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Abstract

Designing a new access method inside a commercial
DBMSis cumbersome and expensive. We propose a family of
metric access methods that are fast and easy to implement on
top of existing access methods, such assequential scan, R-trees
and Sim-trees.

Theidea isto elect a set of objects as foci, and gauge all
other object with their distancesfromthisset. We show how to
definethefoci set cardinality, how to choose appropriatefoci,
and how to performrange and near est-neighbor queriesusing
them, without false dismissals. The foci increase the pruning
of distance calculations during the query processing.
Furthermore we index the distances from each object to the
foci to reduce even triangular inegquality comparisons.

Experiments on real and synthetic datasets show that our
methods match or outperform existing methods. They are up
to 10 times faster, and perform up to 10 times fewer distance
calculations and disk accesses. In addition, it scale up well,
exhibiting sub-linear performancewith growing databasesize.

1. Introduction

The growth of multimediaapplicationsin recent years has
pushed database management systems to support more diverse
and complex data, such as dynamic and static images, time
series, fingerprints, protein sequences, etc. Usually, thissort of
dataissearched by looking for information similar to that which
the user has at hand. We assume that the dis-similarity (or
distance) function used in comparisonsisametric function (see
Section 2). Asthe similarity evauation of multimedia objects
can be expensive and time consuming, we consider the number
of distance calculations as a factor to be reduced.
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Our technique choose anumber of objectsfrom the dataset
as “foci”, from which distance calculations to answer queries
can be pruned. We show that this technique can be used with
other existing indexing structures, improving their performance
intermsof distance calculations. Wecall this* Omni-concept”,
because the foci can both be used as global reference pointsto
any object in thedatabase, and be used to improve any underlay-
ing index structure. Its use with an existing index structure
generatesanew index structure, leading to awhole new class of
index methods, that we call the “ Omni-family”.

This paper makes the following contributions:

1. It provides a complete and practica technique to reduce the
number of distance calculations needed to answer similarity
gueries, using aset of afew selected objectsfrom the dataset.
When the cost of distance calculation is high, thistechnique
gives good performance even if the query retrieves much
more than ten percent of the dataset.

2. It explains how to define an adequate number of objectsto be
used as Omni-foci, with the best tradeoff between increasing
memory requirements and decreasing distance cal culations.

3. It depicts an inexpensive algorithm to select adequate Omni-
foci.

4. It shows the results of applying the Omni-concept with se-
guential scan and R-trees, achieving up to ten times fewer
distance calculations, disk accesses and overall time.

The remainder of the paper is structured as follows. The
next section summarizes some related concepts. Section 3
surveys the main current index structures and shows how they
use triangular inequality to increase performance. Thereisalso
adescription of the datasets used in our experiments. Section 4
introduces the Omni-concept and presents both away to choose
the number of foci and an agorithm to choose them. Section 5
describes how to exploit the Omni-concept with existing access
methods, namely the sequential scan, B*-trees and R-trees.
Section 6 presents experiments showing the behavior of two
members of the Omni-family and a comparison with existing
access methods. Section 7 gives the conclusions of this paper.

2. Background

In this section we present the basi ¢ definitions which delimit
the scope of thiswork.



2.1. Metric spaces and similarity queries

Definition 1 (metric distance function): Given a
set of objects S={s,, S, ..., S} of adomain S, afunc-
tion d() that has the following properties:

1. Symmetry: d(s,,s,) = d(s;, S1)

2. Non-negativity: 0<d(s,,s;) < «, s;# S, and

d(sy,$)=0

3. Triangle inequality: d(s,,s;) < d(s,,S,) + d(S,.S;)
is called ametric distance function. A metric spaceisa
pair M=<S, d()> which follows the aforementioned
properties.

Spatial datasets following an L,-metric distance
function (such as Euclidean distances) are special casesof
metric spaces. We considered two classes of similarity queries:
range queries and nearest neighbors queries, which are defined
asfollows.

Definition 2 (Range query): Given aquery object s, € S
and a maximum search distance r,, the answer is the subset of
Ssuch that Rquery(s,, ro)={ s | s €S d(s, s,)<rq}.

An example of arange query on aword dataset with the
Lgq: distance function is: “Find the words that are within dis-
tance 3 fromthe word 'Germany' ”.

Definition 3 (Nearest Neighbor query): Given a query
object s, € S the nearest neighbor isthe unitary subset of Ssuch
that NNquery(s,))={s,€S|V seSd(s,, s,)<d(s, s,)}.

A common variation is the k-nearest neighbor query. It
findsthe k<N closest objectsto s, in the dataset. An example of
a k-nearest neighbor query with k=5 is: “Select the 5 words
nearest to 'Germany' ”.

A property useful to decrease the number of distance
calculationsis the triangular inequality. Generically, a Metric
AccessMethod, MAM, dividesthe dataset into regionsor nodes
and chooses strategic objects to be representatives for every
region. The representatives, objects in their region and their
distances to the representatives are stored in the nodes. The
nodesareorganized hierarchically forming atree. Whenaquery
isissued, the query object isfirst compared with the representa-
tivesof the nodes, and then triangular inequality isused to prune
distance cal cul ations between the query object and objects of the
node. Inthis paper we show that the triangular inequality prop-
erty can be used to prune distance calculations with fixed foci
(globa pruning), obtaining better results than using representa-
tives of the nodes (local pruning).

2.2. Intrinsgc dimensionality

The behavior of adataset on queriescan be estimated by its
dimensionality. Several works have been presented on this
subject, dealing with the so called 'dimensionality curse’. Some
of them assumethat the embedding dimensionality of the dataset
defines this behavior. If that were true, it would be better to
answer querieson datasetswith high embedding dimensionality

performing a simple sequential scan [22] [5]. However, the
embedding dimensionality doesnot indicatethe correct behavior
of the dataset every time, because a dataset can inhabit just a
“small” portion of the embedding space. Moreover, metric
datasetsdo not have an embedded dimensionality at all. A better
way to quantify the behavior of adataset isto consider itsintrin-
sic dimensionality.

It was shown in [14] that the concept of intrinsic (or frac-
tal) dimensionality gives better precision in selectivity estima-
tionfor nearest neighbor queri esthan the embedding dimension.
An equivalent development is made for range queriesin [16].

To understand the role of intrinsic dimensionality in que-
ries, consider for example a dataset which represents points
along aline. A line hasintrinsic dimensionality one; it does not
matter if the line is embedded in a 2-, 3- or any n-dimensional
space. Thus, estimating the selectivity of querieson alinein a
3-dimensional space using the embedding dimension gives a
figure much larger than the actual objectsin the dataset.

We usethe corrélation fractal dimension D, as an approxi-
mation of the intrinsic dimension of a dataset [3] [16]. Algo-
rithms to estimate the correlation fractal dimension of vector
datasetsin linear timeis depicted in [12] and [19]. For metric
datasets, a quadratic algorithm needs to be used [15]. Table 1
summarizes the symbols used in this paper.

Table 1 - Summary of symbols and definitions.

Symbols Definitions
S domain of objects
S et of objectsin domain S
N number of objectsin the dataset S
D, correlation fractal dimension of the dataset S
Sy aquery object (or query center)
S, § objectsof S
ry radius of arange query
k the number of neighborsin aNN query
7 the Omni-foci base
fe afocusof Sin.7
| number of foci in.7
d() distance function
df(s) distance from an object s to focus f,

3. Related work

The design of efficient access methods has long been an
objectiveof many researchers. Multidimensional accessmethods
have been proposed in the literature, and an excellent survey is
given in [13]. However, most of these methods only work for
vector data. Regarding image datasets, some works have used
selected objects as reference points to prune distance calcula
tions[4] and to organize index structures[17].

The semina work of Burkhard and Keller [9] provides
different interesting techniquesfor partitioning ametric data set
where the recursive process is materialized as atree. The first
technique partitions adataset by choosing arepresentative from



the set and grouping the elements with respect to their distance
fromit. The second technique partitions the original set into a
fixed number of subsets and chooses arepresentative from each
of the subsets. The representative and the maximum distance
from the representativeto apoint of the corresponding subset are
al so maintained to support nearest neighbor queries. Themetric
tree of Uhlmann [20] and the vantage-point tree (vp-tree) of
Y anilos[23] are somehow similar to thefirst technique of [9] as
they partition the elementsinto two groups according to arepre-
sentative, called a vantage point. In[23] the vp-tree has been
generdized to amulti-way tree. In order to reduce the number
of distance calculations, Baeza-Yateset al [2] suggested using
the same vantage point in al nodes that belong to the same
level. Then, abinary tree degeneratesinto asimplelist of van-
tagepoints. Another method [20] isthegeneralized hyper-plane
tree (gh-tree), which partitions the data set into two by picking
two points as representatives and assigning the remaining to the
closest representative. Bozkayaand Ozsoyoglu[7] [6] proposed
an extension of the vp-tree called multi-vantage-point tree
(mvp-tree) which choosesin a clever way m vantage points for
anode which has afanout of . The Geometric Near Access
Tree (GNAT) of Brin [8] can be viewed as a refinement of the
second technique presented in [9]. It stores the distances be-
tween pairs of representatives in addition to the representative
and the maximum distance. These distances can be used to
prune the search space using triangle inequality. An excellent
survey of metric trees can be found in [10]

Some methods for metric datasets presented above are
static, in the sense that the data structureis built once, and new
insertions are not supported. The M-tree of Ciaccia, Patellaand
Zezulla[11] was the first MAM to overcome this deficiency.
TheM-treeisaheight-balanced treewherethe dataelementsare
stored in the leaves. The Slim-tree [18] is another dynamic
MAM, which reducestheamount of overlap betweentreenodes.
With aprocessto ‘dim-down’ atreg, it leadsto asmaller num-
ber of disk accessesto answer similarity queries.

4. The Omni-concept and definitions

This section presents the proposed technique, which uses
aset of global foci to prune distance calculations. This concept
can be used either aone, empowering sequential scanning, or
with existing M AMs, thus generating the Omni-family of index-
ing methods. The elementsof the Omni-concept are presented as
follows.

Definition 4 - Omni-foci base (.7): Given ametric space
M=<S, d()>, an Omni-foci baseisaset .7={f, f,, ..., f, [ f €S
fi#f,, I<N} where each f, isafocus (or focal point) of S and | is
the number of focus in the Omni-foci base.

Definition 5 - Omni-coordinates: Given the object s € S
and the Omni-foci base.7, the Omni-coordinates C, of an object
s is the set of distances from s to each focus in .7, that is
C={ <f, d(f, s) > Vf,e7}. To distinguish the distance
d(f,, s) asacoordinate, we use the notation df,(s)=d(f,, s). The
cardindity of C; is the same number | of the foci in the Omni-

foci base.7.

When a new object is inserted in the dataset, its Omni-
coordinates are evaluated and stored. During a search, the
Omni-coordinates are used to prune distance calculations
through the triangle inequality property.

The cost of using foci comes from two sources. thetimeto
calculate the Omni-coordinates for each object in S; and the
memory space in adata structure to store the Omni-coordinates.
Weconsider that both the Omni-coordinatesand the datasetsare
stored in disk. Disk space is cheap, SO memory space is not an
issue. However, increased disk usage requires more disk ac-
cesses, owing down the query answering process.

Assuming that few foci are needed, both costs can be kept
low. We claim the extra distance calculations needed between
the objects and the foci will pay off during the query process.
The practical evidence shown in Section 6 corroborates this.

Toanalyze memory usage, we need to consider thedemand
from the Omni-coordinates relative to the memory required to
store the objects themselves. Complex and large objects, such
asimages and audio, need huge memory, so the space needed to
keep afew extranumbersthat store distancesisrelatively insig-
nificant. However, theincreasein memory required to store the
Omni-coordinates with smaller objectsis at afirst glance more
significant. We argue the corresponding increase in disk ac-
cesses is not relevant, because pruning distance calculations
compensates reducing disk accesses. In this way, global foci
reduces drastically the number of distance computations, with-
out any other significant cost. It is also worth noting that the
implementation cost of the Omni-concepts is low, due to the
simplicity of the structure and operations required.

4.1. The Omni-foci base

Theissues of choosing the foci base.7 and its cardinality
| aretightly related. Thereis atradeoff between the number of
foci and the space and time spent to processthem. Therefore, it
isimportant to maximize the gain with the minimum number of
foci. To discover such anumber we need the following concept.

Definition 6 - Minimum Bounding Omni Region
(mbOr): giventhe Omni-foci base.7={f,,f,, ..., f;} andacollec-
tion of objects A={ X, X,, ..., X,} =S, thembOr of A is defined as
the intersection of the metric intervals R=1 ' I, , where I;=
[min(d(x;, f,)), max(d(x;, f))], 1<i<l, 1<j<n.

Aswe can see from Figure 1, each focus defines a metric
sub-space “ring”. An mbOr isthe sub-set of Scontained in the
hyper-volumethat the Omni-coordinatesidentifiesasincluding
theanswer of aquery, that is, the region where objects cannot be
pruned by the foci. Notice that an mbOr aways includes all
objects of the response set (there are no false dismissals) al-
though it can include objects that are not in the response set,
(there are false darms) so a final refinement step must be ap-
plied. Only inthisrefinement step thereal distance of the candi-
date object to the query object is calculated.
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Figure 1 - Active space defined by: (a) one focus; (b) two
foci.

A focus is adequate if it reduces the mbOr noticeably.
Considering spatial datasets, it is inherent that the intrinsic
dimension and the distance function define alimit for the proper
number of foci. Figure 2(a) illustrates this idea showing aline
(aone-dimensional data set) embedded in a two-dimensional
space considering the L, distance function, where arange query
is pruned by one focus (Figure 2(b)) and two foci (Figure 2(c)).
Consideringthel -metricfamily of distancefunctions, twicethe
intrinsic dimension would be enough to maximize the benefit.
Selecting more foci than twice the intrinsic dimension of the
dataset, regardless of the embedding dimension, leads to no or
little reduction in the mbOr.

Two foci lead to the maximum reduction of the mbOr if
they are “orthogonal”, far apart, and with the origin coinciding
with the query center. However, asthefoci are pre-defined, we
cannot assume orthogonality. Also, in metric datasets it is not
always possible to create “artificial” objects to act as far apart
foci, so the maximum reduction cannot always be achieved. In
thisway onemorefocuscan beusedto“ distribute” theoverhead
of having foci not ideally placed for each query. Using thisextra
focus, the new average maximum reduction occursif they arefar
apart and equally distant from each other. These requirements
are easier to achieve in ametric space. Therefore, agood num-
ber for the cardinality | of .7 would be between the next integer
that contains the intrinsic dimension [D, [+1 and 2*[ D, [+1.

Notice that although we used spatia datasets to achieve
theseresults, excluding the distancefunction considerations, the
same deductive process can be repeated using metric datasets,
so they hold for any metric dataset. Therefore, we propose the
following practical guideline to choose the Omni-foci base:

Choose [D,[+1 equally spaced foci, which are the most
far apart possible from each other, surrounding the other
objects of the dataset.
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Figure 2- A range query with center s, and radius r, on a
dataset. The shadow illustrates the objects included in the
mbOr. (a) No focus, so all the dataset is the candidate
response set. (b) One focus f;. (c) Two foci f, and f,.

The soleinformation about the objects needed to obtain the
foci is the distance between them, which is known in metric
spaces. Two foci are chosen for datasets with intrinsic dimen-
sion one or less, corresponding to the most far apart pair of
objectsin the dataset. Datasets with 1<[D, |<2 will lead to three
foci defining aequilateral triangle; datasets with 2</D, |<3 will
lead to four foci defining a tetrahedron, and so on.

4.2. How to choose the foci: the HF-algorithm

Here we describe the algorithmic implementation of the
guidelines proposed. The algorithm must choose only objects
inside the dataset to be foci because sometimesit isimpossible
to synthesize an object of the dataset, e.g. a new fingerprint.
This leads to foci not ideally located, neither surrounding the
dataset nor positioning the vertices on the tetrahedron. Second,
theagorithmtofindthe“best” foci hascomplexity O(N!/(N-D!),
where N is the number of objects in the dataset, and | is the
number of foci.

We show apractica algo-
rithm requiring O(N) distance
calculations, which try to find
the foci near the hull of the
dataset, theHF-algorithm. This
algorithm startssearching apair
of objectsfar apart. To do this,
it randomly chooses an object Focusﬁ . .
s, find the farthest object f, Figure 3 - Given fO.CI f, and
from this object, and set it as f,, select the third one
the first focus. Following, it _tl)_f]t;'vgggt ISSlS Sz S3 and s,.
finds the farthest object f, from &

f,, setting it as the second focus, and storing the distance be-
tween them as edge.

The next focus will be the object that has the most similar
distancesto the previously chosenfoci (seeFigure 3). Todorthis,
using thefoci already chosen, for each object s not yet picked as
afocus, calculate the following error:

k is focus

error, = é ledge- d(f,,s)|
K

Now, select asthe next focusthe object s that produced the
minimum error;. Thislast step is repeated until the required

HF-Algorithm: finding the foci of adataset S
Input: the dataset S and the number of foci |
Output: foci set.7
Begin
. Randomly choose an object 5 €S.
. Find the farthest object f, from s. Insert f, in 7.
. Find the farthest object f, fromf,. Insertf,in.7.
. Set edge=d(f,, f,), used to calculate error,.
. While there are foci to be found, do:
Foreachs €S s ¢ .7: caculate error;
. Select s eSsuchthat s ¢.7 and error; isminimal.
. Insert s in.7.
End.

Figure 4 -The HF-algorithm to find the foci set.
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number of foci is selected.

The HF-algorithm requires|*N distance calculations, and
isshowninFigure4. Noticethat those distance calculationsre-
quired in steps 3 and 6 of Figure 4 correspond to distancesfrom
each object to afocus, so those distances would be calculated
anyway, asthey are part of the Omni-coordinates of each object.
Therefore, the extra distance calculations performed by this
algorithm are only those occurring in step 2, which accounts for
just N extradistance calculations. Hence, the HF-algorithmalso
prepares the Omni-coordinates of a dataset (in steps 3 and 6).

The HF-algorithm does not require the full dataset to choo-
se Omni-coordinates. Experiments have shown that good foci
can be obtai ned within awell-distributed sampling. Objectscan
be inserted or deleted without changing the Omni-foci base.
Also, the Omni-foci base can be changed without affecting the
underlaying index method, at the cost of recal culating the Omni-
coordinates.

5. Members of the Omni-family

The Omni-concept iseffectivefor pruning distancecal cula-
tionsin both nearest neighbor and range queries. Herewe pres-
ent how to usethe Omni-conceptstogether with sequential scan,
B-trees and R-trees.

5.1. The Omni-sequential

Toperform asequential scanthewhole datasetisread. The
algorithms to answer similarity queries are simple:

Range queries. Read throughout the dataset comparing
the query object s, with every object s in the dataset. Whenever
the resulting distance is less or equal the query radiusr,, s is
placed in the answer set.

K-Near est neighbor queries. Assignthefirst k objectsof
the dataset to a working response set, sorted by their distances
tothe query object s,. Thelargest distanceis used asthe current
query radius r.. Then, each remaining objects s is read and
comparedwiths,. Whenever thedistanceislessthan the current
query radiusr , thefarthest object in theworking response setis
replaced by this s, and r, is updated accordingly.

The processing of both queries ends when the whole dataset
hasbeenread. Inboth casesthe number of distance calculations
isthe number N of objectsin the dataset.

Applying the Omni-concept to sequential scans requires a
second fileto store the Omni-coordinates, composed by N regis-
ters, one for each Omni-coordinate.

We named the sequential scan modified by the Omni-con-
cept, Omni-sequential. In this new access method, a range
query with query radius r, is executed as in a conventional
sequential scan, with the following two modifications. First,
calculate the distance dfi(s,) from the query object s, to each
focus fy, creating the Omni-coordinates df,(s;) for s,. Second,
precede the distance cal cul ation of the query object s, with each
object s of the dataset by the following computation:

foreachf, € .7 do: if | dfi(s) - dfy(s,) | > r,then skip
the distance calculation.
Themodificationsinthek-nearest neighborsalgorithm are
similar. For both kinds of queries, an object from the dataset is
retrieved from the file and compared to the query object only
when no focus can pruneit. This enables a large reduction of
the number of distance calculations, as shown in Section 6.

5.2. The OmniB-tree

Objects in a metric space do not embody the notion of
order, so index structures such as B*-trees cannot index them.
However, the distances df,(s) from onefocusk to each object 5
can be sorted. By this way the Omni-coordinates file can be
replaced by aset of B*-trees, onefor eachfocus. Thealgorithms
to answer similarity queries using B*-trees follows.

Applying the Omni-concepts with B*-trees originates a
new index structure we call the OmniB*-tree. This member of
the Omni-family is, asthe others, able to index metric datasets.
This leads to an effective way to support metric datasets using
the existing access methods in commercia database manage-
ment systems, with alower development cost [1].

OmniB*-treesstorethe Omni-coordinatesin| B*-trees, one
for each focus f,. Whenever aquery centered in the object s,
with query radiusr , arrives, the subsets |, S (asin definition 6)
areretrieved from the corresponding B*-tree and used to gener-
atethe mbOr. Each |, isretrieved using the range of objectsin
the B*-treethat isbetweenr ; =dfi(s)) - rq and r,=df () + .
The answer set is obtained calculating the distance from the
query object s, to each object in theintersection. Nearest neigh-
bor queries do not have a fixed radius, but an estimated radius
can be adopted using the selectivity estimation formulas pro-
vided by the fractd theory [3] [14] [12], and successively cor-
rected if the requested number of objectsis not retrieved.

5.3. The OmniR-tree

Hereweshow how to storethe Omni-coordinatesusing one
R-tree, through the metric index structure we call OmniR-tree.
The benefits of using an OmniR-tree over R-trees are two-fold:
first, it permits to use R-trees even for non-vector datasets;
second, for vector-datasetsit permitsreducing the dimensionali-
ty of the MBRs of the R-tree to the number of foci adopted. The
number of foci isrelated to theintrinsic dimension and not to the
usualy larger embedding dimension used by a plain R-tree.
Therefore, the dimensionality of the dataset seen as Omni-coor-
dinateswill be lower, improving the performance of the R-tree.

The algorithms to do insertion, node partitioning, range
gueries, etc. in OmniR-trees arethe same used in plain R-trees.
However, the algorithm to perform k-nearest neighbors queries
needs to be replaced. There are two approaches. Thefirst one
is to estimate a final radius, as described for the OmniB-tree.
This approach can be used with any implementation of R-tree,
soitisnot tailored to the use of R-treeswith the Omni-concepts.
The second approach uses the nearest neighbors a gorithm used



in metric trees. In this case, adeep-search isfirst performed to
find k-candidates. The a gorithm continues reducing the radius
whenever thefurthest neighbor isreplaced, until every entry that
overlaps the radius in the query has been tested. We used this
approach to evaluate the datasets presented in the next section.
These approaches guarantees no false dismissals, an essential
property that the usual nearest neighborsalgorithm of the R-tree
cannot ensure when used with Omni-concepts.

OmniR-trees also use two data structuresto store the date-
base: an R-treeto storethe Omni-coordinates, and apaged direct
access file to store the objects in the dataset (storing multiple
objects per page). Whenever a leaf node in the R-tree is re-
trieved, and Omni-coordinates stored in this node qualify ob-
jects, theactual distance must becalculated. So, each qualifying
object must beretrieved from the sequential file. To reduce disk
accesses in the sequentia file, it is worth storing the objects
following the order they occur in the leaf nodes of the R-tree.
This re-ordering does not need to be done after every update in
the R-tree, but it is valuable after major updates.

6. Experiments

To evaluate the effectiveness of the Omni-concept, we
worked on avariety of datasets, both real and synthetic. Due to
space regtrictions, we show here only the results for the follow-
ing datasets.
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Figure 5 - Results for the number of distance calculations
(left column) and for time (right column) querying the
Eigenfaces dataset with increasing number of foci. (a,d)
Range query for radius r,=0.04 (7% of the dataset qualify).
(b, ) Range query for radius r,=0.08 (31% of the dataset
qualify. (c, f) 10 Nearest neighbors.

EnglishWords- A set of 25,143 objects from the English
language, using the Ly, distance function.

Eigenfaces - A set of 11,900 face vectors from the Infor-
media project [21] at Carnegie Mellon University. Each face
was processed with the eigenfaces method, resulting in a 16-
dimensional vector. It employsthe Euclidean distance function.

Sinthetic30D - A synthetic dataset with 250,000 objects
and thirty attributes, with an intrinsic dimension of 9.45. We
use it with the Euclidean distance function.

6.1. The number of foci to be used

Here we show that the number of foci is related to the
intrinsic dimensionality of the dataset. Dueto space limitations,
we show the results for only one dataset as the other datasets
presents similar behavior. Figure 5 shows the number of dis-
tance calculations and time required to answer range (for radii
0.04 and 0.08) and k-nearest neighbor queries (for k=10), as a
function of the number of foci employed. The graphs show the
Omni-sequential indexing the Eigenfaces dataset, which exhibits
an intrinsic dimension of 4.67. In the first column of Figure 5
we can seethat increasing the number of foci up to seven always
reduces the number of distance calculations, but after this, this
number starts to increase again. The second column of Figure
5 shows that time reduces progressively when using up to five
foci, then starts to climb again. The cost of one Euclidean dis-
tance calculation in the Eigenfaces dataset, is small. With
costlier distancefunctions, theresponsetimewould moreclosely
follow that of the number of distance computations. However,
these plots corroborates the intrinsic dimensionality of the
dataset as a good reference for the number of foci.

6.2. Comparing Omni-family with other structures

We compared two index methods of the Omni-family, the
Omni-sequential and the OmniR-tree, with sequential scan, R-
tree and Slim-tree. The datasets used were the metric dataset
EnglishWords and the spatial dataset Eigenfaces. Figure 6
shows the results for time (in seconds), the number of distance
calculations and the number of disk accesses. The results are
theaverage number of distance cal cul ationsand of disk accesses
for 500 range queries and 500 nearest neighbors queries.

The results for range queries in the Eigenfaces dataset
(Figures6(a, b, c)) are presentedin log scaleto visualizeawider
range of radii. Time shown are total to answer 500 queries
(Figures 6(d and j)). The Omni-family members were tested
using six foci for both datasets, astheintrinsic dimensionality of
the EnglishWords is 4.75 and of the Eigenfacesis 4.67. It is
worth noting that the number of distance calculations for the
Omni-sequential and for the OmniR-tree are the same. Thisis
due the same foci were used for both structures.

Time measurements (Figures 6(a, d, g and j)) and distance
calculations (Figures6(b, e, hand k)) show that the Omni varia-
tion of theindex method alwayswins over theflat ones, achiev-
ing an speed up of morethan tentimesfor small radii (wherethe
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Figure 6 - Comparing time, number of distance calculations and number of disk accesses of Omni-sequential, OmniR-
tree, sequential scan, R-tree and Slim-tree access methods, for range queries and nearest neighbors queries over the

Eigenfaces and English Words datasets.

majority of queries occurs) on range queries. We cannot show
distance calculation for R-trees, as their operation relies on
comparisons of bounding rectangles. Thereductioninthe num-
ber of distance calculations is up to four times less in nearest
neighbors queriesand morethan tentimeslessfor small radii on
range queries. Both comparisonswere donewith the Slim-tree,
an allegedly good metric access method. There is a tradeoff
between decreasing distance calculations and increasing disk
accesses. However, this is worth paying as the overall time
required always reduces.

6.3. Scalability

The Omni-sequential and OmniR-tree are scalableregard-
ing the size of the dataset. Figure 7 showsthe behavior of these
indexing methods for time (a, d), number of distance calcula-
tions (b, €), and disk accesses (c, f). Theresultsarethe average
for 500 range queries with r,=0.5 and 500 k-nearest neighbors
with k=10. It isworth note that the Omni-foci base was chosen
using arandom sample of ten percentile of the database. Aswe
can see in Figure 7, the behavior of both index structures is
linear for range queries. Interestingly, our methods present sub-
linear behavior for nearest neighbors, making these methods an
excellent choice to index very large datasets.

7. Conclusion
We presented the Omni-concept, which intendsto speedup
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Figure 8 - Scalability of Omni-sequential and OmniR-trees
for range (left column) and nearest neighbors (right column)
queries, in Syntethic30 dataset. (a, d) Time. (b, €) Number
of distance calculations. (c, f) Number of disk accesses.

range and nearest neighbors queries by decreasing the number
of distance calculations. We show how this new concept can be



used to index metric and vector datasets with any indexing
method. For example, we showed how to index words with R-
trees! Duetoitsadaptability, Omni-concept can helptoimprove
the performance of any method already implemented in applica-
tions such as database management systems. And due to its
simplicity this can be achieved without tears.

Our experiments showed speedups of up to ten timesin
query answers and equivalent resultsin reducing distance com-
putations. Therefore, it broadens the scope of the underlining
index method aready used in the commercial DBMS to also
support metric datasets. There are other important contributions
as well: the practical guideline to define the number of foci, as
a tradeoff between space requirements and distance computa-
tions; and the HF-algorithm to choose the foci, which is linear
on the size of the dataset.

The Omni-family memberstested inthispaper arescalable
with respect to dataset size, presenting a sub-linear behavior
regarding time. We believe that the Omni-concept will greatly
contribute to improve the sup3port to metric data provided by
database management systems.
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