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ABSTRACT

This paper describes a language modeling technique
using a kind of stochastic context free grammar (stochastic
dependency grammar, SDG). In this work, two improve-
ments are done upon the general CFG based SCFG model.
The �rst improvement is to use a restricted grammar in-
stead of general CFG. The dependency grammar used here
is a restricted CFG that expresses modi�cation between
two words or phrases. The derivation probabilities are es-
timated by inside-outside algorithm. The computational
complexity of the estimation is reduced from O(N3L3) to
O(N2L3), where N and L means the number of nontermi-
nals and length of a sentence respectively. Second, word
grouping is introduced for further reduction of the esti-
mation time. The basic idea is that regular grammar is
applied within a group and CFG is used to express inter-
group relationship. To achieve the idea, a new algorithm
is introduced. When a group have two words in average,
the learning time becomes about one-eighth. Two exper-
iments were carried out to investigate the performance of
the proposed model. In the �rst experiment, various kinds
of SCFGs were compared using perplexity. From the re-
sult, it was found that the proposed model have much lower
PP than the original model. As for the training speed,
restricted grammar made training process twenty times
faster, and the word grouping made it eight times faster.
In the second experiment, the proposed model was used as
a language model of LVCSR. The result showed that the
proposed model was as good as bigram and trigram, and
that the combination of trigram and the proposed model
achieved further improvement of WER.

1. Introduction

Language model is an indispensable component for
large vocabulary continuous speech recognition (LVCSR).
N-gram based language models are most popular for that
purpose. As n-gram models, especially bigram and tri-
gram models, are simple and powerful, almost all LVCSR
systems exploit bigram and/or trigram models. However,
there have been a criticism against n-gram models that it
can't reect long-range dependency because n-gram mod-
els use information of only a few preceding words to predict
probability of the current word.

Introduction of context free grammar (CFG) is the
most straightforward way to exploit long-range depen-
dency. A CFG is extended to a stochastic context free
grammar (SCFG) to give a probability of a sentence. An

SCFG G is expressed as

G = (N ; T ;P; S) (1)

where N ; T ;P are set of nonterminal symbols, terminal
symbols and production rules with derivation probabili-
ties respectively, and S stands for the starting symbol.
If we have many parse trees as training data, an SCFG
can be estimated using ML estimate. However, it is not
easy to obtain such parse trees. The inside-outside (IO)
algorithm[1, 2] is an EM-based algorithm that makes it
possible to estimate an SCFG from any texts without parse
tree.

The biggest problem of IO algorithm is that it is com-
putationally very expensive. Its computational complexity
is O(N3L3), where N is number of nonterminal symbols
and L is length of given sentence. When number of non-
terminals gets larger, learning process becomes slower very
rapidly. If we use a grammar for NLP, number of non-
terminals should be more than several hundred, which is
impossible to estimate probabilities using IO algorithm.

In this work, two kind of improvements are done upon
traditional IO based SCFG. The �rst point is to use re-
stricted grammar to reduce computational complexity of
IO algorithm. The second is to group phrase before apply-
ing IO algorithm. As a Japanese phrase contains approx-
imately two words in average, the computation time for
training gets about one-eighth of original IO algorithm.

2. Stochastic Dependency Grammar

The IO algorithm requires computational complexity
of O(N3) where N is number of nonterminals, because
number of parameter P (� ! �) is in proportion to N3.
If number of rules can be reduced, the computational com-
plexity can be reduced too. In this work, number of rules
is reduced to N2 by considering dependency structure of
Japanese language.

Japanese language has a feature that a modi�er pre-
cedes to the head. For example,

akai hana ([a] red ower)
red ower

neko ga iru ([there] is [a] cat)
cat case-SUB be

In the �rst example, the word akai modi�es the word hana,
which is the head of this noun phrase. In the second exam-
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Figure 1: Phrases and their dependency in Japanese

ple, the word neko modi�es the postposition ga which is
a case marker of subject, and the phrase neko ga modi�es
the verb iru.

Considering this feature, a rule � ! � in Japanese
language can be interpreted as \an element � modi�es ,
and the whole string can be regarded as �." Now we in-
troduce an assumption that the grammatical category of
head and entire string is similar. Then the rule can be
approximated as

�! �� (2)

which can be interpreted as \an element � modi�es �,
and the whole string can be regarded as �." This kind
of modi�cation is called kakari-uke in Japanese linguistics
terminology. With this approximation, a rule contains up
to two kind of nonterminals, which means that the compu-
tational complexity of training algorithm can be reduced
to O(N2). We call this kind of grammar stochastic depen-

dency grammar.

Many languages, including English, have both left-to-
right and right-to-left modi�cation. In this case, a gram-
mar has to have rules that correspond to two kind of mod-
i�cations:

�! �� (3)

�! �� (4)

With these rules, the complexity is still O(N2).

3. Consideration of phrase boundary

Another problem of IO algorithm is that the training
time is in proportion to O(L3). To reduce the training
time, further restriction is done upon the training algo-
rithm and the grammar. The basic idea is that a sentence
is divided into phrase-like unit (called bunsetsu) and inside
and outside probabilities are calculated for bunsetsu se-
quence. In the following discussion, we denote this phrase-
like unit by `phrase.' As Japanese phrase contains approx-
imately two words in average, the training time is expected
to be reduced to about one-eighth.

Japanese phrase is de�ned as a content word followed
by zero or more function words. Figure 1 shows an ex-
ample of the phrases and their dependency. The example
sentence is \kore ga kotae da" (this is [the] answer). In
the sentence, \kore ga" and \kotae da" are grouped into
phrases. The underlined words (ga and da) are function
words. According to Japanese modi�cation rule, a content
word modi�es the following function words and they forms
one phrase. As a content word always starts a new phrase,
it is very easy to divide a sentence into a phrase sequence.

To realize inter-phrase (or inter-bunsetsu) SCFG, we
have to consider intra-phrase forward probability h and
intra-phrase backward probability r, as well as further mod-
i�cation of SCFG rules.

To utilize inter-phrase dependency, the following three
kinds of rules have to be used instead of Chomsky normal

form:

� ! �� �; � 2 N (5)

� ! wc � 2 N ; wc 2 Tc (6)

� ! �wf �; � 2 N ; wf 2 Tf (7)

where N is a set of nonterminals, Tc is a set of all con-
tent words and Tf is a set of all function words. The �rst
and the second rules are almost same to that of Chomsky
normal form, and the third rule introduces intra-phrase

dependency in Japanese.

Let us de�ne the following notations:

M Number of phrases in a sentence
Km Number of function words in the m-th

phrase (Km � 0)
wmc The content word of m-th phrase
wmf;i The i-th function word of mth phrase
Pm m-th phrase (= wmcwmf;1 : : : wmf;Km

)
a(�j�) Production probability of the rule �! ��
b(wcj�) Production probability of the rule �! wc
c(�wf j�) Production probability of the rule �! �wf
h(m; i; �) Intra-phrase forward probability of m-th

phrase
r(m; i; �) Intra-phrase backward probability of m-th

phrase
e(m;n; �) Inter-phrase inside probability
f(m;n; �) Inter-phrase outside probability

g(m;n; �; �) =

n�1X
l=m

a(�j�)e(m; l; �)e(l + 1; n; �)

All probabilities are calculated as follows:

Intra-phrase forward probability

h(m; i; �) = P (�! wmcwmf;1 : : : wmf;i) (8)

=

(
b(wmcj�) if i = 0P

�
h(m; i� 1; �)c(�wmf;ij�)

otherwise

Inter-phrase inside probability

e(m;n; �) = P (�! Pm : : : Pn) (9)

=

�
h(m;Km; �) if m = nP

�
g(m;n; �; �) otherwise

Inter-phrase outside probability

f (m;nj�) = P (S ! P1 : : : Pm�1�Pn+1 : : : PM ) (10)

f(1;M; �) =

�
1 if � = S
0 if � 6= S

f(m;n;�) =

m�1X
l=1

X
�

a(�j�)e(l;m� 1; �)f(l; n; �) +

MX
l=n+1

X
�

a(�j�)e(n + 1; l; �)f(m; l; �)

otherwise



Table 1: Conditions of experiment 1

Number of
nonterminals

20

Vocabulary
size

3032 (Number of distinct words oc-
curred more than twice in the cor-
pus)

Corpus
EDR corpus (Japanese corpus from
newspapers and magazines)
Training text Evaluation text

# sentence 2000 100
# word 53910 2782
UNK ratio 10.3% 22.0%

Intra-phrase backward probability

r(m; i; �) = P (S ! P1 : : : Pm�1� (11)

wmf;i+1 : : : wmf;Km
Pm+1 : : : PM )

=

(
f(m;m;�) if i = KmP

�
c(�wmf;i+1j�)r(m; i+ 1; �)

otherwise

Using these probabilities, each parameter can be rees-
timated as follows:

a
0

(�j�) =

M�1X
m=1

MX
n=m+1

g(m;n; �; �)f(m;n; �)

X
�

M�1X
m=1

MX
n=m+1

g(m;n;�; �)f(m;n; �)

(12)

b
0

(wj�) =

X
m:wmc=w

b(wj�)r(m; 0; �)

MX
m=1

b(wmcj�)r(m; 0; �)

(13)

c
0

(�wj�) =

MX
m=1

X
i:wmf;i=w

h(m; i� 1; �)c(�wj�)r(m; i; �)

MX
m=1

KmX
i=1

h(m; i; �)r(m; i; �)

(14)

4. Experiments

Two experiments were carried out to investigate the
performance of the proposed model. In the �rst experi-
ment, various kinds of SCFGs were compared using per-
plexity. Table 1 shows the conditions of the experiment.

In this experiment, �ve kinds of SCFGs were com-
pared each other. Table 2 shows the speci�cation of each
models. The SCFG model is an original SCFG without
any improvements. P-SCFG model refers phrase bound-
ary, but the grammar is not restricted. K-SCFG uses the
restricted grammar rules but it doesn't consider phrase
boundary. K-SCFG2 uses phrase-conscious rules that im-
proves the perplexity, but it still doesn't use phrase bound-
ary explicitly. PK-SCFG utilizes both restricted grammar

Table 2: Compared SCFGs

SCFG
word based phrase based

restricted name SCFG P-SCFG

grammar rule type �! � �! �
not used �! w �! w

�! �w

complexity O(N3L3) O(N3M3)

restricted name K-SCFG K-SCFG2 PK-SCFG

grammar rule type �! �� �! �� �! ��
used �! w �! w �! w

�! �w �! �w

complexity O(N2L3) O(N2M3)
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Figure 2: Comparison of various type of SCFGs

and phrase boundary. For each model, initial values of
a(�j�) were set uniformly and b(wcj�); c(�wf j�) are set
randomly.

Figure 2 shows the experimental result of perplexity
vs. iteration for each model. From this result, it was found
that four enhanced models were much better than the orig-
inal model. The perplexity of PK-SCFG was as well as that
of K-SCFG2, that was the best model among �ve SCFGs.
Figure 3 shows training times of each model. Enhanced
models were much faster than the original SCFG. The
use of restricted grammar made training process twenty
times faster, and phrase boundary information made it
eight times faster.

In the second experiment, PK-SCFG model was used
as a language model of large vocabulary continuous speech
recognition. The task domain was read speech of Japanese
newspaper article from Mainichi Shimbun. The vocabu-
lary size was 5000. The test set consisted of 100 sentences
without any OOV words. The training set was 46301 sen-
tences chosen from Mainichi Shimbun January to Septem-
ber of 1994, which contained no OOV words. Number of
nonterminals was set to 100 and 120. The initial values of
the models were set with two steps. In the �rst step, all
words in the training sentences were replaced with its cat-
egory name, and SCFGs were trained using that category
name sequences. In the second step, output probability of



El
ap

se
d 

Ti
m

e[
se

c/
ite

ra
tio

n]

0

2000

4000

6000

28000

30000

SCFG P-SCFG K-SCFG K-SCFG2 PK-SCFG Bigram
Trigram

Figure 3: Elapsed time for estimating parameters of
SCFGs

Table 3: Optimum values of language model weights and
insertion penalty

model W2 W1 p

bigram 16 0 -20
trigram 17 0 -20
SCFG 100 0 19 -16
SCFG 120 0 18 -20
trigram+SCFG 100 14 10 0
trigram+SCFG 120 6 16 -12

a word was estimated as follows:

b
0

(�! wc) = b(�! C(wc))P (wcjC(wc)) (15)

c
0

(�! �wf ) = c(�! �C(wf ))P (wf jC(wf )) (16)

where C(w) denotes the category name of w. Using these
initial values, the models were trained again using the orig-
inal training set.

Acoustic models in this experiments were HM-Nets
with state clustering [3] which had 2000 states of 16 Gaus-
sian mixture.

In this experiment, 100-best candidates were gener-
ated from input speech using bigram LM, then these can-
didates were rescored using trigram and PK-SCFG. The
total score of a candidate W for input speech O was cal-
culated as follows:

S(W jO) = W1 logP1(W )+W2 logP2(W )+Sa(OjW )+ pn
(17)

where n was the length of the candidate, Sa was an acoustic
score, P1 and P2 were probabilities from SCFG and n-gram
respectively, W1 and W2 were language model weights of
each model and p was an insertion penalty. Optimum val-
ues of those parameters are shown in Table 3.

Figure 4 shows perplexity of each model calculated
upon test sentences. Perplexities of SCFGs are higher than
that of bigram and trigram. Figure 5 shows word error
rates obtained through rescoring. These result shows that
SCFGs as good LM for LVCSR as bigram and trigram,
and that the combination of trigram and SCFG achieves
further improvement of WER.
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Figure 5: WER results

5. Summary

A new language model was proposed that utilizes de-
pendency structure of Japanese language. This model is
based on stochastic context free grammar and it reduces
its computational complexity up to O(N2) by using re-
stricted grammar. Word grouping using regular grammar
is introduced for further reduction of training time. From
the experimental result, the proposed model outperformed
a traditional SCFG, and it gave lower WER on LVCSR
task combined with trigram model.
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