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Abstract

This paper proposes a new on-the-fly composition algorithm for
Weighted Finite-State Transducers (WFSTs) in large-vocabulary
continuous-speech recognition. In general on-the-fly composition,
two transducers are composed during decoding, and a Viterbi search
is performed based on the composed search space. In this new
method, a Viterbi search is performed based on the first of two
transducers. The second transducer is only used to rescore the hy-
potheses generated during the search. Since this rescoring is very
efficient, the total amount of computation in the new method is al-
most the same as when using only the first transducer. In a 30k-
word vocabulary spontaneous lecture speech transcription task, our
proposed method significantly outperformed the general on-the-fly
composition method. Furthermore the speed of our method was
slightly faster than that of decoding with a single fully composed
and optimized WFST, where our method consumed only 20% of
the memory usage required for decoding with the single WFST. Fi-
nally, we have achieved one-pass real-time speech recognition in an
extremely large vocabulary of 1.8 million words.

1. Introduction
In recent years, large-vocabulary continuous-speech recognition
(LVCSR) systems have been incorporated into various speech appli-
cations, such as dictation systems, speech dialogue systems, broad-
cast news captioning systems and so on. The decoding process of
LVCSR finds a sequence of words that best matches an input sig-
nal from among many hypotheses. Although the above applications
work with current technologies, more efficient search algorithms
are still needed for very-large-vocabulary and spontaneous-speech
transcription tasks. In such tasks, it is more difficult to distinguish
a more likely hypothesis because many ambiguous hypotheses are
generated during the search.

Recently, the Weighted Finite-State Transducer (WFST) ap-
proach has become a promising alternative formulation to tradi-
tional decoding approaches, because it offers a unified framework
representing various knowledge sources, and it produces a full
search network optimized up to the HMM states [1]. The optimiza-
tion step minimizes search space and accelerates decoding.

However, in the case of using a very large vocabulary lexicon,
a detailed language model, or complicated transduction model, an
enormous huge transducer is usually generated by composing all the
components. Accordingly, both the amount of computation and the
memory usage in decoding increase even if the WFST is optimized.
Especially for memory usage, the problem is serious. If transducers
are composed, it is possible that the size of the resulting transducer
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will be equal to the product of those transducers. Thus, the size of
such a composite transducer easily exceeds the limitations of stan-
dard personal computers.

On-the-fly composition is a practical alternative to avoid such a
huge memory requirement [2][3]. In on-the-fly composition, the set
of WFSTs are separated into two or more groups, and in each group,
one WFST is composed and optimized. Composition between the
groups is performed during decoding if necessary. In [2] and [3],
a lot of memory was saved by using on-the-fly composition, but
search efficiency was decreased due to composition overhead.

In this paper, we propose a new on-the-fly composition algo-
rithm to achieve fast and memory-efficient decoding. In the new
method, a Viterbi search is performed based on the first transducer
of the two groups, whereas the second transducer is only used to
rescore the hypotheses generated during the search. Since compu-
tation of this rescoring is minimal, the total computation amount
of the new method is almost the same as when using only the
first transducer. We conducted experiments in a spontaneous lec-
ture speech transcription task and in an extremely large-vocabulary
recognition task in a spoken interactive open domain question-
answering system [7]. The results show that the proposed method
outperforms traditional methods.

2. Weighted Finite-State Transducers in
Speech Recognition

Recently, the WFST approach has been widely used for speech
recognition. WFSTs are finite state networks associating input and
output symbols on each arc that can be weighted with a log proba-
bility value.

Speech recognition is a transduction process from speech input
to the corresponding word sequence. The process can be repre-
sented as a cascade of several transductions, each of which can be
written in WFST form. Those WFSTs can then be combined by
using a composition operator, leading to the integration of the un-
derlying knowledge sources into a single input-output relation. An
integrated WFST for speech recognition can be composed as

R = H ◦ C ◦ L ◦G, (1)

whereH, C, L, andG are WFSTs for a state network of triphone
HMMs, a set of connection rules for triphones, a pronunciation
lexicon, and a trigram language model, respectively; “◦” repre-
sents the composition operator. As a result, decoding is a one-pass
search problem for a single huge networkR including cross-word
triphones and a trigram language model. Once the network is fur-
ther optimized by proceeding to weighted determinization and min-
imization, search efficiency dramatically increases.
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Figure 1: Hypotheses in standard on-the-fly composition

3. On-The-Fly Composition
When a single WFST is composed of all knowledge sources for
LVCSR, the number of states and transitions often becomes so large
that an enormous amount of memory is required during decoding.
To avoid this problem, on-the-fly composition is available. Gener-
ally in on-the-fly composition two WFSTs are prepared, which are
composed during decoding.

In [3], the WFSTs are divided into two groups:

(H ◦ C ◦ L ◦Guni) ◦Gtri/uni. (2)

The composite transducer for the first group(H◦C◦L◦Guni) trans-
lates a HMM-state sequence into the corresponding word sequence,
while the other transducerGtri/uni assigns trigram probabilities to
the word sequence, whereGuni is a unigram model andGtri/uni

is the trigram model adjusted by dividing each trigram probability
by the unigram probability ofGuni. As stated in [2], pushing the
weights over groups is a kind of “look-ahead” technique for im-
proving search efficiency.

Figure 1 shows a decoding process with standard on-the-fly
composition of two transducers, HMM-state-to-word transducer
(H ◦C ◦L◦Guni) and language model transducerGtri/uni, which
are illustrated in Figs. 2 and 3, respectively.

In Fig. 1, the nodes and arcs indicate different hypotheses along
the time axis. A pair of numbers in each node means that this node
is composed of two states, one of which is from the first transducer
and the other is from the second transducer. For example, node (2,1)
means that this node is composed of state 2 in Fig. 2 and state 1 in
Fig. 3. Each arc is also composed of two transitions from the two
transducers. The lefthand side of “:” indicates an input symbol (an
index of a HMM-state), and the righthand side of “:” indicates an
output symbol (word); “ε” means that nothing is output.

Although the number of hypotheses increases according to the
combined states as shown in Fig. 1, memory usage is much saved
since the combined states are generated only when those states are
necessary during decoding. However, the actual search space is
usually larger than that of the full-composition method since it is
difficult to optimize the search space before decoding. Furthermore,
the overhead of on-the-fly composition also increases the amount of
computation required for decoding.

4. Fast On-The-Fly Composition
We propose a new on-the-fly composition algorithm for fast and
memory-efficient speech recognition. The concept of the proposed
method is as follows.

Suppose there are two transducersA andB that can be com-
posed. In general on-the-fly composition, given an input symbol
sequenceX, the decoder findŝZ such that

W (X → Ẑ) = max
Y,Z

{WA(X → Y ) + WB(Y → Z)} , (3)
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Figure 2: HMM-state-to-word transducer
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Figure 3: Language model transducer

whereWA(X → Y ) is the accumulated score when the transducer
A translates the symbol sequenceX to Y ; WB(Y → Z) is also the
score of transductionY → Z by the transducerB. The recognition
result is the output symbol sequenceẐ that derivesW (X → Ẑ).

Equation (3) can be rewritten as

W (X → Ŷ ) = max
Y
{WA(X → Y ) + max

Z
WB(Y → Z)}. (4)

This equation means that the algorithm for findingŶ can be applied
to obtainW (X → Ẑ) which is equal toW (X → Ŷ ), where
maxZ WB(Y → Z) can be assumed as the compensation score.

In the new method, a Viterbi search is performed based on the
first transducerA but not based on the composite transducerA ◦B.
In frame-synchronous processing in the Viterbi search, hypotheses
are generated byA, each of which represents an individual state
transition process inA. If a new hypothesish is generated by adding
a new transitione to an existing hypothesis,h is rescored by

max
f

WB(o[h] → o[f ]),

using the second transducerB only when the transitione has a non-
epsilon output symbol, wheref indicates a hypothesis generated by
B acceptingo[h] which means the output symbol sequence ofh.
o[f ] means the output symbol sequences off as well.

By associating each hypothesish with a list of hypothesesg[h]
produced byB, the rescoring process can be efficiently performed.
Here, g[h] means the set of hypotheses that are generated byB
wheno[h] is given as an input symbol sequence forB. We call the
hypotheses ing[h] produced byB “co-hypotheses” to distinguish
them from the hypotheses produced byA in the Viterbi search.

Suppose a new hypothesish′ is generated by adding a transition
e from the staten[h] thath has reached in the transducerA. The
score ofh′ derived withA is

αA(h′) = αA(h) + w(e), (5)
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Figure 4: Hypotheses in proposed on-the-fly composition

wherew(e) indicates the weight of transitione.
If transitione outputs nothing (e has an epsilon output symbol),

g[h] does not change, i.e.g[h′] = g[h] sinceo[h] does not change.
On the other hand, if transitione outputs a non-epsilon symboly, a
new co-hypothesisf ′ is generated for each co-hypothesisf in g[h]
by adding a transitionr which accepts symboly from the staten[f ]
thatf has reached. The score off ′ can be calculated as

αB(f ′) = αB(f) + w(r). (6)

New co-hypotheses generated by the above procedure are then
stored ing[h′].

Accordingly, the Viterbi search is performed based on the score:

α(h′) = αA(h′) + max
f ′∈g[h′]

αB(f ′). (7)

During the search, when different hypotheses meet at the same state
in A, only the best hypothesis survives and then their co-hypothesis
lists are merged. If there are different co-hypotheses which have
reached at the same state inB, only the best co-hypothesis among
them is retained in the merged list.

At the end of the utterance, the best complete hypothesis can be
derived as

ĥ = argmax
h:n[h]∈FA

α(h), (8)

and the best complete co-hypothesis can be derived as

f̂ = argmax
f∈g[ĥ]:n[f ]∈FB

αB(f), (9)

whereFA andFB indicate sets of the final states of transducersA
andB, respectively. Accordingly, the recognition result iso[f̂ ], i.e.
the output symbol sequence off̂ .

Figure 4 shows a decoding process in the proposed on-the-fly
composition when the decoder uses the transducers in Figs. 2 and
3. The upper half of Fig. 4 represents a set of hypotheses generated
by the first transducer in Fig. 2. Compared to the case of stan-
dard on-the-fly composition in Fig. 1, the number of hypotheses is
much smaller. As shown in the lower half of Fig. 4, each hypoth-
esis is linked to a set of co-hypotheses that is based on the second
transducer, and it is rescored by those co-hypotheses. Since mini-
mal computation is required to update the list of co-hypotheses, the
total amount of computation is almost the same as when decoding
with only the first transducer.

In the proposed method, rescoring with co-hypotheses is ef-
fective for pruning hypotheses during the search. By modifying

the score of each hypothesis with the corresponding co-hypotheses,
each hypothesis can be accurately evaluated using all knowledge
sources. Hence, more promising hypotheses can be kept in a beam
search compared to multi-pass search strategies in which, for exam-
ple, only the first transducer is used in the first pass.

However, the proposed method does not necessarily ensure that
the best hypothesis is found because different co-hypotheses share
the same time alignment. In the proposed method, it is assumed
that the time alignment of the transition (4,1), (6,3), (8,3) in Fig. 1
is always equal to that of (4,2), (6,4), (8,4) in the same figure. Of
course, this assumption is not always correct because it is possible
that the time at node (4,1) is not equal to the time at node (4,2).

As mentioned in [4], however, triphones yield a good assump-
tion. When we use triphones, transitions to a state come from
states associated with a unique preceding phone. As a result, dur-
ing decoding, time alignment is retained depending on the preced-
ing phone. Although the preceding phone is not necessarily unique,
since the WFST is actually optimized up to the shared HMM-states,
we can say thatphone-pair approximationis roughly used. The
phone-pair approximation assumes that the best starting time for a
phone only depends on the preceding phone rather than on the en-
tire preceding phone sequence. If this assumption is satisfied, our
method ensures that the best hypothesis is found.

5. Evaluation with CSJ Task
We evaluated our on-the-fly composition method in a 30k-word
spontaneous speech transcription task. The task is based on a corpus
of spontaneous Japanese (CSJ) [5], mostly comprising monologues
such as lectures, presentations, and news commentaries.

The evaluation data were limited to presentations in academic
fields. The speeches were digitized with 16-kHz sampling and 16-
bit quantization. Feature vectors had 25 elements consisting of
12 MFCCs, their delta components and a delta log energy. Tied-
state triphone HMMs with 3,000 states and 16 Gaussians per state
were made by using 787 presentations in the corpus uttered by male
speakers (approximately 187 hours). A trigram language model was
estimated using manually transcribed text data of 2,592 presenta-
tions. Benchmark test 1 is used for evaluation, which consists of ten
academic talks presented by male speakers. The test-set perplexity
is 78.7, and the out-of-vocabulary rate is 2.2%.

We used a speech recognizerSOLON[6] developed at NTT
Communication Science Laboratories, which performs a one-pass
Viterbi search based on a single WFST or two WFSTs that can be
composed. A standard PC (with a Xeon 3.0-GHz processor) was
used to measure the speed of the decoder.

Figure 5 shows the relationship between word accuracy
(WACC) and decoding time in each method when changing the
beam width parameter of the decoder. The decoding time is rep-
resented by a real-time factor (RTF) that indicates the ratio of de-
coding time to utterance time. Our proposed method outperformed
the full composition method. In this case, our method required only
20% memory usage of the full composition method. In addition,
while our method achieves the same accuracy as standard on-the-
fly composition, it is 1.5 to 2 times faster.

6. Evaluation with ODQA Task
We conducted additional experiments on the task for a spoken inter-
active open-domain question-answering (ODQA) system developed
at NTT Communication Science Labs [7]. In this task, a user asks
the system a question that domain is not restricted, after which the
system finds the answer from a large corpus of news texts cover-
ing the last 12 years. Since the system cannot know what the user
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Figure 5: WACC vs. RTF in CSJ task

will ask in advance, the speech recognizer has to cover an extensive
vocabulary.

We developed five sets of lexicon and language models that cor-
responded to 20K, 65K, 200K, 1M, and 1.8M vocabularies. These
models were estimated using newspaper articles of the last 12 years
and about 14,000 interrogative sentences.

Tied-state triphone HMMs with 3,000 states and 16 Gaussians
per state were trained by using read speech data uttered by about
150 female speakers (approximately 50 hours). The evaluation data
consists of 2,000 questions uttered by a female speaker who does
not belong to the training data. We show the complexity of this task
in Table 1.

We used a computer (with an Opteron 246 2-GHz processor
and a 16-Gbyte memory) to compile transducers and to measure the
speed of the decoder. We tried to build the full-composite trans-
ducers, but it was no longer possible. Thus, in the experiment,
we just compared standard on-the-fly composition method with our
proposed method.

Figure 6 shows the relationship between word accuracy and de-
coding time in each method. These results reveal that the proposed
method is 2 to 3 times faster than the standard method. Since the
margin increases as the vocabulary size expands, our method espe-
cially recognizes a very large amount of vocabulary speech. Finally,
we have achieved real-time speech recognition of a vocabulary of
1.8 million words.

7. Conclusions
In this paper, we have proposed a new on-the-fly composition algo-
rithm for Weighted Finite-State Transducers (WFSTs) in LVCSR.
In a 30k-word vocabulary spontaneous lecture speech transcription
task, our proposed method outperformed not only general on-the-fly
composition, but also decoding based on a single WFST that is fully
composed and optimized. In that task, our method consumed only
20% of the memory usage required for decoding with a fully com-
piled WFST. In addition, we have also achieved real-time speech

Table 1: Out of vocabulary rate and test-set perplexity in ODQA
task

Vocabulary size 20K 65K 200K 1M 1.8M
OOV rate [%] 8.0 3.4 1.9 0.8 0.6
Perplexity 100.1 128.0 150.4 169.4 177.1
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recognition in an extremely large vocabulary of 1.8 million words.
Since this new method is a general algorithm for on-the-fly

composition of WFSTs, it can be applied to not only speech recog-
nition, but also other processings. In the future, we would like to
apply this technique to speech-input language processing such as
speech summarization [8], speech translation and so on.
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