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Abstract

This paper proposes an integrated framework to summarize
spontaneous speech into written-style compact sentences. Most
current speech recognition systems attempt to transcribe whole
spoken words correctly. However, recognition results of spon-
taneous speech are usually difficult to understand, even if the
recognition is perfect, because spontaneous speech includes re-
dundant information, and its style is different to that of written
sentences. In particular, the style of spoken Japanese is very
different to that of the written language. Therefore, techniques
to summarize recognition results into readable and compact
sentences are indispensable for generating captions or minutes
from speech. Our speech summarization includes speech recog-
nition, paraphrasing, and sentence compaction, which are inte-
grated in a single Weighted Finite-State Transducer (WFST).
This approach enables the decoder to employ all the knowledge
sources in a one-pass search strategy and reduces the search er-
rors, since all the constraints of the models are used from the
beginning of the search. We conducted experiments on a 20k-
word Japanese lecture speech recognition and summarization
task. Our approach yielded improvements in both recognition
accuracy and summarization accuracy compared with other ap-
proaches that perform speech recognition and summarization
separately.

1. Introduction
In the past decade, techniques that enable large-vocabulary
continuous-speech recognition have been intensively investi-
gated, and they have achieved more than 90% word accuracy
for read speech. Currently, spontaneous speech recognition is
being investigated as the next target[1][2]. Although state-of-
the-art speech recognizers have not yet achieved sufficient ac-
curacy for spontaneous speech, the technique is being expected
to be applied to automatic generation of captions, minutes, and
so on. However, there is another problem besides the insuffi-
cient accuracy. That is, the recognition result is usually difficult
to understand, even if the recognition system yields 100% accu-
racy, because spontaneous speech includes redundant informa-
tion such as disfluencies, filled pauses, repetitions, repairs, and
word fragments. Therefore, speech summarization techniques
are required to generate readable and compact sentences from
spontaneous speech. In this paper, we define speech summa-
rization as a translation from speech signals to compact written-
style sentences, which includes speech recognition, paraphras-
ing, and compaction.

We have already proposed a speech paraphrasing method
using Weighted Finite-State Transducers (WFSTs)[3]. The
method translates spontaneous speech into written-style sen-

tences. Such techniques are indispensable in Japanese, be-
cause the written style is preferred to the spoken style when
making captions or minutes. The style of spoken Japanese is
very different from that of the written Japanese in compari-
son with English. In this paper, we extend our paraphrasing
method to speech summarization. Some techniques for speech
summarization have been proposed [4]. In [5], dynamic pro-
gramming was applied to produce understandable summarized
sentences by extracting relatively important words with high
heuristic likelihood while excluding redundant and irrelevant
information. This method can effectively compact transcribed
sentences. However, since the summarization is performed as
a post-processing of speech recognition, it tends to suffer from
recognition errors, and it requires a delay after recognition.

Unlike such methods, our approach is an integrated pro-
cessing of speech recognition, paraphrasing, and compaction
using a single WFST. The WFST is generated by combin-
ing WFSTs for those three processes. This framework has
two advantages over the separated implementation consisting
of speech recognition and the succeeding text processing: One
is that the target sentences can be derived almost simultaneously
while a human speaks, because the speech can be directly trans-
lated into the target sentences frame by frame using a Viterbi
search for the integrated network. Therefore, this framework is
more effective for on-line applications. The other is that speech
recognition accuracy can improve by integrating all the knowl-
edge sources into one single network, meaning that the decoder
can choose the best hypothesis under all the constraints. Fur-
thermore, search errors can be reduced by using all the knowl-
edge sources from the beginning of the search, because it is pos-
sible to judge whether each hypothesis is promising or not in the
early stages of the search. This framework is more effective,
especially when recognizing speech with a specific style and
translating it into the corresponding general-style sentences, be-
cause it is usually difficult to estimate a good language model
for a specific style if few data are present, whereas it is relatively
easy for the general style. In general, it is difficult to prepare a
large corpus of spontaneous speech transcriptions, whereas it
is relatively easy to prepare one for written documents. Thus,
this framework is suitable for translations such as spontaneous
speech to written-style text.

We conducted experiments on a 20k-word Japanese lecture
speech recognition and summarization task. We present the
evaluation results and state our conclusions.

2. Speech Summarization using WFSTs
We built a spontaneous speech summarization system. This sys-
tem searches the best summarized result for a given speech in-
put using a one-pass Viterbi algorithm while performing speech



recognition, paraphrasing, and compaction all at once.

2.1. Speech Recognition

Continuous speech recognition can be formulated as a problem
to find a word sequencêW , such that

Ŵ = argmax
W

P (W |O) (1)

= argmax
W

P (O|W )P (W ), (2)

whereP (O|W ) is an acoustic probability of speech inputO
given a word sequenceW andP (W ) is the language proba-
bility of W . To estimate these probabilities, a general speech
recognition system has phonetic, acoustic and linguistic knowl-
edge sources, which are a pronunciation lexicon, an acoustic
model, and a language model, respectively. A speech recogni-
tion decoder finds the most likely hypothesis for the input while
inquiring such knowledge sources.

Recently, the WFST approach has become a promising
alternative formulation to the traditional decoding approach,
which offers a unified framework representing various knowl-
edge sources and producing the full search network optimized
up to the HMM states [6][7].

WFSTs are finite state networks associating input and out-
put symbols on each arc, which can be weighted with a log
probability value. They can represent all of the above men-
tioned knowledge sources for speech recognition. Furthermore,
WFSTs can be combined by using the composition operator,
leading to the integration of the underlying knowledge sources
into a single input-output relation. An integrated WFST for
speech recognition can be composed as

R = H ◦ C ◦ L ◦G, (3)

whereH, C, L, andG are, for example, a state network of
triphone HMMs, a set of connection rules for triphones, a pro-
nunciation lexicon, and a trigram language model, respectively.
Here, “◦” represents the composition operator. As a result, de-
coding withR becomes a one-pass search process using cross-
word triphones and trigrams. Once the network is further op-
timized by proceeding to weighted determinization and mini-
mization, the search efficiency dramatically increases.

2.2. Speech Paraphrasing

Paraphrasing can be considered as a kind of machine transla-
tion. We formulate the speech paraphrasing as a speech-input
machine translation[8][9], where the source language corre-
sponds to spontaneous speech and the target language corre-
sponds to written-style sentences.

The translation of a source languageW to a target language
can be formulated as the search for a word sequenceT̂ from a
target language, such that

T̂ = argmax
T

P (T |W ) (4)

= argmax
T

P (W |T )P (T ). (5)

If the source language is speechO, i.e. speech-input case, the
translation can be formulated as the search forT̂ , such that

T̂ = argmax
T

P (T |O) (6)

= argmax
T

X
W

P (O|W )P (W |T )P (T ) (7)

' argmax
T

max
W

P (O|W )P (W |T )P (T ). (8)
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Figure 1: An example of a substitution WFST
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Figure 2: Cascade of speech-input machine translation

Some approximations have been proposed to determine the
translation probabilityP (W |T ). In this paper, we assume

P (W |T ) ≈ PG(W )δS(W, T ), (9)

wherePG(W ) is a prior probability ofW , given by a language
model for speech recognition, andδS(W, T ) takes binary 0 or
1 values depending on whether it is possible to substituteW
with T , which is given by a set of substitution rules of word
sequences.

The substitution functionδS(W, T ) can be expressed as a
WFST, and an example of a substitution WFST is illustrated in
Fig. 1. In the figure, the symbol pair on each arc represents one
word (the left-hand side of ‘:’) substituted with the other (the
right-hand side of ‘:’) except for “ω:ω,” which indicates any
word can be substituted with the word itself. The WFST, for
example, can substitute a sentence:
“OH, GO FIGURE! IT’S A PIECE OF CAKE,”
with another sentence:
“I CANNOT BELIEVE IT IS AN EASY TASK.”

Let S be a WFST ofδS(W, T ), andD be a WFST of a
language model of the target language. The integrated WFST
for speech translation can be composed as

Z = H ◦ C ◦ L ◦G ◦ S ◦D. (10)

The cascade in Fig. 2 illustrates the process of speech trans-
lation. Each WFST in the cascade can be optimized, and the
resulting WFST in each composition step can also be optimized
using weighted determinization and minimization.

2.3. Sentence Compaction

To incorporate a sentence compaction mechanism into the in-
tegrated WFSTZ in Eq. 10, we extend the lexicon transducer
L. First, we connect a wildcard transducer which accepts an
arbitrary phone sequence. The resulting lexicon transducer is
illustrated in Fig. 3. The searched path will detour to the wild-
card when unreliable utterances are inputted, such as out-of-
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vocabulary words, disfluencies, filled pauses, repetitions, re-
pairs, and word fragments. The wildcard transducer outputs
a symbol “<sp> ,” which indicates a phrase boundary. This
symbol is introduced to avoid irrelevant connections of words
before and after the skipped words (the wildcard). The con-
nections are restricted by the language modelG, so that each
connected point becomes a phrase boundary. However, the lan-
guage modelG needs to be estimated with a modified text cor-
pus including “<sp> .”

Secondly, we assign a weight indicating a significance of
each word to the first arc of the word inL to extract more im-
portant words. We use IDF (Inverse Document Frequency) as
the significance measure.

We can control the summarization ratio by changing the
penetration weightλ, which indicates a special weight associ-
ated with the arc at the entrance of the wildcard transducer. The
summarization ratio is defined as:

Summarization Ratio=
Number of extracted words
Number of spoken words

. (11)

If λ is large, the summarization ratio will be large, whereas, if
λ is small, the ratio will be small.

3. Experiments
3.1. Conditions

We evaluated our summarization system in a 20k-word sponta-
neous speech recognition and summarization task. The task is
based on a corpus of Japanese spontaneous speech [2], mainly
consisting of monologues such as lectures, presentations, and
news commentaries.

The target topic was limited to lectures in academic fields.
Three types of text corpora were prepared for the topic, which
were spoken, written, and parallel. The spoken corpus con-
sists of manual transcriptions of 680 lectures, which written
corpus consists of newspaper text from one year, World Wide
Web (WWW) text, and automatically translated text of the man-
ual transcriptions. The parallel corpus consists of a subset of
the manual transcriptions (six lectures) and its manually para-
phrased text rendered into written language by a human subject.

The automatically translated text was generated from the
manual transcriptions using the WFSTS ◦ D′, whereS was
constructed with the substitution rules extracted from the paral-
lel corpus, andD′ was the trigram language model trained with
only the newspaper text and the WWW text. The corpora are
summarized in Table 1.

Table 1: Text corpora for experiments
type text set #words purpose

spoken Manual transcription 2 M G
Newspaper 35 M

written WWW 1.8 M D′
D

Auto-translation 1.9 M
Spoken-written

parallel parallel text 30K S

The speeches were digitized with 16-kHz sampling and 16-
bit quantization. Feature vectors had 25 elements consisting of
12 MFCC, their delta, and delta log energy. Tied-state triphone
HMMs with 3,000 states and 16 Gaussians per state were made
by using 338 lectures in the corpus uttered by male speakers
(approximately 59 hours). Decoding was performed by a one-
pass Viterbi search for WFSTs [7].

3.2. Evaluation method for speech summarization

To automatically evaluate summarized sentences, correctly
transcribed speech is manually summarized by human subjects
and used as the correct target. The manual summarization re-
sults are merged into a word network that approximately ex-
presses all possible correct summarization, including subjective
variations. The summarization accuracy of automatic summa-
rization is calculated using the word network [4]. The word
string that is the most similar to the automatic summarization
result extracted from the word network is considered as a cor-
rect answer for the automatic summarization. The similarity is
measured based on the word accuracy. The best accuracy, com-
paring the summarized sentence with the set of words extracted
from the network, is used as a measure of linguistic correct-
ness and maintenance of the original meanings of the utterance
(summarization accuracy).

We excluded four lectures from training in order to use
them for evaluation, and these are not included in the spoken
corpus. To make the word network, the transcriptions of the
test lectures are first translated into written-style text, and then
summarized by 9 human subjects.

3.3. Experimental results

Table 2 shows word accuracy in speech recognition for
each lecture, where A01M0007, A01M0035, A01M0074, and
A05M0031 represent lecture IDs, and their lengths are 30, 28,
12, and 27 minutes, respectively. In the table, “baseline” indi-
cates results for the WFSTR (Eq. 3), while “integrated” indi-
cates results for the WFSTZ (Eq. 10). In every lecture, the
integratedmethod yielded higher accuracies than those of the
baseline method.

In the integratedmode, speech recognition results are not
observed because the WFSTZ does not output recognized hy-
potheses, but written-style sentences. However, we can easily
obtain recognition results by using the following WFST instead.

Z′ = H ◦ C ◦ L ◦ proj(G ◦ S ◦D), (12)



Table 2: Word accuracy [%] in speech recognition
lecture ID baseline integrated

A01M0007 71.8 73.3
A01M0035 60.0 60.9
A01M0074 71.8 72.8
A05M0031 74.6 75.8

Ave. 68.6 69.9
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Figure 4: Summarization ratio

where “proj” indicates the projection operator of a WFST to
a WFSA (Weighted Finite-State Acceptor). In our work, the
operation simply substitutes the output symbol of each arc with
its input symbol. In this first evaluation, the lexicon transducer
L did not include a wildcard; that is, the sentence compaction
had not yet been performed.

We then investigated the changes of the summarization ra-
tio when the penetration weightλ varied. Fig. 4 shows relation-
ships between the penetration weight and the summarization ra-
tio for two lectures. These results mean that the summarization
ratio can be controlled by the penetration weight, although the
relationship changes for each lecture. The property seems to
depend on recognition accuracy. Further investigation is neces-
sary for confirmation.

Finally we compared our integrated summarization with the
post-processing method [5]. In the post-processing mode, the
speech signal was recognized using the transducerR, and the
recognition result was paraphrased into written-style text us-
ing S ◦ D. The resulting text was summarized using the Dy-
namic Programming technique according to the word signifi-
cance score and the linguistic likelihood. Dependency struc-
tures of the original sentences were not considered, an idea in-
troduced in [5]. Table 3 shows the summarization accuracies
for the two lectures. In every lecture and summarization ratio,
the integrated method yielded higher accuracies than those of
the post-processing method. Accordingly, we can suppose that
the improvement was yielded from the improvement in speech
recognition. Thus, it is shown that our integrated approach re-
duces recognition errors and also improves the performance of
speech summarization.

4. Conclusions
We proposed a spontaneous speech summarization system
based on Weighted Finite-State Transducers (WFSTs). This

Table 3: Summarization Accuracy [%]

Summarization Ratio
50% 70%

lecture post- post-
ID process integrated process integrated

A01M0035 22.9 25.7 35.4 35.9
A01M0074 35.7 39.8 54.2 55.9

system translates spontaneous speech directly into written-style
compact sentences using a single WFST built by combining
WFSTs for speech recognition, paraphrasing, and compaction.
Unlike the post-processing method, the integrated method al-
lows the incorporation of knowledge about the paraphrasing to
improve speech recognition.

We conducted experiments on a 20k-word Japanese spon-
taneous speech recognition and summarization task. Our ap-
proach improved accuracies in speech recognition and summa-
rization. The improvements were not significant; however, this
approach has the potential to yield further improvements by in-
corporating better translation models.
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