15-826: Multimedia Databases and Data Mining
Lecture #13: Power laws
Potential causes and explanations
C. Faloutsos

Must-read Material
• Power laws, Pareto distributions and Zipf's law
 Contemporary Physics 46, 323-351 (2005)

Optional Material
• (optional, but very useful: Manfred Schroeder
 Fractals, Chaos, Power Laws: Minutes from an
Outline

Goal: ‘Find similar / interesting things’
- Intro to DB
 - Indexing - similarity search
 - Data Mining

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - z-ordering
 - R-trees
 - misc
- fractals
 - intro
 - applications
- text

- fractals
 - intro
 - applications
- text
This presentation

- Definitions
- Examples and counter-examples
- Generative mechanisms

Definition

- \(p(x) = C x^{-\alpha} \quad (x \geq x_{\text{min}}) \)
- Eg., prob(city pop. between \(x + dx \))

\[
\begin{align*}
\log(p(x)) & = -\alpha \log(x) + \log(C) \\
\log(x_{\text{min}}) & \leq \log(x)
\end{align*}
\]

For discrete variables

\[
p_k = Ck^{-\alpha} \quad (k > 0)
\]

Or, the Yule distribution:

\[
p_k = C B(k,a) \\
B(k,a) = \Gamma(k)\Gamma(a)/\Gamma(k+a) \approx k^{-\alpha}
\]
Estimation for a

$$a = 1 + n \left[\sum_{i=1}^{2} \ln \left(\frac{x_i}{x_{\min}} \right) \right]^{-1}$$

Examples

- Word frequencies
- Citations of scientific papers
- Web hits
- Copies of books sold
- Magnitude of earthquakes
- Diameter of moon craters
- …
[Newman 2005]

Rank-frequency plots
Or Cumulative D.F.

NOT following P.L.

‘abundance’
of species

Cumul. D.F.

Number of
addresses

Size of forest fires

This presentation

- Definitions
- Examples and counter-examples
- Generative mechanisms
 - Combination of exponentials
 - Inverse
 - Random walk
 - Yule distribution = CRP
 - Percolation
 - Self-organized criticality
 - Other
Combination of exponentials

Let \(p(y) = e^{ay} \)
- eg., radioactive decay, with half-life \(-a\)
- (= collection of people, playing russian roulette)
 Let \(x \sim e^{by} \)
- (every time a person survives, we double his capital)
 \(p(x) = p(y) \cdot \frac{dy}{dx} = \frac{1}{b} x^{(-1+a/b)} \)
- Ie, the final capital of each person follows P.L.

Combination of exponentials

- Monkey on a typewriter:
 - \(m = 26 \) letters equiprobable;
 - space bar has prob. \(q_s \)
 - \(\text{Freq} (x\text{-th most frequent word}) = x^{(-a)} \)
 see Eq. 47 of [Newman]:
 \[a = \frac{2 \ln(m) - \ln (1-q_s)}{\ln m - \ln (1-q_s)} \]

Inverses of quantities

- \(y \) follows \(p(y) \) and goes through zero
- \(x = 1/y \)
- Then \(p(x) = \ldots = - \frac{p(y)}{x^2} \)
- For \(y \sim \theta \), \(x \) has power law tail.
This presentation

• Definitions
• Examples and counter-examples
• Generative mechanisms
 – Combination of exponentials
 – Inverse
 – Random walk
 – Yule distribution = CRP
 – Percolation
 – Self-organized criticality
 – Other

Random walks

Inter-arrival times PDF: $p(t) \sim t^{-3/2}$
Random walks

![Graph of correspondence patterns of Darwin and Einstein](image)

This presentation

- Definitions
- Examples and counter-examples
- Generative mechanisms
 - Combination of exponentials
 - Inverse
 - Random walk
 - Yule distribution = CRP
 - Percolation
 - Self-organized criticality
 - Other

Yule distribution and CRP

Chinese Restaurant Process (CRP):
Newcomer to a restaurant
- Joins an existing table (preferring large groups)
- Or starts a new table/group of its own, with prob $1/m$
a.k.a.: rich get richer; Yule process
Yule distribution and CRP

Then:
Prob(k people in a group) = p_k
= (1 + 1/m) B(k, 2+1/m)
~ k ^ (2+1/m)
(since B(a,b) ~ a ** (-b) : power law tail)

Yule distribution and CRP
- Yule process
- Gibrat principle
- Matthew effect
- Cumulative advantage
- Preferential attachment
- ‘rich get richer’

This presentation
- Definitions
- Examples and counter-examples
- Generative mechanisms
 - Combination of exponentials
 - Inverse
 - Random walk
 - Yule distribution = CRP
 - Percolation
 - Self-organized criticality
 - Other
Percolation and forest fires

A burning tree will cause its neighbors to burn next.

Which tree density \(p \) will cause the fire to last longest?
Percolation and forest fires

At $pc \approx 0.593$:
- No characteristic scale;
- 'patches' of all sizes;
- Korcak-like 'law'.

This presentation

- Definitions
- Examples and counter-examples
- Generative mechanisms
 - Combination of exponentials
 - Inverse
 - Random walk
 - Yale distribution = CRP
 - Percolation
 - Self-organized criticality
 - Other
Self-organized criticality

- Trees appear at random (eg., seeds, by the wind)
- Fires start at random (eg., lightning)
- Q1: What is the distribution of size of forest fires?

Self-organized criticality

- A1: Power law-like

Self-organized criticality

- Trees appear at random (eg., seeds, by the wind)
- Fires start at random (eg., lightning)
- Q2: what is the average density?
Self-organized criticality

- A2: the critical density $p_c \approx 0.593$

Self-organized criticality

- [Bak]: size of avalanches \sim power law:
- Drop a grain randomly on a grid
- It causes an avalanche if $\text{height}(x, y) > 1$ higher than its four neighbors

This presentation

- Definitions
- Examples and counter-examples
- Generative mechanisms
 - Combination of exponentials
 - Inverse
 - Random walk
 - Yule distribution = CRP
 - Percolation
 - Self-organized criticality
 - Other
Other

• Random multiplication
• Fragmentation
-> lead to lognormals (~ look like power laws)

Others

Random multiplication:
• Start with C dollars; put in bank
• Random interest rate s(t) each year t
• Each year t: C(t) = C(t-1) * (1+ s(t))

• Log(C(t)) = log(C) + log(..) + log(..) … -> Gaussian

• Thus C(t) = exp(Gaussian)
• By definition, this is Lognormal
Others
Lognormal:
pdf

S

Lognormal:
$log(pdf)$

$log(S)$

Lognormal:
$log(pdf)$

$log(S)$
Other

- Random multiplication
- Fragmentation
 -> lead to lognormals (~ look like power laws)

Other

- Stick of length 1
- Break it at a random point x (0<x<1)
- Break each of the pieces at random
- Resulting distribution: lognormal (why?)

Conclusions

- Power laws and power-law like distributions appear often
- (fractals/self similarity -> power laws)
- Exponentiation/inversion
- Yule process / CRP / rich get richer
- Criticality/percolation/phase transitions
- Fragmentation -> lognormal ~ P.L.