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Abstract

Designing a new access method inside a commercial
DBMS is cumbersome and expensive. We propose a family of
metric access methods that are fast and easy to implement on
top of existing access methods, such as sequential scan, R-trees
and Slim-trees.

The idea is to elect a set of objects as foci, and gauge all
other object with their distances from this set.  We show how to
define the foci set cardinality, how to choose appropriate foci,
and how to perform range and nearest-neighbor queries using
them, without false dismissals.  The foci increase the pruning
of distance calculations during the query processing.
Furthermore we index the distances from each object to the
foci to reduce even triangular inequality comparisons.

Experiments on real and synthetic datasets show that our
methods match or outperform existing methods.  They are up
to 10 times faster, and perform up to 10 times fewer distance
calculations and disk accesses.  In addition, it scale up well,
exhibiting sub-linear performance with growing database size.

1. Introduction

The growth of multimedia applications in recent years has
pushed database management systems to support more diverse
and complex data, such as dynamic and static images, time
series, fingerprints, protein sequences, etc.  Usually, this sort of
data is searched by looking for information similar to that which
the user has at hand.  We assume that the dis-similarity (or
distance) function used in comparisons is a metric function (see
Section 2).  As the similarity evaluation of multimedia objects
can be expensive and time consuming, we consider the number
of distance calculations as a factor to be reduced. 

Our technique choose a number of objects from the dataset
as “foci”, from which distance calculations to answer queries
can be pruned.  We show that this technique can be used with
other existing indexing structures, improving their performance
in terms of distance calculations.  We call this “Omni-concept”,
because the foci can both be used as global reference points to
any object in the database, and be used to improve any underlay-
ing index structure.  Its use with an existing index structure
generates a new index structure, leading to a whole new class of
index methods, that we call the “Omni-family”.

This paper makes the following contributions:
1. It provides a complete and practical technique to reduce the

number of distance calculations needed to answer similarity
queries, using a set of a few selected objects from the dataset.
When the cost of distance calculation is high, this technique
gives good performance even if the query retrieves much
more than ten percent of the dataset.

2. It explains how to define an adequate number of objects to be
used as Omni-foci, with the best tradeoff between increasing
memory requirements and decreasing distance calculations.

3. It depicts an inexpensive algorithm to select adequate Omni-
foci.

4. It shows the results of applying the Omni-concept with se-
quential scan and R-trees, achieving up to ten times fewer
distance calculations, disk accesses and overall time.

The remainder of the paper is structured as follows.  The
next section summarizes some related concepts. Section 3
surveys the main current index structures and shows how they
use triangular inequality to increase performance. There is also
a description of the datasets used in our experiments.  Section 4
introduces the Omni-concept and presents both a way to choose
the number of foci and an algorithm to choose them.  Section 5
describes how to exploit the Omni-concept with existing access
methods, namely the sequential scan, B+-trees and R-trees.
Section 6 presents experiments showing the behavior of two
members of the Omni-family and a comparison with existing
access methods.  Section 7 gives the conclusions of this paper.

2. Background

In this section we present the basic definitions which delimit
the scope of this work.



Table 1 - Summary of symbols and definitions.
Symbols Definitions

S domain of objects

S set of objects in domain S
N number of objects in the dataset S

D2 correlation fractal dimension of the dataset S

sq a query object (or query center)

si, sj objects of S

rq radius of a range query

k the number of neighbors in a NN query

ö the Omni-foci base

fk a focus of S in ö

l number of foci in ö

d( ) distance function

dfk(si) distance from an object si to focus fk

2.1. Metric spaces and similarity queries

Definition 1 (metric distance function): Given a
set of objects S= {s1, s2, ..., sn} of a domain S, a func-
tion d() that has the following properties:
    1. Symmetry: d(s1,s2) = d(s2, s1)
    2. Non-negativity: 0<d(s1,s2) < 4, s1… s2 and
d(s1,s1)=0
    3. Triangle inequality: d(s1,s3) # d(s1,s2) + d(s2,s3)
is called a metric distance function. A metric space is a
pair M=<S, d()> which follows the aforementioned
properties.

Spatial datasets following an Lp-metric distance
function (such as Euclidean distances) are special cases of
metric spaces.  We considered two classes of similarity queries:
range queries and nearest neighbors queries, which are defined
as follows.

Definition 2 (Range query): Given a query object sq 0 S,
and a maximum search distance rq, the answer is the subset of
S such that Rquery(sq, rq)={ si | si 0S: d(si, sq)#rq}.

An example of a range query on a word dataset with the
LEdit distance function is: “Find the words that are within dis-
tance 3 from the word 'Germany' ”.

Definition 3 (Nearest Neighbor query): Given a query
object sq 0 S, the nearest neighbor is the unitary subset of S such
that NNquery(sq)={sn0S | œ si0S:d(sn, sq)#d(si, sq)}.

A common variation is the k-nearest neighbor query.  It
finds the k#N closest objects to sq in the dataset. An example of
a k-nearest neighbor query with k=5 is: “Select the 5 words
nearest to 'Germany' ”. 

 A property useful to decrease the number of distance
calculations is the triangular inequality.  Generically, a Metric
Access Method, MAM, divides the dataset into regions or nodes
and chooses strategic objects to be representatives for every
region.  The representatives, objects in their region and their
distances to the representatives are stored in the nodes. The
nodes are organized hierarchically forming a tree.  When a query
is issued, the query object is first compared with the representa-
tives of the nodes, and then triangular inequality is used to prune
distance calculations between the query object and objects of the
node.  In this paper we show that the triangular inequality prop-
erty can be used to prune distance calculations with fixed foci
(global pruning), obtaining better results than using representa-
tives of the nodes (local pruning).

2.2. Intrinsic dimensionality

The behavior of a dataset on queries can be estimated by its
dimensionality. Several works have been presented on this
subject, dealing with the so called 'dimensionality curse'. Some
of them assume that the embedding dimensionality of the dataset
defines this behavior.  If that were true,  it would be better to
answer queries on datasets with high embedding dimensionality

performing a simple sequential scan [22] [5].  However, the
embedding dimensionality does not indicate the correct behavior
of the dataset every time, because a dataset can inhabit just a
“small” portion of the embedding space. Moreover, metric
datasets do not have an embedded dimensionality at all. A better
way to quantify the behavior of a dataset is to consider its intrin-
sic dimensionality. 

It was shown in [14] that the concept of intrinsic (or frac-
tal) dimensionality gives better precision in selectivity estima-
tion for nearest neighbor queries than the embedding dimension.
An equivalent development is made for range queries in [16].

To understand the role of intrinsic dimensionality in que-
ries, consider for example a dataset which represents points
along a line. A line has intrinsic dimensionality one; it does not
matter if the line is embedded in a 2-, 3- or any n-dimensional
space. Thus, estimating the selectivity of queries on a line in a
3-dimensional space using the embedding dimension gives a
figure much larger than the actual objects in the dataset. 

We use the correlation fractal dimension D2 as an approxi-
mation of the intrinsic dimension of a dataset [3] [16]. Algo-
rithms to estimate the correlation fractal dimension of vector
datasets in linear time is depicted in [12] and [19].  For metric
datasets, a quadratic algorithm needs to be used [15]. Table 1
summarizes the symbols used in this paper.

3. Related work

The design of efficient access methods has long been an
objective of many researchers. Multidimensional access methods
have been proposed in the literature, and an excellent survey is
given in [13]. However, most of these methods only work for
vector data. Regarding image datasets, some works have used
selected objects as reference points to prune distance calcula-
tions [4] and to organize index structures [17].

The seminal work of Burkhard and Keller [9] provides
different interesting techniques for partitioning a metric data set
where the recursive process is materialized as a tree.  The first
technique partitions a dataset by choosing a representative from



the set and grouping the elements with respect to their distance
from it.  The second technique partitions the original set into a
fixed number of subsets and chooses a representative from each
of the subsets.  The representative and the maximum distance
from the representative to a point of the corresponding subset are
also maintained to support nearest neighbor queries.  The metric
tree of Uhlmann [20]  and the vantage-point tree (vp-tree) of
Yanilos [23] are somehow similar to the first technique of [9] as
they partition the elements into two groups according to a repre-
sentative, called a vantage point.  In [23] the vp-tree has been
generalized to a multi-way tree.  In order to reduce the number
of distance calculations, Baeza-Yates et al [2]  suggested using
the same vantage point in all nodes that belong to the same
level.  Then, a binary tree degenerates into a simple list of van-
tage points.  Another method [20] is the generalized hyper-plane
tree (gh-tree), which partitions the data set into two by picking
two points as representatives and assigning the remaining to the
closest representative.  Bozkaya and Ozsoyoglu [7] [6] proposed
an extension of the vp-tree called multi-vantage-point tree
(mvp-tree) which chooses in a clever way m vantage points for
a node which has a fanout of m2.  The Geometric Near Access
Tree (GNAT) of Brin [8] can be viewed as a refinement of the
second technique presented in [9].  It stores the distances be-
tween pairs of representatives in addition to the representative
and the maximum distance.  These distances can be used to
prune the search space using triangle inequality. An excellent
survey of metric trees can be found in [10]

Some methods for metric datasets presented above are
static, in the sense that the data structure is built once, and new
insertions are not supported.  The M-tree of Ciaccia, Patella and
Zezulla [11] was the first MAM to overcome this deficiency.
The M-tree is a height-balanced tree where the data elements are
stored in the leaves.  The Slim-tree [18] is another dynamic
MAM, which reduces the amount of overlap between tree nodes.
With a process to ‘slim-down’ a tree, it leads to a smaller num-
ber of disk accesses to answer similarity queries.

4. The Omni-concept and definitions

This section presents the proposed technique, which uses
a set of global foci to prune distance calculations.  This concept
can be used either alone, empowering sequential scanning, or
with existing MAMs, thus generating the Omni-family of index-
ing methods. The elements of the Omni-concept are presented as
follows.

Definition 4 - Omni-foci base (ö): Given a metric space
M=<S, d()>, an Omni-foci base is a set ö={f1, f2, ..., fl | fk 0S,
fk…fj, l#N}  where each fk is a focus (or focal point) of S, and l is
the number of focus in the Omni-foci base. 

Definition 5 - Omni-coordinates: Given the object si 0 S
and the Omni-foci base ö, the Omni-coordinates Ci of an object
si is the set of distances from si to each focus in ö, that is
Ci={ < fk, d(fk, si) >,  œfk 0ö}.  To distinguish the distance
d(fk, si) as a coordinate, we use the notation dfk(si)= d(fk, si). The
cardinality of Ci is the same number l of the foci in the Omni-

foci base ö.
When a new object is inserted in the dataset, its Omni-

coordinates are evaluated and stored. During a search, the
Omni-coordinates are used to prune distance calculations
through the triangle inequality property. 

The cost of using foci comes from two sources: the time to
calculate the Omni-coordinates for each object in S; and the
memory space in a data structure to store the Omni-coordinates.
We consider that both the Omni-coordinates and the datasets are
stored in disk. Disk space is cheap, so memory space is not an
issue.  However, increased disk usage requires more disk ac-
cesses, slowing down the query answering process.

Assuming that few foci are needed, both costs can be kept
low.  We claim the extra distance calculations needed between
the objects and the foci will pay off during the query process.
The practical evidence shown in Section 6 corroborates this.

To analyze memory usage, we need to consider the demand
from the Omni-coordinates relative to the memory required to
store the objects themselves.  Complex and large objects, such
as images and audio, need huge memory, so the space needed to
keep a few extra numbers that store distances is relatively insig-
nificant.  However, the increase in memory required to store the
Omni-coordinates with smaller objects is at a first glance more
significant.  We argue the corresponding increase in disk ac-
cesses is not relevant, because pruning distance calculations
compensates reducing disk accesses.  In this way, global foci
reduces drastically the number of distance computations, with-
out any other significant cost.  It is also worth noting that the
implementation cost of the Omni-concepts is low, due to the
simplicity of the structure and operations required.

4.1. The Omni-foci base

The issues of choosing the foci base ö and its cardinality
l are tightly related.  There is a tradeoff between the number of
foci and the space and time spent to process them.  Therefore, it
is important to maximize the gain with the minimum number of
foci.  To discover such a number we need the following concept.

Definition 6 - Minimum Bounding Omni Region
(mbOr): given the Omni-foci base ö={f1, f2, ..., fl} and a collec-
tion of objects A={x1, x2, ..., xn}dS, the mbOr of A is defined as

the intersection of the metric intervals RA= , where Ii=1
l

iI

[min(d(xj, fi)), max(d(xj, fi))], 1#i#l, 1#j#n.
As we can see from Figure 1, each focus defines a metric

sub-space “ring”.  An mbOr is the sub-set of S contained in the
hyper-volume that the Omni-coordinates identifies as including
the answer of a query, that is, the region where objects cannot be
pruned by the foci.  Notice that an mbOr always includes all
objects of the response set (there are no false dismissals) al-
though it can include objects that are not in the response set,
(there are false alarms) so a final refinement step must be ap-
plied.  Only in this refinement step the real distance of the candi-
date object to the query object is calculated.



Figure 1 - Active space defined by: (a) one focus; (b) two
foci.

Figure 2- A range query with center sq and radius rq on a
dataset. The shadow illustrates the objects included in the
mbOr. (a) No focus, so all the dataset is the candidate
response set. (b) One focus f1. (c) Two foci f1 and f2.

Figure 3 - Given foci f1 and
f2, select the third one
between s1, s2, s3 and s4.
The best is s4.

error edge d f si k i
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HF-Algorithm: finding the foci of a dataset S
Input: the dataset S and the number of foci l
Output: foci set ö
    Begin
        1.  Randomly choose an object si 0S .
        2.  Find the farthest object f1 from si. Insert f1 in ö.
        3.  Find the farthest object f2  from f1.  Insert f2 in ö.  
        4.  Set edge=d(f1, f2), used to calculate errori.
        5.  While there are foci to be found, do:
        6.  For each si 0S, si ó ö: calculate errori

        7.  Select si 0S such that si óö and errori is minimal. 
        8.  Insert si in ö.
    End.

Figure 4 -The HF-algorithm to find the foci set.

A focus is adequate if it reduces the mbOr noticeably.
Considering spatial datasets, it is inherent that the intrinsic
dimension and the distance function define a limit for the proper
number of foci.  Figure 2(a) illustrates this idea showing a line
(a one-dimensional data set) embedded in a two-dimensional
space considering the L2 distance function, where a range query
is pruned by one focus (Figure 2(b)) and two foci (Figure 2(c)).
Considering the Lp-metric family of distance functions, twice the
intrinsic dimension would be enough to maximize the benefit.
Selecting more foci than twice the intrinsic dimension of the
dataset, regardless of the embedding dimension, leads to no or
little reduction in the mbOr.

Two foci lead to the maximum reduction of the mbOr if
they are “orthogonal”, far apart, and with the origin coinciding
with the query center.  However, as the foci are pre-defined, we
cannot assume orthogonality.  Also, in metric datasets it is not
always possible to create “artificial” objects to act as far apart
foci, so the maximum reduction cannot always be achieved.  In
this way one more focus can be used to “distribute” the overhead
of having foci not ideally placed for each query.  Using this extra
focus, the new average maximum reduction occurs if they are far
apart and equally distant from each other.  These requirements
are easier to achieve in a metric space.  Therefore, a good num-
ber for the cardinality l of ö would be between the next integer
that contains the intrinsic dimension jD2k+1 and 2*jD2k+1.

Notice that although we used spatial datasets to achieve
these results, excluding the distance function considerations, the
same deductive process can be repeated using metric datasets,
so they hold for any metric dataset.  Therefore, we propose the
following practical guideline to choose the Omni-foci base:

Choose  jD2k+1 equally spaced foci, which are the most
far apart possible from each other, surrounding the other
objects of the dataset.

The sole information about the objects needed to obtain the
foci is the distance between them, which is known in metric
spaces.  Two foci are chosen for datasets with intrinsic dimen-
sion one or less, corresponding to the most far apart pair of
objects in the dataset. Datasets with 1<jD2k#2 will lead to three
foci defining a equilateral triangle; datasets with 2<jD2k#3 will
lead to four foci defining a tetrahedron, and so on.

4.2. How to choose the foci: the HF-algorithm

Here we describe the algorithmic implementation of the
guidelines proposed. The algorithm must choose only objects
inside the dataset to be foci because sometimes it is impossible
to synthesize an object of the dataset, e.g. a new fingerprint.
This leads to foci not ideally located, neither surrounding the
dataset nor positioning the vertices on the tetrahedron.  Second,
the algorithm to find the “best” foci has complexity O(N!/(N-l)!),
where N is the number of objects in the dataset, and l is the
number of foci.

We show a practical algo-
rithm requiring O(N) distance
calculations, which try to find
the foci near the hull of the
dataset, the HF-algorithm.  This
algorithm starts searching a pair
of objects far apart.  To do this,
it randomly chooses an object
s1, find the farthest object f1

from this object, and set it as
the first focus.  Following, it
finds the farthest object f2 from
f1, setting it as the second focus, and storing the distance be-
tween them as edge.

The next focus will be the object that has the most similar
distances to the previously chosen foci (see Figure 3). To do this,
using the foci already chosen, for each object si not yet picked as
a focus, calculate the following error:

Now, select as the next focus the object si that produced the
minimum errori.  This last step is repeated until the required



number of foci is selected.
The HF-algorithm requires l*N  distance calculations, and

is shown in Figure 4.  Notice that those distance calculations re-
quired in steps 3 and 6 of Figure 4 correspond to distances from
each object to a focus, so those distances would be calculated
anyway, as they are part of the Omni-coordinates of each object.
Therefore, the extra distance calculations performed by this
algorithm are only those occurring in step 2, which accounts for
just N extra distance calculations.  Hence, the HF-algorithm also
prepares the Omni-coordinates of a dataset (in steps 3 and 6).

The HF-algorithm does not require the full dataset to choo-
se Omni-coordinates.  Experiments have shown that good foci
can be obtained within a well-distributed sampling.  Objects can
be inserted or deleted without changing the Omni-foci base.
Also, the Omni-foci base can be changed without affecting the
underlaying index method, at the cost of recalculating the Omni-
coordinates.

5. Members of the Omni-family

The Omni-concept is effective for pruning distance calcula-
tions in both nearest neighbor and range queries.  Here we pres-
ent how to use the Omni-concepts together with sequential scan,
B-trees and R-trees.

5.1.  The Omni-sequential

To perform a sequential scan the whole dataset is read. The
algorithms to answer similarity queries are simple:

Range queries:  Read throughout the dataset comparing
the query object sq with every object si in the dataset. Whenever
the resulting distance is less or equal the query radius rq, si is
placed in the answer set.

K-Nearest neighbor queries:  Assign the first k objects of
the dataset to a working response set, sorted by their distances
to the query object sq.  The largest distance is used as the current
query radius rc. Then, each remaining objects si is read and
compared with sq.  Whenever the distance is less than the current
query radius rc, the farthest object in the working response set is
replaced by this si, and rc is updated accordingly.

The processing of both queries ends when the whole dataset
has been read.  In both cases the number of distance calculations
is the number N of objects in the dataset.

Applying the Omni-concept to sequential scans requires a
second file to store the Omni-coordinates, composed by N regis-
ters, one for each Omni-coordinate.

We named the sequential scan modified by the Omni-con-
cept,  Omni-sequential.  In this new access method, a range
query with query radius rq is executed as in a conventional
sequential scan, with the following two modifications.  First,
calculate the distance dfk(sq) from the query object sq to each
focus fk, creating the Omni-coordinates dfk(sq) for sq.  Second,
precede the distance calculation of the query object sq with each
object si of the dataset by the following computation:

for each fk 0 ö  do:  if | dfk(si) - dfk(sq) | > rq then skip
the distance calculation.

The modifications in the k-nearest neighbors algorithm are
similar.  For both kinds of queries, an object from the dataset is
retrieved from the file and compared to the query object only
when no focus can prune it.  This enables a large reduction of
the number of distance calculations, as shown in Section 6.

5.2. The OmniB-tree

Objects in a metric space do not embody the notion of
order, so index structures such as B+-trees cannot  index them.
However, the distances  dfk(si) from one focus k to each object si

can be sorted.  By this way the Omni-coordinates file can be
replaced by a set of  B+-trees, one for each focus.  The algorithms
to answer similarity queries using B+-trees follows.

Applying the Omni-concepts with B+-trees originates a
new index structure we call the OmniB+-tree.  This member of
the Omni-family is, as the others, able to index metric datasets.
This leads to an effective way to support metric datasets using
the existing access methods in commercial database manage-
ment systems, with a lower development cost [1].

OmniB+-trees store the Omni-coordinates in l  B+-trees, one
for each focus  fk.  Whenever a query centered in the object sq

with query radius rq arrives, the subsets IkdS  (as in definition 6)
are retrieved from the corresponding B+-tree and used to gener-
ate the mbOr.  Each Ik is retrieved using the range of objects in
the B+-tree that is between rmin=dfk(sq) - rq  and  rmax=dfk(sq) + rq.
The answer set is obtained calculating the distance from the
query object sq to each object in the intersection.  Nearest neigh-
bor queries do not have a fixed radius, but an estimated radius
can be adopted using the selectivity estimation formulas pro-
vided by the fractal theory [3] [14] [12], and successively cor-
rected if the requested number of objects is not retrieved.

5.3. The OmniR-tree

Here we show how to store the Omni-coordinates using one
R-tree, through the metric index structure we call OmniR-tree.
The benefits of using an OmniR-tree over R-trees are two-fold:
first, it permits to use R-trees even for non-vector datasets;
second, for vector-datasets it permits reducing the dimensionali-
ty of the MBRs of the R-tree to the number of foci adopted.  The
number of foci is related to the intrinsic dimension and not to the
usually larger embedding dimension used by a plain R-tree.
Therefore, the dimensionality of the dataset seen as Omni-coor-
dinates will be lower, improving the performance of the R-tree.

The algorithms to do insertion, node partitioning, range
queries, etc.  in OmniR-trees are the same used in plain R-trees.
However, the algorithm to perform k-nearest neighbors queries
needs to be replaced.  There are two approaches.  The first one
is to estimate a final radius, as described for the OmniB-tree.
This approach can be used with any implementation of R-tree,
so it is not tailored to the use of R-trees with the Omni-concepts.
The second approach uses the nearest neighbors algorithm used



Figure 5 - Results for the number of distance calculations
(left column) and for time (right column) querying the
Eigenfaces dataset with increasing number of foci. (a,d)
Range query for radius rq=0.04 (7% of the dataset qualify).
(b, e) Range query for radius rq=0.08 (31% of the dataset
qualify. (c, f) 10 Nearest neighbors.

in metric trees.  In this case, a deep-search is first performed to
find k-candidates. The algorithm continues reducing the radius
whenever the furthest neighbor is replaced, until every entry that
overlaps the radius in the query has been tested. We used this
approach to evaluate the datasets presented in the next section.
These approaches guarantees no false dismissals, an essential
property that the usual nearest neighbors algorithm of the R-tree
cannot ensure when used with Omni-concepts.

OmniR-trees also use two data structures to store the data-
base: an R-tree to store the Omni-coordinates, and a paged direct
access file to store the objects in the dataset (storing multiple
objects per page).  Whenever a leaf node in the R-tree is re-
trieved, and Omni-coordinates stored in this node qualify ob-
jects, the actual distance must be calculated.  So, each qualifying
object must be retrieved from the sequential file.  To reduce disk
accesses in the sequential file, it is worth storing the objects
following the order they occur in the leaf nodes of the R-tree.
This re-ordering does not need to be done after every update in
the R-tree, but it is valuable after major updates.

6. Experiments

To evaluate the effectiveness of the Omni-concept, we
worked on a variety of datasets, both real and synthetic. Due to
space restrictions, we show here only the results for the follow-
ing datasets.

EnglishWords - A set of 25,143 objects from the English
language, using the LEdit distance function.

Eigenfaces - A set of 11,900 face vectors from the Infor-
media project [21] at Carnegie Mellon University.  Each face
was processed with the eigenfaces method, resulting in a 16-
dimensional vector. It employs the Euclidean distance function.

Sinthetic30D - A synthetic dataset with 250,000 objects
and thirty attributes, with an intrinsic dimension of 9.45.  We
use it with the Euclidean distance function.

6.1. The number of foci to be used

Here we show that the number of foci is related to the
intrinsic dimensionality of the dataset. Due to space limitations,
we show the results for only one dataset as the other datasets
presents similar behavior.  Figure 5 shows the number of dis-
tance calculations and time required to answer range (for radii
0.04 and 0.08) and k-nearest neighbor queries (for k=10), as a
function of the number of foci employed.  The graphs show the
Omni-sequential indexing the Eigenfaces dataset, which exhibits
an intrinsic dimension of 4.67.  In the first column of Figure 5
we can see that increasing the number of foci up to seven always
reduces the number of distance calculations, but after this, this
number starts to increase again.  The second column of Figure
5 shows that time reduces progressively when using up to five
foci, then starts to climb again. The cost of one Euclidean dis-
tance calculation in the Eigenfaces dataset, is small.  With
costlier distance functions, the response time would more closely
follow that of the number of distance computations. However,
these plots corroborates the intrinsic dimensionality of the
dataset as a good reference for the number of foci.

6.2. Comparing Omni-family with other structures

We compared two index methods of the Omni-family, the
Omni-sequential and the OmniR-tree, with sequential scan, R-
tree and Slim-tree.  The datasets used were the metric dataset
EnglishWords and the spatial dataset Eigenfaces. Figure 6
shows the results for time (in seconds), the number of distance
calculations and the number of disk accesses.  The results are
the average number of distance calculations and of disk accesses
for 500 range queries and 500 nearest neighbors queries.

The results for range queries in the Eigenfaces dataset
(Figures 6(a, b, c)) are presented in log scale to visualize a wider
range of radii.  Time shown are total to answer 500 queries
(Figures 6(d and j)).  The Omni-family members were tested
using six foci for both datasets, as the intrinsic dimensionality of
the EnglishWords is 4.75 and of the Eigenfaces is 4.67.  It is
worth noting that the number of distance calculations for the
Omni-sequential and for the OmniR-tree are the same. This is
due the same foci were used for both structures.

Time measurements (Figures 6(a, d, g and j)) and distance
calculations (Figures 6(b, e, h and k)) show that the Omni varia-
tion of the index method always wins over the flat ones, achiev-
ing an speed up of more than ten times for small radii (where the



Figure 6 - Comparing time, number of distance calculations and number of disk accesses of Omni-sequential, OmniR-
tree, sequential scan, R-tree and Slim-tree access methods, for range queries and nearest neighbors queries over the
Eigenfaces and English Words datasets.

Figure 8 - Scalability of Omni-sequential and OmniR-trees
for range (left column) and nearest neighbors (right column)
queries, in Syntethic30 dataset.  (a, d) Time.  (b, e) Number
of distance calculations.  (c, f) Number of disk accesses.

majority of queries occurs) on range queries.  We cannot show
distance calculation for R-trees, as their operation relies on
comparisons of bounding rectangles.  The reduction in the num-
ber of distance calculations is up to four times less in nearest
neighbors queries and more than ten times less for small radii on
range queries.  Both comparisons were done with the Slim-tree,
an allegedly good metric access method.  There is a tradeoff
between decreasing distance calculations and increasing disk
accesses.  However, this is worth paying as the overall time
required always reduces.

6.3. Scalability

The Omni-sequential and OmniR-tree are scalable regard-
ing the size of the dataset.  Figure 7 shows the behavior of these
indexing methods for time (a, d), number of distance calcula-
tions (b, e), and disk accesses (c, f).  The results are the average
for 500 range queries with rq=0.5 and 500 k-nearest neighbors
with k=10. It is worth note that the Omni-foci base was chosen
using a random sample of ten percentile of the database.  As we
can see in Figure 7, the behavior of both index structures is
linear for range queries.  Interestingly, our methods present sub-
linear behavior for nearest neighbors, making these methods an
excellent choice to index very large datasets.

7. Conclusion
We presented the Omni-concept, which intends to speedup range and nearest neighbors queries by decreasing the number

of distance calculations. We show how this new concept can be



used to index metric and vector datasets with any indexing
method. For example, we showed how to index words with R-
trees! Due to its adaptability, Omni-concept can help to improve
the performance of any method already implemented in applica-
tions such as database management systems. And due to its
simplicity this can be achieved without tears.

Our experiments showed speedups of up to ten times in
query answers and equivalent results in reducing distance com-
putations. Therefore, it broadens the scope of the underlining
index method already used in the commercial DBMS to also
support metric datasets. There are other important contributions
as well: the practical guideline to define the number of foci, as
a tradeoff between space requirements and distance computa-
tions; and the HF-algorithm to choose the foci, which is linear
on the size of the dataset.

The Omni-family members tested in this paper are scalable
with respect to dataset size, presenting a sub-linear behavior
regarding time. We believe that the Omni-concept will greatly
contribute to improve the sup3port to metric data provided by
database management systems.
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