Clausal Proofs for Pseudo-Boolean Reasoning

Randal E. Bryant
Carnegie Mellon University

Armin BiereAlbert-Ludwigs University

Marijn J. H. Heule Carnegie Mellon University

TACAS, 2022

Context: Boolean Satisfiability Solvers

SAT Solvers Useful & Powerful

- Mathematical proofs
- Formal verification
- Optimization

Context: Boolean Satisfiability Solvers

SAT Solvers Useful & Powerful

- Mathematical proofs
- Formal verification
- Optimization

Can We Trust Them?

- ► No!
- Complex software with lots of optimizations
- ► KISSAT: 35K LOC

Trustworthy SAT Solvers: Satisfiable Formulas

Trustworthy SAT Solvers: Unsatisfiable Formulas

Checkable Proofs

- Step-by-step proof in standard logical framework
- Independently validated by proof checker

Impact of Proof Checking

Adoption

 Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Impact of Proof Checking

Adoption

 Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Unintended Consequences

- Narrowed focus to single SAT algorithm
 - Conflict-Driven Clause Learning (CDCL)
 - Search for solution, but learn conflicts
- Other powerful solution methods have languished.

Impact of Proof Checking

Adoption

 Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Unintended Consequences

- Narrowed focus to single SAT algorithm
 - Conflict-Driven Clause Learning (CDCL)
 - Search for solution, but learn conflicts
- Other powerful solution methods have languished.

Our Contribution

 Enable proof generation for algorithms based on pseudo-Boolean reasoning

Clausal Proofs

Conjunctive Normal Form (CNF) Input Formula

$$C_1, C_2, \ldots, C_m$$

Unsatisfiability Proof

$$C_1, C_2, \ldots, C_m, C_{m+1}, \ldots, C_t$$

- For all i > m:
 If C₁,..., C_{i-1} has a satisfying assignment, then so does C₁,..., C_{i-1}, C_i.
- $ightharpoonup C_t = \emptyset$
 - Unsatisfiable

Clausal Proof Frameworks

Resolution (Robinson, 1965)

▶ Proof rule guarantees *implication redundancy*:

$$\bigwedge_{1 \leq j < i} C_j \ \rightarrow \ C_i$$

Clausal Proof Frameworks

Resolution (Robinson, 1965)

▶ Proof rule guarantees *implication redundancy*:

$$\bigwedge_{1 \leq j < i} C_j \rightarrow C_i$$

Extended Resolution (Tseitin, 1967)

- Allow extension variables
 - ► Variable *e* shorthand for some formula *F* over input and previous extension variables
 - ▶ Add clauses encoding $e \leftrightarrow F$ to proof
- Can make proofs exponentially more compact

Clausal Proof Frameworks

Resolution (Robinson, 1965)

▶ Proof rule guarantees *implication redundancy*:

$$\bigwedge_{1 \leq j < i} C_j \rightarrow C_i$$

Extended Resolution (Tseitin, 1967)

- Allow extension variables
 - ► Variable *e* shorthand for some formula *F* over input and previous extension variables
 - ▶ Add clauses encoding $e \leftrightarrow F$ to proof
- Can make proofs exponentially more compact

Deletion Resolution Asymmetric Tautology (DRAT)

- Superset of extended resolution
- Variety of efficient checkers, including formally verified ones

Implementations

- ► EBDDRES: Sinz, Biere, Jussila, 2006
- ▶ PGBDD: Bryant, Heule, 2021

Implementations

- ► EBDDRES: Sinz, Biere, Jussila, 2006
- ▶ PGBDD: Bryant, Heule, 2021

Extended-Resolution Proof Generation

- Introduce extension variable for each BDD node
- Generate proof steps based on recursive structure of BDD algorithms
- Proof is (very) detailed justification of each BDD operation

Implementations

- ► EBDDRES: Sinz, Biere, Jussila, 2006
- ▶ PGBDD: Bryant, Heule, 2021

Extended-Resolution Proof Generation

- Introduce extension variable for each BDD node
- Generate proof steps based on recursive structure of BDD algorithms
- Proof is (very) detailed justification of each BDD operation

Capabilities

- Can handle some problems that are intractable for CDCL
- Often requires careful guidance from user
- Often very sensitive to variable ordering

Generate Sequence of Terms

$$T_1, T_2, \ldots, T_m, T_{m+1}, \ldots, T_p$$

- ▶ Each term *T_i* is Boolean function represented by BDD
- ▶ For $1 \le i \le m$, T_i is BDD representation of clause C_i
- ▶ For i > m, term T_i generated as conjunction or existential quantification of earlier terms:

$$\bigwedge_{1 \leq j < i} T_j \ \to \ T_i$$

Final term $T_p = \bot$.

Proof Structure

- ▶ Prove that initial terms represent clauses
- Prove that implication holds for each successive term.

Pseudo-Boolean (PB) Formulas

► Integer Equations

$$\sum_{1 \le i \le n} a_i x_i = b$$

- ▶ a_i, b integer constants
- ► x_i 0-1 valued variables
- Ordering Constraints

$$\sum_{1 \le i \le n} a_i \, x_i \; \geq \; b$$

Modular Equations

$$\sum_{1 \le i \le n} a_i \, x_i \equiv b \pmod{r}$$

- r constant modulus
- ▶ Parity constraints: r = 2

Incorporating Pseudo-Boolean Reasoning into SAT Solver

▶ Motivation: CDCL tends to do poorly on PB constraints

Parity Reasoning

- Detect CNF encodings of XOR/XNOR
- Apply Gaussian elimination over GF2
- E.g., Lingeling, CryptoMiniSAT
- Useful for both SAT and UNSAT problems

Incorporating Pseudo-Boolean Reasoning into SAT Solver

▶ Motivation: CDCL tends to do poorly on PB constraints

Parity Reasoning

- Detect CNF encodings of XOR/XNOR
- ► Apply Gaussian elimination over GF2
- ► E.g., Lingeling, CryptoMiniSAT
- Useful for both SAT and UNSAT problems

Constraint Reasoning

- Detect standard encodings of ordering constraints
- Apply Fourier-Motzin elimination over integers
- E.g., Lingeling
- Only useful for UNSAT problems

Incorporating Pseudo-Boolean Reasoning into SAT Solver

Motivation: CDCL tends to do poorly on PB constraints

Parity Reasoning

- ▶ Detect CNF encodings of XOR/XNOR
- Apply Gaussian elimination over GF2
- ► E.g., Lingeling, CryptoMiniSAT
- Useful for both SAT and UNSAT problems

Constraint Reasoning

- Detect standard encodings of ordering constraints
- Apply Fourier-Motzin elimination over integers
- E.g., Lingeling
- Only useful for UNSAT problems

Proof Generation

- No previous solver could generate clausal proof
- Revert to CDCL when proof generation required

Representing Pseudo-Boolean Equations with BDDs

Example equation:

$$\begin{array}{rcl} +x_1 + x_3 + x_5 + x_7 + x_9 \\ -x_2 - x_4 - x_6 - x_8 - x_{10} \end{array} = 0$$

▶ BDD size $\leq a_{\text{max}} \cdot n^2$

$$a_{\max} = \max_{1 \le i \le n} |a_i|$$

Independent of variable ordering

Representing Ordering Constraints with BDDs

Example constraint:

$$\begin{array}{ccc} +x_1 + x_3 + x_5 + x_7 + x_9 \\ -x_2 - x_4 - x_6 - x_8 - x_{10} \end{array} \ge 0$$

▶ BDD size $\leq a_{\text{max}} \cdot n^2$

$$a_{\max} = \max_{1 \le i \le n} |a_i|$$

Independent of variable ordering

Representing Modular Equations with BDDs

Example equation:

$$\begin{array}{ll} +x_1 + x_3 + x_5 + x_7 + x_9 \\ -x_2 - x_4 - x_6 - x_8 - x_{10} \end{array} \equiv 0 \pmod{3}$$

- ▶ BDD size $< n \cdot r$
 - Independent of variable ordering

Integrating Pseudo-Boolean Reasoning into Proof-Generating SAT Solver

- Overall flow same as SAT solver.
- PB solver does all of the reasoning
- ▶ BDDs serve only as mechanism for generating clausal proof

PGPBS (Proof-Generating Pseudo-Boolean Solver)

Implementation

- Augmented version of earlier solver PGBDD
- https://github.com/rebryant/pgpbs-artifact

Constraint Extraction

- CNF file input
- Detects PB constraints:
 - ► Equations: XOR/XNOR, Exactly-one
 - ▶ Ordering constraints: At-most-one, At-least-one
- Including ones using auxilliary variables
- Heuristic methods
- Generates schedule
 - How clauses grouped into constraints
 - Existentially quantify auxilliary variables

Integer Gaussian Elimination

System of Equations
$$E = \{e_1, e_2, \dots, e_m\}$$

$$\mathbf{e}_i: \sum_{j=1,n} a_{i,j} x_j = b_i$$

Elimination Step

- 1. Choose pivot equation \mathbf{e}_s and variable x_t such that $a_{s,t} \neq 0$
- 2. For each $i \neq s$:

$$\mathbf{e}_{i} \leftarrow \begin{cases} \mathbf{e}_{i} & a_{i,t} = 0 \\ -a_{i,t} \cdot \mathbf{e}_{s} + a_{s,t} \cdot \mathbf{e}_{i}, & a_{i,t} \neq 0 \end{cases}$$

- ▶ Guarantees $a_{i,t} = 0$ for all $i \neq s$
- Only requires addition and multiplication
- 3. Remove \mathbf{e}_s from E and repeat until single equation left

Gaussian Elimination Results

Possible Outcomes

- 1. If encounter degenerate equation
 - ▶ Of form 0 = b for $b \neq 0$.
 - ► Has no solution
 - Occurs for problems we consider
- 2. Otherwise, if modular equation with r=2
 - Can perform back substitution to find solution
- 3. Otherwise
 - Generated solution may not be 0-1 valued

Gaussian Elimination Results

Possible Outcomes

- 1. If encounter degenerate equation
 - ▶ Of form 0 = b for $b \neq 0$.
 - Has no solution
 - Occurs for problems we consider
- 2. Otherwise, if modular equation with r=2
 - ► Can perform back substitution to find solution
- Otherwise
 - Generated solution may not be 0-1 valued

Validating Each Step:

- ▶ Given BDDs representing term functions T_{i_1} and T_{i_2}
- ▶ Validate $T_{i_1} \land T_{i_2} \rightarrow T_{i_1} + T_{i_2}$
- Use proof-generating BDD operations

Definition

- ► *N* × *N* chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Definition

- ► *N* × *N* chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Definition

- ► *N* × *N* chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Definition

- ► *N* × *N* chessboard with 2 corners removed
- Cover with tiles, each covering two squares

Solutions

- None
- More white squares than black
- ► Each tile covers one white and one black square

Proof

 All resolution proofs of exponential size

Encoding as SAT Problem

Boolean variable for each possible domino placement

Constraints

lacktriangle For each square, exactly one of its covering placements =1

Chess Proof Complexity: KISSAT

Mutilated Chessboard Clauses

- ▶ Requires 12.6 hours for N = 22.
- Express complexity as number of clauses in generated proof

Chess Proof Complexity: Column Scanning (TACAS '21)

- ► Careful ordering of conjunction and quantification operations
- ▶ Scan columns, representing partial solutions with $O(N^2)$ nodes

Chess Proof: BDD Variable Ordering Sensitivity

Mutilated Chessboard Clauses

- Column scanning highly dependent on variable ordering
- Also requires careful user guidance

Pseudo-Boolean Solving of Mutilated Chessboard

▶ For every square i, j:

$$x_{E(i,j)} + x_{S(i,j)} + x_{W(i,j)} + x_{N(i,j)} = 1$$

Pseudo-Boolean Solving of Mutilated Chessboard

▶ For every square i, j:

$$x_{E(i,j)} + x_{S(i,j)} + x_{W(i,j)} + x_{N(i,j)} = 1$$

Sum equations for white squares:

$$\sum_{x \in X} x = N^2/2$$

► Sum equations for black squares:

$$\sum_{x \in X} x = N^2/2 - 2$$

Difference:

$$0 = 2$$

Chess Proof Complexity: Integer Equations

Mutilated Chessboard Clauses

- ▶ Integer equations less efficient than column scanning
- ▶ But, insensitive to variable ordering; no user guidance required

Modulus Autodetection

- Apply Gaussian elimination to system of integer equations
 - Only requires multiplication and addition
- ▶ Encounter equation 0 = b
- Observation:
 - ▶ If performed arithmetic modulo *r*, would get equation

$$0 \equiv b \pmod{r}$$

Modulus Autodetection

- Apply Gaussian elimination to system of integer equations
 - Only requires multiplication and addition
- ▶ Encounter equation 0 = b
- Observation:
 - ▶ If performed arithmetic modulo *r*, would get equation

$$0 \equiv b \pmod{r}$$

- Generate proof when solving as system of modular equations
 - ▶ Choose least r such that $b \not\equiv 0 \pmod{r}$.
 - More efficient, since BDDs smaller
 - Totally automated

Chess Proof Complexity: Modular Equations

- ► Modular equations outperform column scanning
- ▶ Insensitive to variable ordering; no user guidance required

Urquhart Parity Benchmark (Li's Version)

- ▶ Set of XOR constraints defined over graph with $2m^2$ nodes.
- ▶ KISSAT cannot solve even minimal instance (m = 3)
- Trivial with Gaussian elimination

Summary

Role of BDDs in SAT

- As primary reasoning method
 - Handle problems intractable for CDCL
 - ▶ Difficult to achieve full automation
- ▶ To enable proof generation for other reasoning methods
 - ▶ BDD algorithms expressed as extended-resolution proofs
 - Fully automated
 - Insensitive to variable ordering

Summary

Role of BDDs in SAT

- As primary reasoning method
 - Handle problems intractable for CDCL
 - ▶ Difficult to achieve full automation
- ► To enable proof generation for other reasoning methods
 - ▶ BDD algorithms expressed as extended-resolution proofs
 - ▶ Fully automated
 - Insensitive to variable ordering

Future Work: Combine Multiple Approaches

- ► CDCL, BDDs, pseudo-Boolean reasoning, . . .
- Build on unique strengths of each
- Must be able to generate clausal proof

