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Abstract 

In large data recording and warehousing environments, it is of- 
ten advantageous to provide fast, approximate answers to queries, 
whenever possible. Before DBMSs providing highly-accurate ap- 
proximate answers can become a reality, many new techniques for 
summarizing data and for estimating answers from summarized 
data must be developed. This paper introduces two new sampling- 
based summary statistics, concise samples and counting samples, 
and presents new techniques for their fast incremental maintenance 
regardless of the data distribution. We quantify their advantages 
over standard sample views in terms of the number of additional 
sample points for the same view size, and hence in providing more 
accurate query answers. Finally, we consider their application to 
providing fast approximate answers to hot list queries. Our algo- 
rithms maintain their accuracy in the presence of ongoing insertions 
to the data warehouse. 

1 Introduction 

In large data recording and warehousing environments, it is often 
advantageous to provide fast, approximate answers to queries. The 
goal is to provide an estimated response in orders of magnitude 
less time than the time to compute an exact answer, by avoiding or 
minimizing the number of accesses to the base data. 

In a traditional data warehouse set-up, depicted in Figure 1, 
each query is answered exactly using the data warehouse. We con- 
sider instead the set-up depicted in Figure 2, for providing very 
fast approximate answers to queries. In this set-up, new data being 
loaded into the data warehouse is also observed by an approximate 
answer engine. This engine maintains various summary statistics, 
which we denote synopsis data structures or synopses [GM97]. 

Queries are sent to the approximate answer engine. Whenever 
possible, the engine uses its synopses to promptly return a query re- 
sponse, consisting of an approximate answer and an accuracy mea- 
sure (e.g., a 95% confidence interval for numerical answers). The 
user can then decide whether or not to have an exact answer com- 
puted from the base data, based on the user’s desire for the exact 
answer and the estimated time for computing an exact answer as 
determined by the query optimizer and/or the approximate answer 
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Figure 2: Data warehouse set-up for providing approximate 
query answers. 

engine.’ There are a number of scenarios for which a user may pre- 
fer an approximate answer in a few seconds over an exact answer 
that requires tens of minutes or more to compute, e.g., during a drill 
down query sequence in data mining [GM95, HHW97]. Moreover, 
as discussed by Faloutsos er al. [FJS97], sometimes the base data 
is remote and currently unavailable, so that an exact answer is not 
an option, until the data again becomes available. 

Techniques for fast approximate answers can also be used in a 
more traditional role within the query optimizer to estimate plan 
costs, again with very fast response time. 

The state-of-the-art in approximate query answers (e.g., [VL93, 
HHW97, BDFf97]) is quite limited in its speed, scope and accu- 
racy. Before DBMSs providing highly-accurate approximate an- 
swers can become a reality, many new techniques for summarizing 
data and for estimating answers from summarized data must be de- 
veloped. The goal is to develop effective synopses that capture 
important information about the data in a concise representation. 
The important features of the data are determined by the types of 
queries for which approximate answers are a desirable option. For 
example, it has been shown that for providing approximate answers 

‘This differs from the onLnr u,g~rqafion npproach in [HHW97], in which the base 
data is scanned and the approximate zmswer is updated as the scan proceeds 
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to range selectivity queries, the V-optimal histograms capture im- 
portant features of the data in a concise way [PlHS96]. 

To handle many base tables and many types of queries, a large 
number of synopses may be needed. Moreover, for fast response 
times that avoid disk access altogether, synopses that are frequently 
used to respond to queries should be memory-resident.” Thus we 
evaluate the effectiveness of a synopsis as a function of its fool- 
print, i.e., the number of memory words to store the synopsis. For 
example, it is common practice to evaluate the effectiveness of a 
histogram in estimating range selectivities as a function of the his- 
togram footprint (i.e., the number of histogram buckets and the 
storage requirement for each bucket). Although machines with 
large main memories are becoming increasingly commonplace, this 
memory remains a precious resource, as it is needed for query- 
processing working space (e.g., building hash tables for hash joins) 
and for caching disk blocks. Moreover, small footprints are more 
likely to lead to effective use of the processor’s Ll and/or L2 cache; 
e.g., a synopsis that tits entirely in the processor’s cache enables 
even faster response times. 

The effectiveness of a synopsis can be measured by the accu- 
raq of the answers it provides, and its response time. In order 
to keep a synopsis up-to-date, updates to the data warehouse must 
be propagated to the synopsis, as discussed above. Thus the final 
metric is the update time. 

1.1 Concise samples and counting samples 

concise sample as new data arrives is more difficult than with ordi- 
nary samples. We present a fast algorithm for maintaining a concise 
sample within a given footprint bound, as new data is inserted into 
the data warehouse. 

Counting sutnples are a variation on concise samples in which 
the counts are used to keep track of all occurrences of a value in- 
serted into the relation since the value was selected for the sample. 
We discuss their relative merits as compared with concise samples, 
and present a fast algorithm for maintaining counting samples un- 
der insertions and deletions to the data warehouse. 

In most uses of random samples in estimation, whenever a sam- 
ple of size n is needed it is extracted from the base data: either the 
entire relation is scanned to extract the sample, or n random disk 
blocks must be read (since tuples in a disk block may be highly cor- 
related). With our approximate query set-up, as in [GMP97b], we 
maintain a random sample at all times. As argued in [GMP97b], 
maintaining a random sample allows for the sample to be packed 
into consecutive disk blocks or in consecutive pages of memory. 
Moreover, for each tuple in the sample, only the attribute(s) of in- 
terest are retained, for an even smaller footprint and faster retrieval. 

Sampling-based estimation has been shown to be quite useful in 
the context of query processing and optimization (see, e.g., Chap- 
ter 9 in [BDF+97]). The accuracy of sampling-based estimation 
improves with the size of the sample. Since both concise and count- 
ing samples provide more sample points for the same footprint, 
they provide more accurate estimations. 

Note that any algorithm for maintaining a synopsis in the pres- 
This paper introduces two new sampling-based summary statis- 
tics, concise sumples and counting samples, and presents new tech- 
niques for their fast incremental maintenance regardless of the data 
distribution. 

ence of inserts without accessing the base data can also be used 
to compute the synopsis from scratch in one pass over the data, in 
limited memory. 

Consider the class of queries that ask for the frequently occur- 
ring values for an attribute in a relation of size 7~. One possible 
synopsis data structure is the set of attribute values in a uniform 
random sample of the tuples in the relation: any value occurring 
frequently in the sample is returned in response to the query. How- 
ever, note that any value occurring frequently in the sample is a 
wasteful use of the available space. We can represent k copies of 
the same value 21 as the pair (r~, Ic), thereby freeing up space for 
k - 2 additional sample points.3 This simple observation leads to 
our first new sampling-based synopsis data structure: 

Definition 1 A concise sample is a uniform random sample of the 
data set such that values uppearing more than once in the sample 
are represented us a value and a count. 

While using (value, count) pairs is common practice in various 
contexts, we apply it in the context of random samples, such that a 
concise sample of sample-size m will refer to a sample of m’ > m 
sample points whose concise representation (i.e., footprint) is size 
m. This simple idea is quite powerful, and to the best of our knowl- 
edge, has never before been studied. 

Concise samples are never worse than traditional samples, and 
can be exponentially or more better depending on the data distri- 
bution. We quantify their advantages over traditional samples in 
terms of the number of additional sample points for the same foot- 
print, and hence in providing more accurate query answers. 

Since the number of sample points provided by a concise sam- 
ple depends on the data distribution, the problem of maintaining a 

2Vanous synopses can be swapped in and out of memory as needed. For per- 
sistence and recovery. combinations of snapshots and/or logs can be stored on disk; 
alternatively, the synopsis can often be recomputed in one pass over the base data. 
Such dtscusstons are beyond the scope of this paper. 

3We assume throughout this paper that values and counts use one “word” of mem- 
ory each. In general, variable-length encoding could be used for the counts, so that 
only /lg ~1 bits are needed to store s as a count: this reduces the footprint but com- 
plicates the memory management. 

1.2 Hot list queries 

We consider an application of concise and counting samples to the 
problem of providing fast (approximate) answers to hot list queries. 
Specifically, we provide, to a certain accuracy, an ordered set of 
(value, count) pairs for the most frequently occurring “values” in a 
data set, in potentially orders of magnitude smaller footprint than 
needed to maintain the counts for all values. An example hot list 
is the top selling items in a database of sales transactions. In var- 
ious contexts, hot lists of m pairs are denoted as high-biased his- 
tograms [IC93] of m + 1 buckets, the first m mode statistics, or 
the m largest itemsets [AS94]. Hot lists can be maintained on sin- 
gleton values, pairs of values, triples, etc.; e.g., they can be main- 
tained on Ic-itemsets for any specified k, and used to produce asso- 
ciation rules [AS94, BMUT97]. Hot lists capture the most skewed 
(i.e., popular) values in a relation, and hence have been shown to 
be quite useful for estimating predicate selectivities and join sizes 
(see [Ioa93, IC93, IP95]). In a mapping of values to parallel pro- 
cessors or disks, the most skewed values limit the number of pro- 
cessors or disks for which good load balance can be obtained. Hot 
lists are also quite useful in data mining contexts for real-time fraud 
detection in telecommunications traffic [Pre97], and in fact an early 
version of our algorithm described below has been in use in such 
contexts for over a year. 

Note that the difficulty in incremental maintenance of hot lists 
is in detecting when itemsets that were small become large due to a 
shift in the distribution of the newer data. Such detection is difficult 
since no information is maintained on small itemsets, in order to 
remain within the footprint bound, and we do not access the base 
data. 

Our solution can be viewed as using a probabilistic counting 
scheme to identify newly-popular itemsets: If 7 is the estimated 
itemset count of the smallest itemset in the hot list, then we add 
each new item with probability l/r. Thus, although we cannot af- 
ford to maintain counts that will detect when a newly-popular item- 
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set has now occurred r or more times, we probabilistically expect 
to have r occurrences of the itemset before we (tentatively) add the 
itemset to the hot list. 

We present an algorithm based on concise samples and one 
based on counting samples. The former has lower overheads but 
the latter is more accurate. We provide accuracy guarantees for the 
two methods, and experimental results demonstrating their (often 
large) advantage over using a traditional random sample. Our algo- 
rithms maintain their accuracy in the presence of ongoing insertions 
to the data warehouse. 

This work is part of the Approximate Query Answering (AQUA) 
project at Bell Labs. Further details on the Aqua project can be 
found in [GMP97a, GPAf98]. 

Outline. Section 2 discusses previous related work. Concise sam- 
ples are studied in Section 3, and counting samples are studied in 
Section 4. Finally, in Section 5, we describe their application to hot 
list queries. 

2 Previous related work 

Hellerstein, Haas, and Wang [HHW97] proposed a framework for 
approximate answers of aggregation queries called online aggrega- 
tion, in which the base data is scanned in a random order at query 
time and the approximate answer for an aggregation query is up- 
dated as the scan proceeds. A graphical display depicts the answer 
and a (decreasing) confidence interval as the scan proceeds, so that 
the user may stop the process at any time. Our techniques do not 
provide such continuously-refined approximations; instead we pro- 
vide a single discrete step of approximation. Moreover, we do not 
provide special treatment for small sets in group-by operations as 
outlined by Hellerstein et al. Furthermore, since our synopses are 
precomputed, we must know in advance what are the attribute(s) of 
interest; online aggregation does not require such advance knowl- 
edge (except for its group-by treatment). Finally, we do not con- 
sider all types of aggregation queries, and instead study sampling- 
based summary statistics which can be applied to give sampling- 
based approximate answers. There are two main advantages of our 
approach. First is the response time: our approach is many orders 
of magnitude faster since we provide an approximate answer with- 
out accessing the base data. Ours may respond without a single 
disk access, as compared with the many disk accesses performed 
by their approach. Second, we do not require that data be read in 
a random order in order to obtain provable guarantees on the accu- 
racy. 

Other systems support limited on-line aggregation features; e.g., 
the Red Brick system supports running count, average, and sum 
(see [HHW97]). 

There have been several query processors designed to provide 
approximate answers to set-valued queries (e.g., see [VL93] and the 
references therein). These operate on the base data at query time 
and typically define an approximate answer for set-valued queries 
to be subsets and supersets that converge to the exact answer. There 
have also been recent works on “fast-first” query processing, whose 
goal is to quickly provide a few tuples of the query answer. Bayardo 
and Miranker [BM96] devised techniques for optimizing and exe- 
cuting queries using pipelined, nested-loops joins in order to mini- 
mize the latency until the first answer is produced. The Oracle Rdb 
system [AZ961 provides support for running multiple query plans 
simultaneously, in order to provide for fast-first query processing. 

Barbara et al. [BDFf97] presented a survey of data reduc- 
tion techniques, including sampling-based techniques; these can be 
used for a variety of purposes, including providing approximate 
query answers. Olken and Rotem [OR921 presented techniques for 
maintaining random sample views. In [GMP97b], we advocated 
the use of a bucking sump/e, a random sample of a relation that is 

kept up-to-date, and showed how it can be used for fast incremental 
maintenance of equi-depth and Compressed histograms. A concise 
sample could be used as a backing sample, for more sample points 
for the same footprint. 

Matias etul. [MVN93, MVY94, MSY96] proposed and studied 
upproximute duta structures that provide fast approximate answers. 
These data structures have linear space footprints. 

A number of probabilistic techniques have been previously pro- 
posed for various counting problems. Morris [Mor78] (see also 
[Fla85], [HK95]) showed how to approximate the sum of a set of 
%L values in [l..7n] using only O(lgIg7n + lglgn) bits of mem- 
ory. Flajolet and Martin [FM83, FM851 designed an algorithm 
for approximating the number of distinct values in a relation in a 
single pass through the data and using only O(lg n) bits of mem- 
ory. Other algorithms for approximating the number of distinct 
values in a relation include [WVZT90, HNSS95]. Alon, Matias 
and Szegedy [AMS96] developed sublinear space randomized al- 
gorithms for approximating various frequency moments, as well as 
tight bounds on the minimum possible memory required to approx- 
imate such frequency moments. Probabilistic techniques for fast 
parallel estimation of the size of a set were studied in [Mat92]. 

None of this previous work considers concise or counting sam- 
ples. 

3 Concise samples 

Consider a relation R with R tuples and an attribute A. Our goal is 
to obtain a uniform random sample of R.A, i.e., the values of A for 
a random subset of the tuples in R.4 

Since a concise sample represents sample points occurring more 
than once as (value, count) pairs, the true sample size may be much 
larger than its footprint (it is never smaller). 

Definition2 Let S = {(VI, cl), , (v,, cJ),vJ+~, ,v(} be u 
concise sample. Then sample-size(S) = e - j + cf=, cl, and 
footprint(S) = e + j. 

A concise sample S of R.A is a uniform random sample of size 
sample-size(S), and hence can be used as a uniform random sample 
in any sampling-based technique for providing approximate query 
answers. 

Note that if there are at most m/2 distinct values for R.A, 
then a concise sample of sample-size n has a footprint at most 
m (i.e., in this case, the concise sample is the exact histogram of 
(value, count) pairs for R.A). Thus, the sample-size of a concise 
sample may be arbitrarily larger than its footprint: 

Lemma 1 For any footprint m > 2, there exists data sets for 
which the sample-size of a concise sample is n/m times larger than 
its footprint, where n is the size of the datu set. 

Since the sample-size of a traditional sample equals its foot- 
print, Lemma 1 implies that for such data sets, the concise sample 
has n/m times as many sample points as a traditional sample of 
the same footprint. 

Offline/static computation. We first describe an algorithm for 
extracting a concise sample of footprint 711 from a static relation 
residing on disk. First, repeat 71x times: select a random tuple 
from the relation (this typically takes multiple disk reads per tu- 
ple [ORX9, Ant92]) and extract its value for attribute A. Next, 
semi-sort the set of values, and replace every value occurring multi- 
ple times with a (value, count) pair. Then, continue to sample until 
either adding the sample point would increase the concise sample 

4For simplicity, we describe our algorithms here and in the remainder of the paper 
in terms of a single attnbute. although the approaches apply equally well to pairs of 

attnbures, etc 
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footprint to m + 1 (in which case this last attribute value is ig- 
nored) or n samples have been taken. For each new value sampled, 
look-up to see if it is already in the concise sample and then either 
add a new singleton value, convert a singleton to a (value, count) 
pair, or increment the count for a pair. To minimize the cost, sam- 
ple points can be taken in batches and stored temporarily in the 
working space memory and a look-up hash table can be constructed 
to enable constant-time look-ups; once the concise sample is con- 
structed, only the concise sample itself is retained. If m’ sample 
points are selected in all (i.e., the sample-size is m’), the cost is 
O(m’) disk accesses. The incremental approach WC describe next 
requires no disk accesses, given the set-up depicted in Figure 2. In 
general, it can also be used to compute a concise sample in one 
sequential pass over a relation. 

3.1 Incremental maintenance of concise samples 

We present a fast algorithm for maintaining a concise sample within 
a given footprint bound as new data is inserted into the data ware- 
house. Since the number of sample points provided by a concise 
sample depends on the data distribution, the problem of maintain- 
ing a concise sample as new data arrives is more difficult than 
with traditional samples. The reservoir sampling algorithm of Vit- 
ter [Vit85], that can be used to maintain a traditional sample in the 
presence of insertions of new data (see [GMP97b] for extensions 
to handle deletions), relies heavily on the fact that we know in ad- 
vance the sample-size (which, for traditional samples, equals the 
footprint size). With concise samples, the sample-size depends on 
the data distribution to date, and any changes in the data distribu- 
tion must be reflected in the sampling frequency. 

Our maintenance algorithm is as follows. We set up an entry 
threshold T (initially I) for new tuples to be selected for the sample. 
Let S be the current concise sample and consider a new tuple t. 
With probability l/r, we add t.A to S. We do a look-up on t.A in 
S. If it is represented by a pair, we increment its count. Otherwise, 
if t.A is a singleton in S, we create a pair, or if it is not in S, we 
create a singleton. In these latter two cases we have increased the 
footprint by I, so if the footprint for S was already equal to the 
prespecified footprint bound, then we need to evict existing sample 
points to create room. 

In order to create room, we raise the threshold to some 7’ and 
then subject each sample point in S to this higher threshold. Specif- 
ically, each of the sample-size(S) sample points is evicted with 
probability r/r’. We expect to have sample-size(S) (T/T’) sam- 
ple points evicted. Note that the footprint is only decreased when a 
(value, count) pair reverts to a singleton or when a value is removed 
altogether. If the footprint has not decreased, we raise the threshold 
and try again. Subsequent inserts are selected for the sample with 
probability l/r’. 

Theorem 2 For any sequence ef insertions, the above algorithm 
maintains a concise sample. 

ProoJ: Let T be the current threshold. We maintain the invariant 
that each tuple in the relation has been treated as if the threshold 
were always 7. The crux of the proof is to show that this invari- 
ant is maintained when the threshold is raised to T’. Each of the 
sample-size(S) sample points is evicted with probability r/r’. If it 
was not in S prior to creating room, then by the inductive invariant, 
a coin with heads probability l/r was flipped and failed to come 
up heads for this tuple. Thus the same probabilistic event would 
fail to come up heads with the new, stricter coin (with heads prob- 
ability only l/7’). If it was in S prior to creating room, then by 
the inductive invariant, a coin with heads probability l/r came up 
heads. Since (l/r) (T/T’) = (l/r’), the result is that the tuple is 
in the sample with probability I/T’. Thus the inductive invariant is 
indeed maintained. . 

The algorithm maintains a concise sample regardless of the se- 
quence of increasing thresholds used. Thus, there is complete flexi- 
bility in deciding, when raising the threshold, what the new thresh- 
old should be. A large raise may evict more than is needed to reduce 
the sample footprint below its upper bound, resulting in a smaller 
sample-size than there would be if the sample footprint matches 
the upper bound. On the other hand, evicting more than is needed 
creates room for subsequent additions to the concise sample, so the 
procedure for creating room runs less frequently. A small raise also 
increases the likelihood that the footprint will not decrease at all, 
and the procedure will need to be repeated with a higher threshold. 

For simplicity in the experiments reported in Section 3.3, we 
raised the threshold by 10% each time. Note that in general, one can 
improve threshold selection at a cost of a more elaborate algorithm, 
e.g., by using binary search to find a threshold that will create the 
desired decrease in the footprint or by setting the threshold so that 
(1 - r/7’) times the number of singletons is a lower bound on the 
desired decrease in the footprint. 

Note that instead of flipping a coin for each insert into the data 
warehouse, we can flip a coin that determines how many such in- 
serts can be skipped before the next insert that must be placed in the 
sample (as in Vitter’s reservoir sampling Algorithm X [Vit85]): the 
probability of skipping over exactly i elements is (1 - l/~)~. (l/r). 
As T gets large, this results in a significant savings in the number 
of coin flips and hence the update time. Likewise, since the prob- 
ability of evicting a sample point is typically small (i.e., r’/r is a 
small constant), we can save on coin flips and decrease the update 
time by using a similar approach when evicting. 

Raising a threshold costs O(m’), where m’ is the sample-size 
of the concise sample before the threshold was raised. For the case 
where the threshold is raised by a constant factor each time, we ex- 
pcct there to be a constant number of coin tosses resulting in sample 
points being retained for each sample point evicted. Thus we can 
amortize the retained against the evicted, and we can amortize the 
evicted against their insertion into the sample (each sample point 
is evicted only once). It follows that even taking into account the 
time for each threshold raise, we have an 0( 1) amortized expected 
update time per insert, regardless of the data distribution. 

3.2 Quantifying the sample-size advantage of concise sam- 
ples 

The expected sample-size increases with the skew in the data. By 
Lemma 1, the advantage is unbounded for certain distributions. We 
show next that for exponential distributions, the advantage is expo- 
nential: 

Theorem 3 Consider the family of exponential distributions: for 
i = 1,2,. ., Pr(v = i) = CY-%(Q - l), for (Y > 1. For any 
footprint m > 2. the expected sample-size of a concise sample 
with footprint m is at least cTL12. 

Prooj The expected sample-size can be lower bounded by the 
expected number of randomly selected tuples before the first tuple 
whose attribute value v is greater than m/2. (When all values are at 
most m/2 then we can fit each value and its count, if any, within the 
footprint.) The probability of selecting a value greater than m/2 is 

2 cy--p(Ly - 1) = (y-m’2 , 
1=77X/2+1 

so the expected number of tuples selected before such an event oc- 
curs is C/a. . 

Next, we evaluate the expected gain in using a concise sample 
over a traditional sample for arbitrary data sets. The estimate is 
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given in terms of the frequency moment Fk, for Ic 2 2, of the 
data set, defined as Fk = cj n,k, where j is taken over the values 
represented in the set and n3 is the number of set elements of value 

Theorem 4 For any data set, when using a concise sample S with 
sample-size m, the expected gain is 

E[m - number of distinct values in S] = 2(--I)’ y 2 

k=2 0 

ProoJ: Let p, = nj/n be the probability that an item selected at 
random from the set is of value j. Let X, be an indicator random 
variable so that X, = 1 if the ith item selected to be in the tradi- 
tional sample has a value not represented as yet in the sam 

P 
le, and 

Xi = 0 otherwise. Then, Pr(X, = 1) = c, p, (l--p,)‘- , where 
j is taken over the values represented in the set (since X, = 1 if 
some value j is selected so that it has not been selected in any 
of the first i - 1 steps). Clearly, X = c%, Xi is the number 
of distinct values in the traditional sample. We can now evaluate 
E[number of distinct values] as 

E[X] = 2 E[X,] = 2 cPj(l -Pj)i-’ 
i=l i=l j 

= CPj 
1 - (1 - pj)" 

l- (1 -P3) =c (1 - (1 -Pj)“) 
j 3 

. 
Note that the footprint for a concise sample is at most twice the 
number of distinct values. 

3.3 Experimental evaluation 

We conducted a number of experiments evaluating the gain in the 
sample-size of concise samples over traditional samples. In each 
experiment, 500K new values were inserted into an initially empty 
data warehouse. Since the exact attribute values do not effect the 
relative quality of our techniques, we chose the integer value do- 
main from [1, D], where D, the potential number of distinct values, 
was varied from 500 to 50K. We used a large variety of Zipf data 
distributions. The zipf parameter was varied from 0 to 3 in incre- 
ments of 0.25; this varies the skew from nonexistent (the case of 
zipf parameter = 0 is the uniform distribution) to quite large. Most 
of the experiments restricted each sample to footprint m = 1000. 
However, to stress the algorithms, we also considered footprint 
m = 100. Recall that if the ratio D/m is I: .5, then all values 
inserted into the warehouse can be maintained in the concise sam- 
ple. We consider D/m = 5, 50, and 500. Each data point plotted 
is the average of 5 trials. 

Each experiment compares the sample-size of the samples pro- 
duced by three algorithms, with the same footprint m. 

l traditional: a random sample of size m is maintained using 
reservoir sampling. 

l concise online; the algorithm described in Section 3. I. 

l concise offline: the offline/static algorithm described at the 
beginning of Section 3. 

The offline algorithm is plotted to show the intrinsic sample-size 
of concise samples for the given distribution. The gap between the 
online and the offline is the penalty our online algorithm pays in 
terms of loss in sample-size due to suboptimal adjustments in the 
threshold. In the experiments plotted, whenever the threshold is 
raised, the new threshold is set to Il.1 x ~1, where T is the current 
threshold. 

Figure 3 depicts the sample-size as a function of the zipf pa- 
rameter for varying footprints and D/m ratios. First, in (a) and 
(b), we compare footprint 100 and 1000, respectively, for the same 
data sets. ‘The sample-size for traditional samples, which equals the 
footprint, is so small that it is hidden by the x-axis in these plots. 
At the scale shown in these two plots, the other experiments we 
performed for footprint 100 and IO00 gave nearly identical results. 
These results show that for high skew the sample-size for concise 
samples grows up to 3 orders of magnitude larger than for tradi- 
tional samples, as anticipated. Also, the online algorithm is within 
15% of the offline algorithm for footprint 1000 and within 28% 
when constrained to use only footprint 100. 

Second, in (c) and (d), we show representative plots of our ex- 
periments depicting how the gain in sample-size is effected by the 
D/m ratio. In these plots, we compare D/m = 50 and D/m = 5, 
respectively, for the same footprint 1000. We have truncated these 
plots at zipf parameter 1.5, to permit a more closer examination of 
the sample-size gains for zipf parameters near 1.0. (In fact, Fig- 
ure 3(d) is simply a more detailed look at the data points in Fig- 
ure 3(b) up to zipf parameter 1.5.) 

Recall that for D/m = .5, the sample-size for concise samples 
is a factor of n/m larger than that for traditional samples, regard- 
less of the zipf parameter. These figures show that for D/m = 5, 
there are no noticeable gains in sample-size for concise samples 
until the zipf parameter is > 0.5, and for D/m = 50, there are no 
noticeable gains until the zipf parameter is > 0.75. The improve- 
ments with smaller D/m arise since m/D is the fraction of the 
distinct values for which counts can be maintained. 

Update time overheads. There are two main sources of update 
time overheads associated with our (online) concise sampling al- 
gorithm. First, there are the coin flips that must be performed to 
decide which inserts are added to the concise sample and to evict 
values from the concise sample when the threshold is raised. Recall 
that we use the technique in [Vit85] that minimizes the number of 
coin flips by computing, for a given coin bias, how many flips of the 
coin until the next heads (or next tails, depending on which type of 
Rip requires an action to be performed by the algorithm). Since the 
algorithm does work only when we have such a coin flip, the num- 
ber of coin Rips is a good measure of the update time overheads. 
For each of the data distribution and footprint scenarios presented 
in Figure 3, we report in Table 1 the average coin flips for each new 
insert to the data warehouse. 

Second, there are the lookups into the current concise sample 
to see if a value is already presect in the sample. The coin flip 
measure does not account for the work done in initially populating 
the concise sample: on start-up, the algorithm places every insert 
into the concise sample until it has exceeded its footprint. A lookup 
is performed for each of these, so the lookup measure accounts for 
this cost, as well as the lookups done when an insert is selected 
for the concise sample due to a coin flip. For each of the data 
distribution and footprint scenarios presented in Figure 3, we report 
in Table 1 the number of lookups per insert to the data warehouse. 

As can be seen from the table, the overheads are quite small. 
The overheads arc smallest for small zipf parameters. There is 
very little dependence on the D/m ratio. An order of magnitude 
decrease in the footprint results in roughly an order of magnitude 
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Table 1: Coin flips and lookups per insert for the experiments 
in Figure 3. These are abstract measures of the computation 
costs: the number of instructions executed by the algorithm is 
directly proportional to the number of coin flips and lookups, 
and is dominated by these two factors. 

zipf Fig. 3(a) 
param flips lookup! 
0.00 0.003 0.002 
0.25 0.003 0.002 
0.50 0.003 0.002 
0.75 0.003 0.002 
1 .oo 0.004 0.002 
I .25 0.006 0.003 
1.50 0.01 1 0.007 
1.75 0.023 0.013 
2.00 0.045 0.027 
2.25 0.097 0.061 
2.50 0.189 0.125 
2.75 0.363 0.271 
3.00 0.544 0.482 

Figs. 3(b)(d) 
flips lookup> 

0.023 0.013 
0.023 0.013 
0.024 0.014 
0.027 0.016 
0.041 0.024 
0.079 0.049 
0.188 0.124 
0.426 0.333 
0.559 0.744 
0.000 1.000 
0.000 1.000 
0.000 1 .ooo 
0.000 1.000 

Fig. 3(c) 
flips lookup! 

0.023 0.013 
0.023 0.013 
0.023 0.013 
0.024 0.014 
0.032 0.019 
0.066 0.040 
0.170 0.111 
0.406 0.306 
0.645 0.726 
0.000 1.000 
0.000 1.000 
0.000 1 .ooo 
0.000 1 .ooo 

decrease in the overheads for zipf parameters below 2. For zipf pa- 
rameters above 2, all values fit within the footprint 1000, so there is 
exactly one lookup and zero coin flips per insert to the data ware- 
house. Each of these results can be understood by observing that 
for a given threshold, the expected number of Rips and lookups is 
inversely proportional to the threshold. Moreover, the expectation 
of the sample-size is equal to the number of inserts divided by the 
current threshold. Thus the flips and lookups per insert increases 
with increasing sample-size (except when the flips drop to zero as 
discussed above). 

Note that despite the procedure to revisit sample points and per- 
form coin flips whenever the threshold is raised, the number of flips 
per insert is at worst 0.645, and often orders of magnitude smaller. 
This is due to a combination of two factors: if the threshold is raised 
a large amount, then the procedure is done less often, and if it is 
raised only a small amount, then very few flips are needed in the 
procedure (since we are using [Vit85]). 

4 Counting samples 

In this section, we define counting samples, present an algorithm 
for their incremental maintenance, and provide analytical guaran- 
tees on their performance. 

Consider a relation R with n tuples and an attribute A. Count- 
ing samples are a variation on concise samples in which the counts 
are used to keep track of all occurrences of a value inserted into the 
relation since the value was selected for the sample.5 Their defini- 
tion is motivated by a sampling&counting process of this type from 
a static data warehouse: 

Definition 3 A counting sample for R.A with threshold T is any 
subset of R.A obtained as follows: 

1. For each value v occurring c > 0 times in R, weflir) a coin 
with probability 1 /r of heads until the first heads, up to at 
most c coin tosses in all; lfthe ich coin toss is heads, then v 
occurs c - i + 1 times in the subset, else u is not in the subset. 

51n other words. since we have set aside a memory word for a count, why nor count 
the subsequent occurrences exactly? 

2. Each value v occurring c > 1 times in the subset is repre- 
sented as a pair (v, c), and each value v occurring exactly 
once is represented as a singleton v. 

Obtaining a concise sample from a counting sample. Although 
counting samples are not uniform random samples of the base data, 
they can be used to obtain such a sample without any further ac- 
cess to the base data. Specifically, a concise sample can be ob- 
tained from a counting sample by considering each pair (?I, c) in 
the counting sample in turn, and flipping a coin with probability 
l/r of heads c - 1 times and reducing the count by the number of 
tails. The footprint decreases by one for each pair for which all its 
coins are tails. 

4.1 Incremental maintenance of counting samples 

Our incremental maintenance algorithm is as follows. We set up 
an entry threshold T (initially 1) for new tuples to be selected for 
the counting sample. Let S be the current counting sample and 
consider a new tuple t. We do a look-up on t.A in S. If t.A is 
represented by a (value, count) pair in S, we increment its count. 
If t.A is a singleton in S, we create a pair. Otherwise, t.A is not in 
S and we add it to S with probability l/7. 

If the footprint for S now exceeds the prespecified footprint 
bound, then we need to evict existing values to create room. As 
with concise samples, we raise the threshold to some 7’. and then 
subject each value in S to this higher threshold. The process is 
slightly different for counting samples, since the counts are differ- 
ent. 

For each value in the counting sample, we flip a biased coin, 
decrementing its observed count on each flip of tails until either 
the count reaches zero or a heads is flipped. The first coin toss 
has probability of heads r/r’, and each subsequent coin toss has 
probability of heads l/7’. Values with count zero are removed from 
the counting sample; other values remain in the counting sample 
with their (typically reduced) counts. (The overall number of coin 
tosses can be reduced to a constant per value using an approach 
similar to that described for concise samples, since we stop at the 
first heads (if any) for each value.) Thus raising a threshold costs 
O(m), where m is the number of distinct values in the counting 
sample (which is at most the footprint). If the threshold is raised 
such a constant factor each time, we expect there to be a constant 
number of sample points removed for each sample point flipping 
a heads. Thus as in concise sampling, it follows that we have a 
constant amortized expected update time per data warehouse insert, 
regardless of the data distribution. 

An advantage of counting samples over concise samples is that 
we can maintain counting samples in the presence of deletions to 
the data warehouse. Maintaining concise samples in the presence 
of such deletions is difficult: If we fail to delete a sample point in 
response to the delete operation, then we risk having the sample 
fail to be a subset of the data set. On the other hand, if we always 
delete a sample point, then the sample may no longer be a random 
sample of the data set. With counting samples, we do not have this 
difficulty. For a delete of a value v, we look-up to see if v is in the 
counting sample (using a hash function), and decrement its count if 
it is. Thus we have O(1) expected update time for deletions to the 
data warehouse. 

Theorem 5 For any sequence of insertions and deletions, the 
above algorithm maintains a counting sample. 

ProoJ: We must show that properties 1 and 2 of the definition 
of a counting sample are preserved when an insert occurs, a delete 
occurs, or the threshold is raised. 

An insert of a value v increases by one its count in R. If the 
value is in the counting sample, then one of its coin flips was heads, 
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and we increment the count in the counting sample. Otherwise, 
none of its coin flips to date were heads, and the algorithm flips 
a coin with the appropriate probability. All other values are un- 
touched, so property I is preserved. 

A delete of a value II decreases by one its count in R. If the 
value is in the counting sample, then the algorithm decrements the 
count (which may drop the count to 0). Otherwise, c coin flips 
occurred to date and were tails, so the first c - 1 were also tails, 
and the value remains omitted from the counting sample. All other 
values are untouched, so property 1 is preserved. 

Consider raising the threshold from T to T’, and let w be a value 
occurring c > 0 times in R. If 7) is not in the counting sample, there 
were c coin flips with heads probability l/r that came up tails. 
Thus the same c probabilistic events would fail to come up heads 
with the new, stricter coin (with heads probability only l/r’). If o 
is in the counting sample with count c’, then there were c - c’ coin 
flips with heads probability l/r that came up tails, and these same 
probabilistic events would come up tails with the stricter coin. This 
was followed by a coin flip with heads probability l/r that came up 
heads, and the algorithm Hips a coin with heads probability r/r’, 
so that the result is the same as a coin Rip with probability (l/r) 
(T/T’) = (l/r’). If this coin comes up tails, then subsequent 
coin Rips for this value have heads probability l/7’. In this way, 
property 1 is preserved for all values. 

In all cases, property 2 is immediate, and the theorem is proved. 
. 

Note that although both concise samples and counting samples 
have O(1) amortized update times, counting samples are slower 
to update than concise samples, since, unlike concise sample, they 
perform a look-up (into the counting sample) at each update to the 
data warehouse. 

Theorem 6 Let R be an arbitrary relation, and let 7 be the current 
threshold for a counting sumple S. (i) Any valrde 2, that occurs at 
least r times in R is expected to be in S. (ii) Any value u that 
occurs fv times in R will be in S with probability 1 - (1 - i)fU. 
(iii) For all CY > 1, if fu > cy T, then with probability 2 1 - epa, 
the value will be in S and its count will be at least fv - m-. 

Prooj Claims (i) and (ii) follow immediately from property 1 of 
counting samples. As for (iii), Pr(v E S with count 2 fv --QT.) = 
1 - Pr(the first cry coin tosses for u are all tails) = 1 - (1 - :)ar 
2 1 - e-a. . 

5 Hot list queries 

In this section, we present new algorithms for providing approxi- 
mate answers to hot list queries. Recall that hot list queries request 
an ordered set of (value, count) pairs for the k most frequently oc- 
curring data values, for some k. 

5.1 Algorithms 

We present four algorithms for providing fast approximate answers 
to hot list queries for a relation R with n tuples, based on incre- 
mentally maintained synopses with footprint bound m, m 2 2k. 

Using traditional samples. A traditional sample of size m can be 
maintained using Vitter’s reservoir sampling algorithm [Vit85]. To 
report an approximate hot list, we first semi-sort by value, and re- 
place every sample point occurring multiple times by a (value, count) 
pair. We then compute the k’th largest count ck, and report all pairs 
with counts at least max(ck, 6). scaling the counts by n/m, where 
6 is a confidence threshold (discussed below). Note that there may 
be fcwcr than k distinct values in the sample, so fewer than k pairs 

may bc reported (even when using the minimal confidence thresh- 
old 6 = 1). The response time for reporting is O(m). 

Using concise samples. A concise sample of footprint m can be 
maintained using the algorithm of Section 3. To report an approx- 
imate hot list, we first compute the k’th largest count ck (using a 
linear time selection algorithm). We report all pairs with counts at 
least max(ck, 6), scaling the counts by n/m’, where b is a confi- 
dence threshold and m’ is the sample-size of the concise sample. 
Note that when b = 1, we will report k pairs, but with larger 6, 
fewer than k may be reported. The response time for reporting is 
O(,m). Alternatively, we can trade-off update time vs. response 
time by keeping the concise sample sorted by counts. This allows 
for reporting in O(k) time. 

Using counting samples. A counting sample of footprint m can 
be maintained using the algorithm of Section 4. To report an ap- 
proximate hot list, we use the same algorithm as described above 
for using concise samples, except that instead of scaling the counts, 
we add to the counts a compensation, E, determined by the analysis 
below. This augmentation of the counts serves to compensate for 
inserts of a value into the data warehouse prior to the successful 
coin toss that placed it in the counting sample. Let 7 be the current 
threshold. We report all pairs with counts at least max(ck, T - e). 
Given the conversion of counting samples into concise samples 
discussedA in Section 4, this can be seen to be similar to taking 
6 = 2 - c. (Using the value of E determined below, 6 = 1.582.) 

Full histogram on disk. The last algorithm maintains a full his- 
togram on disk, i.e.. (value, count) pairs for all distinct values in 
R, with a copy of the top m/2 pairs stored as a synopsis within the 
approximate answer engine. This enables exact answers to hot list 
queries. The main drawback of this approach is that each update to 
R requires a separate disk access to update the histogram. More- 
over, it incurs a (typically large) disk footprint that may be on the 
order of n. Thus this approach is considered only as a baseline for 
our accuracy comparisons. 

5.2 Analysis 

The confidence threshold 6. The threshold 6 is used to bound the 
error. The larger the S, the greater the probability that for reported 
values, the counts are quite accurate. On the other hand, the larger 
the 6 the greater the probability that fewer than k pairs will be re- 
ported. For its use with traditional samples and concise samples, 
6 must be an integer (unlike with counting samples, where it need 
not be). We have found that 6 = 3 is a good choice, and use that 
value in our experiments in Section 5.3. 

To study the effect of 6 on the accuracy, we consider in what 
follows hot list queries of the form “report all pairs that can be re- 
ported with confidence”. That is, we report all values occurring at 
least 6 times in the traditional or concise sample. The accuracy of 
the approximate hot list reported using concise sampling is sum- 
marized in the following theorem: 

Theorem 7 Let R be (In urbitrury relation of size n, und let T be 
the current threshold@ a concise sample S. Then: 

I. Frequent values will be reported: For any E, 0 < E < 1, 
uny value u with fu > rSl(1 - E) will be reported with 
probability at leust 1 - e -fic’/@(l-f)), As an example, when 
E = 112, the reporting probability is 1 - ee614. 

2. Infrequent values will not be reported: For any E, 0 < F < 1. 
any value o with fL, _< rS/(l + c) will be reported with 
probuhilit?, less than t:- sf2/(3( 1 ‘*)). As un example, when 
c z 1, the (false) reporting probability is less than e?/‘. 
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ProojY These are shown by tirst reducing the problem to the 
cast where the threshold has always been 7, and then applying a 
straightforward analysis using Chernoff bounds. . 

Determination of P. The value of ?, used in reporting approxi- 
mate hot lists using counting samples, is determined analytically as 
follows. Consider a value w in the counting sample S, with count 
cv 1 and let fV be the number of times the value occurs in R. Let 
Est, = cV + ?. We will select C so that Est, will be close to 
fV. In particular, WC want E (Est,It, is in S) = fi,. We have that 
E (Est,,lu is in S) = t + c;“‘,(j,, - i + 1) Pr(v was inserted 
at the ith occurrence ) 11 is in S) which after a lengthy calculation 

equals e + fV - 7 + 1 + &, where 4 = 1 - l/~. Thus we 

riced 2 z ?- - 1 - fi. ,$;h:“ii,;r =T-1-k. Since2 

depends on f,,, which WC do not know, we select I? so as to compen- 
sate exactly when f,, = T (in this way, i? is the most accurate when 
it matters most: smaller f,, should not be reported and the value of 
? is less important for larger f?,). Thus ? = 7 (1 - A) - 1 = 

T(S)-1 z ,418 T - 1 

Theorem 8 Let R he an arbitrary relation, and let T he the current 
threshold fur a counting sumple S. (i) Any value u that occurs 
fv < ,582 T times in R will nob be reported. (ii) For all Q > 1, 
any value II that occurs f,, > N T times in R,, will be reported 
with probabilitl)l 2 1 - e--(n--.582). (iii) tj’v is in S, its augmented 
count will be in [fv - p r , fv + ,418 T - l] with probabilify 
> 1 - e--(D+.418),for all /? > 0. 

Proot The algorithm will fail to report v if its count is less than 
7 - i?, i.e. count 5 ,582~. Claim (i) follows. For the case where 
fv > ck.r, we have count 5 .582r if the first fv -.582~ coin tosses 
are all tails, which happens with probability (l- $)fu-~58zr, which 
is less than e-(fXJ’r-.582) 5 e --(“--.582). Claim (ii) follows. The 
augmented count is at most f,, + e. It is less than fu - ,O T if the 
unaugmented count is at most fv - (/I + ,418)~ which happens if 
the first (/3 + ,418)~ coin tosses are all tails, which happens with 
probability < e--(8+.418). Claim (iii) follows. . 

On reporting fewer than k values. Our algorithms report fewer 
than k values for certain data distributions. Alon ef al. [AMS96] 
showed that any randomized online algorithm for approximating 
the frequency of the mode of a given data set to within a constant 
factor (with probability > l/2) requires space linear in the number 
of distinct values D. This implies that even for k = 1, any algo- 
rithm for answering approximate hot list queries based on a synop- 
sis whose footprint is sublinear in D will fail to be accurate for ccr- 
tain data distributions. Thus in order to report only highly-accurate 
answers, it is inevitable that fewer than k values are reported for 
certain distributions. 

Note that the problematic data distributions are the nearly-uni- 
form ones with relatively small maximum frequency (this is the 
case in which the lower bound of Alon et al. is proved). Fortu- 
nately, it is the skewed distributions, not the nearly-uniform ones, 
that are of interest, and the algorithms report good results for skewed 
distributions. 

5.3 Experimental evaluation 

We conducted a number of experiments comparing the accuracy 
and overheads of the algorithms for approximate hot lists described 
in Section 5. I. In each experiment, 5OOK new values were inserted 
into an initially empty data warehouse. Since the exact attribute 
values do not effect the relative quality of the techniques, we chose 
the integer value domain from [l, D], where D was varied from 500 

to 50K. We used a variety of Zipf data distributions, focusing on 
the modest skew cases where the zipf parameter is I .O, I .25, or I .5. 
Each of the three approximation algorithms are provided the same 
footprint m. Most of the experiments studied the footprint m = 
1000 case. However, to stress the algorithms, we also considered 
footprint 7n = 100. Recall that if the ratio D/m is 5 .5, then all 
values inserted into the warehouse can be maintained in both the 
concise sample and the counting sample. As before, we consider 
D/m = 5.50, and 500. 

Only the points reported by each algorithm are plotted. For the 
algorithms using traditional samples or concise samples, we use a 
confidence threshold 6 = 3. Whenever the threshold is raised, the 
new threshold is set to Il.1 x ~1, where T is the current threshold. 
These values gave better results than other choices we tried. 

For the following explanation of the plots, we refer the reader 
to Figure 4. This plots the most frequent values in the data warc- 
house in order of nonincreasing counts, together with their counts. 
The x-axis depicts the rank of a value (the actual values are irrele- 
vant here); the y-axis depicts the count for the value with that rank. 
The k most frequent values are plotted, where k is the number of 
values whose frequency matches or exceeds the minimum reported 
count over the three approximation algorithms. Also plotted are 
values reported by one or more of the approximation algorithms 
that do not belong among the k most frequent values (to show false 
positives). These values arc tacked on at the right (after the short 
vertical line below the x-axis, e.g., between 22 and 23 in this fig- 
ure) in nonincreasing order of their actual frequency; the x-axis 
typically will not equal their rank since unreported values are not 
plotted, creating gaps in the ranks. The exact counts are plotted as 
histogram boxes. 

The values and (estimated) counts reported by the three approx- 
imation algorithms are plotted, one point per value reported. Any 
gap in the values reported by an algorithm represents a false nega- 
tive. For example, using traditional samples has false negatives for 
the values with rank 7 and 8. The difference between a reported 
count and the top of the histogram box is the error in the reported 
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Using traditional samples x 

** Data: 500000 values in [1,500] 
Zipf parameter 1.5 
** Footprint: 100 

100K - 

5 10 15 20 
most frequent values I 

Figure 4: Comparison of hot-list algorithms, depicting the fre- 
quency of the most frequent values as reported by the four 
algorithms. 

Figure 4 shows that even with a small footprint, good results are 
obtained by the algorithms using concise samples and using count- 
ing samples. Specifically, using counting samples accurately re- 
ported the I5 most frequent values, I8 of the first 20, and had only 
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two false positives (both of which were reported with a 5 37% 
overestimation in the counts). The count of the most frequent value 
was accurate to within .14%. Likewise, using concise samples did 
almost as well as using counting samples, and much better than 
using traditional samples. Using concise samples achieves better 
results than using traditional samples because the sample-size was 
over 3.8 times larger. Using counting samples achieves better re- 
sults than using concise samples because the error in the counts is 
only a one-time error arising prior to a value’s last tails flip with the 
final threshold. 

In order to depict plots from our experiments with footprint 
1000, we needed to truncate the y-axis to improve readability. All 
three approximation algorithms perform quite well at the handful 
of (the most frequent) values not shown due to this truncation”, so 
it is more revealing to focus on the rest of the plot. 

10000 
Using full histogram ----- 

Using traditional samples l 

8000 - 9 
** Data: 500000 values in [1 ,50000] 

Zipf parameter 1.25 
6000 l ” - Footprint: 1000 

Using traditional samples 

l * Data: 500000 values in [l SOOO] 
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n 
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‘OP 
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most frequent values others 

Figure 5: Counting vs. traditional on a less skewed distribution 
(zipf parameter 1 .O), using footprint 1000. 

Figure 5 compares using counting samples versus using tradi- 
tional samples on a less skewed distribution (zipf parameter equals 
1.0). With a traditional sample of size 1000, there are only a hand- 
ful of possible counts that can be reported, with each increment in 
the number of sample points for a value adding 500 to the reported 
count. This explains the horizontal rows of reported counts in the 
figure. As in the previous plot, using counting samples performed 
quite well, using concise samples (not shown to avoid cluttering 
the plot) performed not quite as well, and using traditional samples 
performed significantly worse. 

Finally, in Figure 6, we plot the accuracy of the three approxi- 
mation algorithms on an intermediate skewed distribution (zipf pa- 
rameter equals 1.25). This plot also depicts the case of a larger 
D/m ratio than the previous two plots. For readability, each algo- 
rithm has its own plot, and the histogram boxes for the exact counts 
have been replaced with a line connecting these counts. As above, 
using counting samples is more accurate than using concise sam- 
ples which is more accurate than using traditional samples. The 
concise sample-size is nearly 3.5 times larger than the traditional 
sample-size, leading to the differences between them shown in the 
plots. 

Table 2 reports on the overheads of each approximation al- 
gorithm in terms of the number of coin flips and the number of 
lookups for each new insert to the data warehouse. By these met- 
rics, using traditional samples is better than using concise samples 
is better than using counting samples, as anticipated. Also shown 
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Figure 6: Comparison of traditional, concise, and counting 
samples on a distribution with zipf parameter 1.25, using foot- 
print 1000. 

“For example, in Figure S, the reported COUPES for truncated values using concise 
samples had WC-16% error, using counting samples had I%-48 error, and using tra- 
ditional samples had X70-3 I70 error. 
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Table 2: Measured data for the hot-list algorithm experiments in Figures 4-6. 

Figure 4 flips lookups raises sample-size threshold reported 
Using concise samples 0.014 0.008 56 388 1283 18 

Using counting samples 0.006 1.000 60 n/a 1881 20 
Using traditional samples 0.003 0.000 n/a 100 n/a 9 

Figure 5 flips lookups raises sample-size threshold reported 
Using concise samples 0.040 0.024 40 1813 215 95 

Using counting samples 0.053 1.000 47 n/a 541 92 
Using traditional samples 0.025 0.000 n/a 1000 n/a 52 

Figures 6 flips lookups raises sample-size threshold reported 
Using concise samples 0.066 0.040 33 3498 140 108 

Using counting samples 0.046 1.000 38 nla 227 122 
Using traditional samples 0.025 0.000 n/a 1000 n/a 38 

are the number of threshold raises, the final sample-size, the fi- 
nal threshold, and the number of values reported. The number of 
raises and the final threshold are larger when using counting sam- 
ples than when using concise samples since the counting sample 
tends to hold fewer values: its counting of all subsequent occur- 
rences implies that most values in the sample are represented as 
(value, count) pairs and not as singletons. 

6 Conclusions 

Providing an immediate, approximate answer to a query whose ex- 
act answer takes many orders of magnitude longer to compute is 
an attractive option in a number of scenarios. We have presented 
a framework for an approximate query engine that observes new 
data as it arrives and maintains small synopses on that data. We 
have described metrics for evaluating such synopses. 

We introduce and study two new sampling-based synopses: con- 
cise samples and counting samples. We quantify their advantages 
in sample-size over traditional samples with the same footprint in 
the best case, in the general case, and in the case of exponential and 
zipf distributions. We present an algorithm for the fast incremental 
maintenance of concise samples regardless of the data distribution, 
and experimental evidence that the algorithm achieves a sample- 
size within I%-28% of that of recomputing the concise sample 
from scratch at each insert to the data warehouse. The overheads 
of the maintenance algorithm are shown to be quite small. For 
counting samples, we present an algorithm for the fast incremen- 
tal maintenance under both insertions and deletions, with provable 
guarantees regardless of the data distribution. Random samples are 
useful in a number of approximate query answers scenarios. The 
confidence for such an approximate answer increases with the size 
of the samples, so using concise or counting samples can signifi- 
cantly increase the confidence as compared with using traditional 
samples. 

Finally, we consider the problem of providing fast approximate 
answers to hot list queries. We present algorithms based on using 
traditional samples, concise samples, and counting samples. These 
are the first incremental algorithms for this problem; moreover, we 
provide analysis and experiments showing their effectiveness and 
overheads. Using counting samples is shown to be the most ac- 
curate, and far superior to using traditional samples; using con- 
cise samples falls in between: nearly matching counting samples 
at high skew but nearly matching traditional samples at very low 
skew. On the other hand, the overheads are the smallest using tra- 
ditional samples, and the largest using counting samples. We show 

both with analysis and experiments that the cost incurred when rais- 
ing a threshold can be amortized across the entire sequence of data 
warehouse updates. We believe that using concise samples may of- 
fer the best choice when considering both accuracy and overheads. 

In this paper, we have assumed a batch-like processing of data 
warehouse inserts, in which inserts and queries do not intermix (the 
common case in practice). To address the more general case (which 
may soon be the more common case), issues of concurrency bottle- 
necks need to be addressed. 

Future work is to explore the effectiveness of using concise 
samples and counting samples for other concrete approximate an- 
swer scenarios. More generally, the area of approximate query 
answers is in its infancy, and many new techniques are needed to 
make it an effective alternative option to traditional query answers. 
In [GPA+98], we present some recent progress towards developing 
an effective approximate query answering engine. 
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