Rate
 - % of malware correctly identified
- False Positive Rate
 - % of non-malware wrongly labeled as malware

84.9% True Positive Rate
1% False Positive Rate

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - OddBall (anomaly detection)
 - Belief propagation
 - Immunization
- Problem#3: Scalability - PEGASUS
- Conclusions

Immunization and epidemic thresholds

- Q1: which nodes to immunize?
- Q2: will a virus vanish, or will it create an epidemic?
Q1: Immunization:

• Given
 • a network,
 • k vaccines, and
 • the virus details
• Which nodes to immunize?
Q1: Immunization:
• Given a network, k vaccines, and the virus details
• Which nodes to immunize?

A: immunize the ones that maximally raise the ’epidemic threshold’ [Tong+, ICDM’10]

Q2: will a virus take over?
• Flu-like virus (no immunity, ’SIS’)
• Mumps (life-time immunity, ’SIR’)
• Pertussis (finite-length immunity, ’SIRS’)

β: attack prob
δ: heal prob

A: depends on connectivity (avg degree? Max degree? variance? Something else?)
Epidemic threshold τ

What should τ depend on?
- avg. degree? and/or highest degree?
- and/or variance of degree?
- and/or third moment of degree?
- and/or diameter?

• [Theorem] We have no epidemic, if

$$\frac{\beta}{\delta} < \tau = \frac{1}{\lambda_{1,A}}$$

Proof: [Wang+03] (for SIS=flu only)
A2: will a virus take over?

- For all typical virus propagation models (flu, mumps, pertussis, HIV, etc)
- The only connectivity measure that matters, is $1/\lambda_1$
 - the first eigenvalue of the adj. matrix
 - [Prakash+, ‘10, arxiv]

Thresholds for some models

- $s = \text{effective strength}$
- $s < 1 : \text{below threshold}$

<table>
<thead>
<tr>
<th>Models</th>
<th>Effective Strength ((s))</th>
<th>Threshold (tipping point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIS, SIR, SIRS, SEIR</td>
<td>$s = \lambda \cdot \left(\frac{\beta}{\delta} \right)$</td>
<td>$s = 1$</td>
</tr>
<tr>
<td>SIV, SEIV</td>
<td>$s = \lambda \cdot \left(\frac{\beta y}{\delta (\gamma + \theta)} \right)$</td>
<td>$s = 1$</td>
</tr>
<tr>
<td>SI_1, I_2, V_1, V_2 (H.I.V.)</td>
<td>$s = \lambda \cdot \left(\frac{\beta V_1 + \beta_0 V_2}{\nu_1 (\nu_1 + \nu_2)} \right)$</td>
<td>$s = 1$</td>
</tr>
</tbody>
</table>

A2: will a virus take over?

- Fraction of infected
- Graph: Portland, OR
 - 31M links
 - 1.5M nodes
- Time ticks
 - 10^0 to 10^5
- SIRS Infected (log-log)
 - Under1, Under2, Over1, Over2
 - Above: take-over
 - Below: exp. extinction

(c) 2011 C. Faloutsos
Q1: Immunization:

Given
• a network,
• k vaccines, and
• the virus details

Which nodes to immunize?

A: immunize the ones that maximally raise the "epidemic threshold" [Tong+, ICDM’10]

Max eigen-drop $\Delta \lambda$ for any virus!

Outline

• Introduction – Motivation
• Problem#1: Patterns in graphs
• Problem#2: Tools
 – OddBall (anomaly detection)
 – Belief propagation
 – Immunization
• Problem#3: Scalability -PEGASUS
• Conclusions
Scalability

- Yahoo: 5Pb of data [Fayyad, KDD’07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?

Outline – Algorithms & results

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>Hadoop/PEGASUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Distr.</td>
<td>old</td>
<td>old</td>
</tr>
<tr>
<td>Pagerank</td>
<td>old</td>
<td>old</td>
</tr>
<tr>
<td>Diameter/ANF</td>
<td>old</td>
<td>HERE</td>
</tr>
<tr>
<td>Conn. Comp</td>
<td>old</td>
<td>HERE</td>
</tr>
<tr>
<td>Triangles</td>
<td>done</td>
<td>HERE</td>
</tr>
<tr>
<td>Visualization</td>
<td>started</td>
<td></td>
</tr>
</tbody>
</table>

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM’10
- Naively: diameter needs $O(N^2)$ space and up to $O(N^3)$ time – prohibitive (N~1B)
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
- Largest publicly available graph ever studied.
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- 7 degrees of separation (?!)
- Diameter: shrunk

Radius

Count

10^1
10^2
10^3
10^4
10^5
10^6
10^7
10^8
10^9

0 5 10 15 20 25 30

14 (dir.)

19+? [Barabasi+]

-7 (undir.)

Radius

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

Q: Shape?

Effective Diameter = 7.62

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

(c) 2011 C. Faloutsos
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
• effective diameter: surprisingly small.
• Multi-modality: probably mixture of cores.
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

Conjecture:
- ~7

Running time - Kronecker and Erdos-Renyi
Graphs with billions edges.

Outline – Algorithms & results

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>Hadoop/PEGASUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Distr.</td>
<td>old</td>
<td>old</td>
</tr>
<tr>
<td>Pagerank</td>
<td>old</td>
<td>old</td>
</tr>
<tr>
<td>Diameter/ANF</td>
<td>old</td>
<td>HERE</td>
</tr>
<tr>
<td>Conn. Comp</td>
<td>old</td>
<td>HERE</td>
</tr>
<tr>
<td>Triangles</td>
<td></td>
<td>HERE</td>
</tr>
<tr>
<td>Visualization</td>
<td>started</td>
<td></td>
</tr>
</tbody>
</table>
Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations.
U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.
(ICDM) 2009, Miami, Florida, USA.
Best Application Paper (runner-up).

Example: GIM-V At Work

- Connected Components – 4 observations:
Example: GIM-V At Work

- Connected Components

1) 10K x larger than next

2) ~0.7B singleton nodes

3) SLOPE!
Example: GIM-V At Work

- Connected Components

4) Spikes!

Example: GIM-V At Work

- Connected Components

GIM-V At Work

- Connected Components over Time

LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point
Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability
- Conclusions

OVERALL CONCLUSIONS – low level:

- Several new patterns (fortification, shrinking diameter, triangle-laws, conn. components, etc)
- New tools:
 - anomaly detection (OddBall), belief propagation, immunization
- Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS – high level

- BIG DATA: Large datasets reveal patterns/outliers that are invisible otherwise
References

- Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: *Mining large graphs and streams using matrix and tensor tools*. Tutorial, SIGMOD Conference 2007: 1174
References

• Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.

• Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos. GraphScope: Parameter-free Mining of Large Time-evolving Graphs ACM SIGKDD Conference, San Jose, CA, August 2007
References

• Jimeng Sun, Dacheng Tao, Christos Faloutsos: Beyond streams and graphs: dynamic tensor analysis. KDD 2006: 374-383

References

• Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, Fast Random Walk with Restart and Its Applications, ICDM 2006, Hong Kong.

• Hanghang Tong, Christos Faloutsos, Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA

References

• Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

References

• Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746
(Project info)

www.cs.cmu.edu/~pegasus

Chau, Polo
Koutra, Danae
Prakash, Aditya

Akoglu, Leman
Kang, U
McGlohon, Mary
Tong, Hanghang

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Faloutsos