15-826: Multimedia Databases and Data Mining

Lecture #11: Fractals: M-trees and dim. curse (case studies – Part II)

C. Faloutsos

Must-read Material

• Alberto Belussi and Christos Faloutsos, Estimating the Selectivity of Spatial Queries Using the 'Correlation' Fractal Dimension. Proc. of VLDB, p. 299-310, 1995

Optional Material

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining

Indexing - Detailed outline

• primary key indexing
• secondary key / multi-key indexing
• spatial access methods
 – z-ordering
 – R-trees
 – misc
• fractals
 – intro
 – applications
• text

Indexing - Detailed outline

• fractals
 – intro
 – applications
 • disk accesses for R-trees (range queries)
 • dimensionality reduction
• selectivity in M-trees
• dim. curse revisited
 • “fat fractals”
 • quad-tree analysis [Gaede+]
What else can they solve?

- separability [KDD’02]
- forecasting [CIKM’02]
- dimensionality reduction [SBD’00]
- non-linear axis scaling [KDD’02]
- disk trace modeling [Wang+’02]
- selectivity of spatial/multimedia queries [PODS’94, VLDB’95, ICDE’00]
- ...

Metric trees - analysis

- Problem: How many disk accesses, for an M-tree?
- Given:
 - \(N \) (# of objects)
 - \(C \) (fanout of disk pages)
 - \(r \) (radius of range query - BIASED model)

- NOT ENOUGH - what else do we need?
Metric trees - analysis

• A: something about the distribution

[Ciaccia, Patella, Zezula, PODS98]: assumed that the distance distribution is the same, for every object:

F1(d) = Prob(an object is within d from object #1)
= F2(d) = ... = F(d)
Metric trees - analysis

• A: something about the distribution
• Given our ‘fractal’ tools, we could try them - which one?

Metric trees - analysis

• A: something about the distribution
• Given our ‘fractal’ tools, we could try them - which one?
• A: Correlation integral [Traina+, ICDE2000]

Metric trees - analysis

English dictionary

Portuguese dictionary

log(#pairs) log(#pairs)

log(d) log(d)
Metric trees - analysis

Divina Comedia

Eigenfaces

<table>
<thead>
<tr>
<th>log(#pairs)</th>
<th>log(#pairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log(d))</td>
<td>(\log(d))</td>
</tr>
</tbody>
</table>

Metric trees - analysis

<table>
<thead>
<tr>
<th>Data Set</th>
<th>N (O. Objects)</th>
<th>Dimension</th>
<th>Distance Method</th>
<th>Distance Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Metric dataset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goglist</td>
<td>20,453</td>
<td>NA</td>
<td>(L_1)</td>
<td>4.783</td>
</tr>
<tr>
<td>Divina Comedia</td>
<td>12,706</td>
<td>NA</td>
<td>(L_1)</td>
<td>4.827</td>
</tr>
<tr>
<td>Descendants</td>
<td>18,719</td>
<td>NA</td>
<td>(L_1)</td>
<td>3.286</td>
</tr>
<tr>
<td>Portuguese</td>
<td>21,673</td>
<td>NA</td>
<td>(L_1)</td>
<td>4.688</td>
</tr>
<tr>
<td>Study</td>
<td>1,019</td>
<td>NA</td>
<td>Nat distance</td>
<td>0.621</td>
</tr>
<tr>
<td>Real vector dataset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG1</td>
<td>13,550</td>
<td>2</td>
<td>(L_1)</td>
<td>1.792</td>
</tr>
<tr>
<td>Vigenbae</td>
<td>13,986</td>
<td>10</td>
<td>(L_1)</td>
<td>5.567</td>
</tr>
<tr>
<td>Synthetic dataset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berndt</td>
<td>9,841</td>
<td>2</td>
<td>(L_1)</td>
<td>1.784</td>
</tr>
<tr>
<td>2D Line</td>
<td>20,000</td>
<td>2</td>
<td>(L_1)</td>
<td>0.980</td>
</tr>
<tr>
<td>Cortada 2D</td>
<td>10,000</td>
<td>2</td>
<td>(L_1)</td>
<td>1.967</td>
</tr>
</tbody>
</table>
So, what is the # of disk accesses, for a node of radius r_d, on a query of radius r_q?

$A \sim (r_d + r_q)^D$
Accuracy of selectivity formulas

Fast estimation of \(D \)

- Normally, \(D \) takes \(O(N^2) \) time
- Anything faster? suppose we have already built an M-tree

Fast estimation of \(D \)

- Hint:
Fast estimation of D

- Hint:

 \[r_1^D \cdot C = r_2^D \]

 \[D \sim \frac{\log(C)}{\log(r_2/r_1)} \]

Indexing - Detailed outline

- fractals
 - intro
 - applications
 - disk accesses for R-trees (range queries)
 - dimensionality reduction
 - selectivity in M-trees
- dim. curse revisited
 - "fat fractals"
 - quad-tree analysis [Gaede+]

Dim. curse revisited

- (Q: how serious is the dim. curse, e.g.:)
- Q: what is the search effort for k-nn?
 - given N points, in E dimensions, in an R-tree, with k-nn queries ("biased" model)

[Pagel, Korn + ICDE 2000]
(Overview of proofs)

- assume that your points are uniformly distributed in a d-dimensional manifold (= hyper-plane)
- derive the formulas
- substitute d for the fractal dimension

Reminder: Hausdorff Dimension (D_0)

- $r =$ side length (each dimension)
- $B(r) =$ # boxes containing points $\propto r^{D_0}$

$$
\begin{align*}
r & = 1/2 & B & = 2 \\
\log r & = -1 & \log B & = 1 \\
r & = 1/4 & B & = 4 \\
\log r & = -2 & \log B & = 2 \\
r & = 1/8 & B & = 8 \\
\log r & = -3 & \log B & = 3
\end{align*}
$$

Reminder: Correlation Dimension (D_2)

- $S(r) = \sum p_i^2$ (squared % pts in box) $\propto r^{D_2}$
 \propto #pairs (within $\leq r$)

$$
\begin{align*}
r & = 1/2 & S & = 1/2 \\
\log r & = -1 & \log S & = -1 \\
r & = 1/4 & S & = 1/4 \\
\log r & = -2 & \log S & = -2 \\
r & = 1/8 & S & = 1/8 \\
\log r & = -3 & \log S & = -3
\end{align*}
$$
Observation #1

• How to determine avg MBR side \(l \)?
 – \(N \) = #pts, \(C \) = MBR capacity

Hausdorff dimension: \(B(r) \propto r^{D_0} \)
\[
B(l) = \frac{N}{C} = l^{-D_0} \implies l = \left(\frac{N}{C} \right)^{1/D_0}
\]

Observation #2

• \(k \)-NN query \(\rightarrow \) \(\varepsilon \)-range query
 – For \(k \) pts, what radius \(\varepsilon \) do we expect?

Correlation dimension: \(S(r) \propto r^{D_2} \)
\[
S(\varepsilon) = \frac{k}{N - 1} = (2\varepsilon)^{D_2}
\]

Observation #3

• Estimate avg # query-sensitive anchors:
 – How many expected \(q \) will touch avg page?
 – Page touch: \(q \) stabs \(\varepsilon \)-dilated MBR(\(p \))
Asymptotic Formula

- k-NN page accesses as $N \to \infty$
 - C = page capacity
 - D = fractal dimension ($=D_0 \sim D_2$)

$$P_{all}^{L_n}(k) = \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^D \right\}$$

Asymptotic Formula

$$P_{all}^{L_n}(k) \approx \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^D \right\}$$

- NO mention of the embedding dimensionality!!
- Still have dim. curse, but on f.d. D

Synthetic Data

- plane
 - $D_0 = D_2 = 2$
 - embedded in E-space
 - $N = 100K$
- manifold
 - $E = 8$
 - $D_0 = D_2$ varies from 1-6
 - line, plane, etc. (in 8-d)
Accuracy of L_∞ Formula

Embedding Dimension

Intrinsic Dimensionality
Non-Euclidean Data Set

<table>
<thead>
<tr>
<th>E</th>
<th>unif</th>
<th>ind</th>
<th>fractal</th>
<th>leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.49</td>
<td>2.53</td>
<td>4.72±1.81</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>847.26</td>
<td>2.53</td>
<td>6.42±2.11</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>all</td>
<td>2.53</td>
<td>7.76±4.12</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>all</td>
<td>2.53</td>
<td>6.15±2.82</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>all</td>
<td>2.53</td>
<td>5.64±2.32</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- Worst-case theory is **over-pessimistic**
- High dimensional data can exhibit good performance if **correlated, non-uniform**
- Many real data sets are **self-similar**
- Determinant is **intrinsic** dimensionality
 - multiple fractal dimensions (D_0 and D_2)
 - indication of how far one can go

References