Stable and Sequential Functions on Scott domains, dI-domains and FM-domains

Stephen Brookes
Shai Geva

School of Computer Science
Carnegie Mellon University
Background

- Plotkin: the full abstraction problem for a sequential functional programming language PCF: start of search for semantic characterization of sequential functions.

- Kahn, Plotkin: *sequential functions* on concrete data structures (and concrete domains), using cell structure. Not closed under sequential function space.

- Berry: *stable functions* on dI-domains, and *stable ordering*. A cartesian closed category, but stability does not imply sequentiality.

- Berry, Curien: *sequential algorithms* on concrete data structures. A cartesian closed category, but not extensional, does not solve full abstraction for PCF. Sequentiality based on cell structure.

- Bucciarelli, Ehrhard: *sequential algorithms* on sequential structures. A cartesian closed category, but does not solve PCF problem. Sequentiality based on extra coherence structure.

- None of these definitions permits a characterization of sequentiality in an arbitrary Scott domain.
Our Contribution

• A new definition of sequential functions for Scott domains, characterized by a generalized form of topology. Sequentiality defined intrinsically.

• Considerably expands the class of domains for which sequential functions may be defined.

• Our sequential functions coincide with Kahn-Plotkin sequential functions when restricted to distributive concrete domains.

• The sequential functions between two dI-domains, ordered stably, form a dI-domain.

• The category of dI-domains and sequential functions is not cartesian closed: application is not sequential. We attribute this to certain operational assumptions underlying our notion of sequentiality.

• Scott domains satisfying a “finite meet” property are closed under the pointwise-ordered stable function space, so that we obtain a new stable model based on the pointwise order.

• Towards a class of domains closed under pointwise-ordered sequential function space...and perhaps a solution to the full abstraction problem for PCF?
Generalized Topologies

A generalized topological framework Ω assigns to each domain D a family ΩD of subsets of D, called Ω-open sets, together with an ordering relation \leq_Ω on ΩD.

- We define the Ω-continuous functions from D to E to be the functions f such that the inverse image $f^{-1}(q)$ of every $q \in \Omega E$ is in ΩD.
- We will order these functions by $f \leq_\Omega g$ iff for every $q \in \Omega E$, $f^{-1}(q) \leq_\Omega g^{-1}(q)$.
- Different orders on Ω-opens will naturally induce different orders on the Ω-continuous functions.
- We obtain a category of domains and Ω-continuous functions: the identity function is always Ω-continuous, and composition preserves Ω-continuity.
- We are mainly interested in showing that a class of domains is closed under Ω-continuous function space. A necessary condition (not always sufficient) is that $(\Omega D, \leq_\Omega)$ belong to the class of domains whenever D does.
Remarks

• ΩD is a topology if

 – \emptyset and D are Ω-open;

 – Ω-open sets are closed under arbitrary unions and finite intersections;

 – The order on ΩD is set inclusion.

• Equivalently, if ΩD is a sub-frame of the powerset lattice of D, ordered by inclusion.
The Scott Topology

As is well known...

- A set $p \subseteq D$ is Scott open iff it is upwards closed and for every directed set X, if $\forall X \in p$ then $x \in p$ for some $x \in X$.
- We write $\text{Sc}D$ for the set of Scott opens of D.
- Scott opens, ordered by inclusion, determine the Scott topology.
- For every $x \in D_{\text{fin}}$, $\text{up}(x)$ is Scott open.
- p is Scott open iff $p = \cup \{\text{up}(x) \mid x \in p \cap D_{\text{fin}}\}$.
- A function $f : D \rightarrow E$ is Scott continuous, or just continuous, iff the inverse image of every Scott open is Scott open.
- Equivalently, a function $f : D \rightarrow E$ is continuous iff it is monotone and preserves directed lubs.
- Set inclusion on Scott opens induces an order on continuous functions: $f \leq g$ iff
 \[\forall q \in \text{Sc}E. f^{-1}(q) \subseteq g^{-1}(q). \]
 This is the pointwise order: $f \leq g$ iff $\forall x \in D. f(x) \leq g(x)$.
Stable Opens and Stable Functions

• A set \(p \subseteq D \) is stable iff it is closed under consistent meets, i.e., \(x_1, x_2 \in p \) and \(x_1 \uparrow x_2 \) imply \(x_1 \land x_2 \in p \).

• A set \(p \) is stable open iff it is Scott open and stable.

• We write St\(D \) for the set of stable opens of \(D \).

• For any \(x \in D_{\text{fin}} \), up\((x) \) is stable open.

• A function \(f : D \rightarrow E \) is stable continuous, or stable, iff the inverse image of every stable open is stable open.

• For a function \(f : D \rightarrow E \), the following are equivalent:

 (1) \(f \) is stable.

 (2) \(f \) is continuous and preserves consistent meets:
 if \(x_1 \uparrow x_2 \) then \(f(x_1 \land x_2) = f(x_1) \land f(x_2) \).

 (3) \(f \) is continuous and whenever \(e \leq f(d) \), the set
 \(\{ d' \in D \mid d' \leq d \ \& \ e \leq f(d') \} \) is down-directed.

• Definition (3) specializes in dI-domains to the usual “minimum point” definition of stable functions: \(f \) is stable iff it is continuous and for every \(e \leq f(d) \) the set \(\{ d' \leq d \mid e \leq f(d') \} \) has a least element.

• Our treatment extends Zhang’s characterization of “stable neighborhoods”.

Scott is not always stable

• Every stable open is also Scott open, by definition.
• The converse fails. For example, the Scott open set
 \[\text{up}(\{(\top, \bot), (\bot, \top)\}) \subseteq 2 \times 2, \]
 is not stable, because it does not contain
 \[(\bot, \bot) = (\top, \bot) \land (\bot, \top), \]
 and this is a consistent meet.
• Every stable function is also Scott continuous.
• The converse fails. For example, the parallel-or function is continuous but not stable. The inverse image
 \[\text{por}^{-1}(\{\text{tt}\}) = \{(\text{tt}, \bot), (\bot, \text{tt})\} \]
 is not stable open.
Lobes of a Stable Set

- A stable set p can be partitioned by identifying all pairs of points of p that have a lower bound in p.
- We call the equivalence classes the *lobes* of p.
- A lobe is downwards-directed.
- In a dI-domain every lobe has a least element.
- In a Scott domain lobes may fail to contain their glb.
Covering, covers and indices

• The covering relation between elements of D is: $x \prec y$ iff $x < y$ and there is no point between x and y.

• A cover of $x \in D$ is a stable set r such that $x < y$ for every $y \in r$ and $\Delta(x, r) = \emptyset$, where

$$\Delta(x, r) = \{ z \mid x < z & \exists r' \in \text{lobes}(r) . \forall y \in r' . z < y \} .$$

We write $I(x)$ for the set of covers of x.

• Equivalently, a stable set r is a cover of x iff for every lobe r' of r, either r' has a least element y and $x \prec y$, or r' has no least element and $x = \bigwedge r'$.

• For $x \in D$ and $s \subseteq D$, an index of s at x is a cover r of x such that $s \cap \text{up}(x) \subseteq r$.

• Let $I(x, s)$ be the set of indices of s at x:

$$I(x, s) = \{ r \in I(x) \mid s \cap \text{up}(x) \subseteq r \} .$$
Intuition

- A stable set s represents a choice between its lobes.
- If the current state of information is x, a cover of x represents an atomic increase in information content, with atomicity captured by the condition $\Delta(x, r) = \emptyset$.
- A cover r of x provides a way of locally decomposing the domain at x into a flat domain, with x as the least element and the lobes of r as the proper elements.
- Covers may be used to reason about the progress of an incremental computation, generalizing the notion of cell in a concrete data structure.
- The existence of an index $r \in \llbracket x, s \rrbracket$ indicates that the choice represented by s may be decomposed, with the index r serving as a first step from x towards s.

Some Obvious Properties

- $\Delta(x, \emptyset) = \emptyset$.
- $\Delta(x, r) = \bigcup \{ \Delta(x, r') \mid r' \in \text{lobes}(r) \}$.
- $\emptyset \in \llbracket x, \emptyset \rrbracket$.
- $\llbracket x, s \rrbracket = \llbracket x, s \cap \text{up}(x) \rrbracket$.

11
Stable is not always sequential

- In these domains the shaded points form a stable open set with no index at \perp, since the shaded points are not contained in any cover of \perp.

- Another example of a stable open with no index at \perp:

 \[
 \text{up}\{(tt, ff, \perp), (\perp, tt, ff), (ff, \perp, tt)\} \subseteq \text{Bool} \times \text{Bool} \times \text{Bool}.
 \]

- Absence of an index implies non-sequentiality...
Sequential Opens

• A set $p \subseteq D$ is sequential at $x \in D$ iff $x \in p$, or $x \notin p$ and for every finite $s \subseteq p$, $I(x, s) \neq \emptyset$.

• A set p is sequential iff it is sequential at every $x \in D_{\text{fin}}$.

• A sequential open is a stable open that is sequential.

• We write SqD for the set of sequential opens of D.

• For any $x \in D_{\text{fin}}$, $\text{up}(x)$ is sequential open.

• If $x < y$ then $I(x, \text{up}(y)) \neq \emptyset$.

Sequential Functions

• A function $f : D \to E$ is sequential iff the inverse image of every sequential open is sequential open.

Properties

• Every sequential function is Scott-continuous.

• Every sequential function is stable.
Examples

• The doubly-strict-or function \(\text{sor} : \text{Bool}^2 \rightarrow \text{Bool} \) is sequential (and stable).

 – The inverse image of the sequential open set \(\{tt\} \) is the sequential open set \(p = \{(tt, tt), (tt, ff), (ff, tt)\} \).

 – There are two indices of \(p \) at \((\bot, \bot) \): \(\text{up}(\{(tt, \bot), (ff, \bot)\}) \) and \(\text{up}(\{(\bot, tt), (\bot, ff)\}) \).

 – These two indices at \((\bot, \bot) \) correspond to the fact that this function is strict in both arguments.

• The left-strict-or function \(\text{lor} \) is also sequential. There is a single index \(\text{up}(\{(tt, \bot), (ff, \bot)\}) \) for \(\text{lor}^{-1}(\{tt\}) \) at \((\bot, \bot) \).

• The parallel-or function \(\text{por} : \text{Bool}^2 \rightarrow \text{Bool} \) is not sequential, since the inverse image of \(\{tt\} \) is not sequential open (and not even stable).
Stable is not always sequential

• Let $gf : \text{Bool}^3 \to \text{Bool}$ be the least continuous function such that

$$
gf(tt, ff, \bot) = tt$$
$$
gf(\bot, tt, ff) = tt$$
$$
gf(ff, \bot, tt) = tt$$
$$
gf(ff, ff, ff) = ff.
$$

This function is stable but not sequential. The stable open set $gf^{-1}(\{tt\}) = \text{up}(\{(tt, ff, \bot), (ff, \bot, tt), (\bot, tt, ff)\})$ is not sequential open, since it has no index at (\bot, \bot, \bot).

• Let $gf_1, gf_2, gf_3 : \text{Bool}^3 \to \text{Bool}$ map (ff, ff, ff) to ff, and satisfy

$$
gf_1(tt, ff, \bot) = tt$$
$$
gf_2(\bot, tt, ff) = tt$$
$$
gf_3(ff, \bot, tt) = tt.
$$

Let their pairwise lubs be $gf_{1,2} = gf_1 \lor gf_2$, $gf_{1,3} = gf_1 \lor gf_3$, and $gf_{2,3} = gf_2 \lor gf_3$. All of these functions are sequential.

• Since $gf = gf_1 \lor gf_2 \lor gf_3$, this shows that a pairwise consistent set of sequential functions need not have a sequential lub. This works with either stable or pointwise order, since the orders coincide in this case. As a corollary, concrete domains are not closed under sequential function space.
Products

• The categories of Scott domains and (respectively) continuous, stable and sequential functions are cartesian.

• The projection functions $\pi_i : D_1 \times D_2 \rightarrow D_i$, for $i = 1, 2$, are sequential.

• For Scott domains D_1 and D_2,

$$\text{Sc}(D_1 \times D_2) = \{ p_1 \times p_2 \mid p_1 \in \text{Sc}D_1 \text{ and } p_2 \in \text{Sc}D_2 \}$$

$$\text{St}(D_1 \times D_2) \supseteq \{ p_1 \times p_2 \mid p_1 \in \text{St}D_1 \text{ and } p_2 \in \text{St}D_2 \}$$

$$\text{Sq}(D_1 \times D_2) \supseteq \{ p_1 \times p_2 \mid p_1 \in \text{Sq}D_1 \text{ and } p_2 \in \text{Sq}D_2 \}$$

• Stable or sequential opens of $D_1 \times D_2$ may not be formed by a product of stable or sequential opens of D_1 and D_2.

• For example, let $p = \text{up} \{(\text{tt}, \bot), (\text{tt}, \text{tt})\} \cup \{((\bot, \text{tt}), (\bot, \text{tt})\}$. While p is stable and sequential, $\pi_1(p) = \text{up} \{(\text{tt}, \bot), (\bot, \text{tt})\}$ is neither stable nor sequential.
Relationship to Kahn-Plotkin

In a distributive concrete domain D,

1. Every non-empty cover r of x corresponds to a unique cell c accessible from x and filled in all elements of r.

2. For every Scott open p and $x \notin p$, every finite subset s of p has an index at x iff p itself has an index at x.

3. For every sequential open p the set C of cells that are filled in all elements of p is finite. If $p \neq \emptyset$ and $p \neq \uparrow \bot$, C is non-empty.

 For every finite set of cells C, the set of states that fill all cells in C is sequential open.

4. A Scott open p is sequential at every isolated point iff it is sequential at every point.

Theorem

For distributive concrete domains D and E, a function $f : D \rightarrow E$ is sequential iff it is sequential in the Kahn-Plotkin sense.
In other words...

- That is, f is sequential iff it is continuous and for every state x of D, either no cell is accessible from x, or for every cell c' accessible from $f(x)$ there is a cell c accessible from x such that c is filled in all states $y \supseteq x$ such that c' is filled in $f(y)$.
The Pointwise Order

Stable

- Set inclusion on stable opens induces the pointwise order on stable functions.
- The union of a (set inclusion) directed family of stable opens is stable open.
- The pointwise lub of a (pointwise) directed family of stable functions is a stable function.

Sequential

- Set inclusion on sequential opens induces the pointwise order on sequential functions.
- The union of a (set inclusion) directed family of sequential opens is sequential open.
- The pointwise lub of a (pointwise) directed family of sequential functions is a sequential function.

Problem

Berry: application fails to be stable (or sequential) under the pointwise order, but is stable wrt the stable order.
The Stable Order

• The lobe inclusion order on stable opens is given by: $p_1 \subseteq p_2$ iff $\text{lobes}(p_1) \subseteq \text{lobes}(p_2)$.

• This induces the stable order on stable functions, defined by: $f \sqsubseteq g$ iff for every $q \in \text{St}E$, $f^{-1}(q) \subseteq g^{-1}(q)$.

• We write $(D \rightarrow^\text{st} E, \sqsubseteq)$ for the stably-ordered stable function space.

• For any stable functions $f, g : D \rightarrow E$, the following are equivalent:

 1. $f \sqsubseteq g$.
 2. $f \leq g$ and $f(x) = g(x) \land f(y)$ for every $x \leq y$.
 3. $f \leq g$ and $f(x) \land g(y) = g(x) \land f(y)$ for every $x \uparrow y$.
 4. $f \leq g$ and, for every $d \in D$ and $e \leq f(d)$,

 \[
 \{d' \leq d \mid e \leq f(d')\} = \{d' \leq d \mid e \leq g(d')\}.
 \]

• Thus our stable order generalizes Berry’s and Zhang’s definition of stable order, which were based on dI-domains.
Sequential Functions and Stable Order

• If p is stable open, p' is sequential open, and $p \sqsubseteq p'$, then p is sequential open.

• If f is stable, g is sequential, and $f \sqsubseteq g$, then f is sequential.

• The isolated elements of $(D \to^{\text{sq}} E, \sqsubseteq)$ are the isolated elements of $(D \to^{\text{st}} E, \sqsubseteq)$ that are also sequential.

• dI-domains are closed under the stably-ordered sequential function space.

• This improves on earlier results for KP-sequentiality:
 - KP-sequential functions only defined on concrete domains.
 - Concrete domains not closed under stably-ordered sequential function space.
Application is not Sequential

• $\text{app} : (\text{Bool}^3 \rightarrow \text{Bool}) \times \text{Bool}^3 \rightarrow \text{Bool}$

• Not sequential: $p = \text{app}^{-1}(\{\text{tt}\})$ has no index at $x = (\text{gf}_1, \bot, \bot, \bot)$.

 – Any cover r of x must have one of the forms:

 $$r = r_1 \times \text{up}(\bot) \times \text{up}(\bot) \times \text{up}(\bot)$$
 $$r = \text{up}(\text{gf}_1) \times r_2 \times \text{up}(\bot) \times \text{up}(\bot)$$
 $$r = \text{up}(\text{gf}_1) \times \text{up}(\bot) \times r_2 \times \text{up}(\bot)$$
 $$r = \text{up}(\text{gf}_1) \times \text{up}(\bot) \times \text{up}(\bot) \times r_2,$$

 where r_1 covers gf_1 and r_2 covers \bot in Bool.

 – In first case, the element $(\text{gf}_1, \text{tt}, \text{ff}, \bot)$ of $p \cap \text{up}(x)$ is not in r.

 – In the other cases we can also find elements of $p \cap \text{up}(x)$ that are not contained in r.

 – Hence $I(x, p)$ is empty and p is not sequential open.

• Application is not sequential since when we know that the function is at least gf_1 we can’t tell what needs to be evaluated further.

• Failure seems caused by assumption that functions are computed incrementally, as in Kahn-Plotkin.
FM-domains

• A Scott domain has the *finite meet* property (FM) iff the meet of every pair of isolated elements is isolated.

• An FM-domain is a Scott domain with property FM.

• dI-domains are FM-domains.

• The converse is not generally true, and FM-domains are a proper intermediate notion, between Scott domains and dI-domains.

• The following are equivalent in an FM-domain:

 (1) p is sequential open.
 (2) p is Scott open and is sequential at every finite point.

Theorem

• FM-domains are closed under product and under continuous function space, so FM-domains and continuous functions are a sub-ccc of the ccc of Scott domains and continuous functions.

• All domains occurring in the Scott continuous functions model of PCF are FM-domains.
Stable Functions on FM-domains

- FM-domains are closed under the pointwise-ordered stable function space.
- This improves on a result that the pointwise-ordered stable function space between dI-domains is a Scott domain (Berry).
- We restrict to FM-domains, because the poset of stable opens, ordered by inclusion, is not bounded complete for general Scott domains.
Example

- For example, consider the following Scott domain, where ω is the limit of an infinite ascending chain, and all other elements are isolated. The stable opens $\text{up}(\alpha)$ and $\text{up}(\beta)$ are upper-bounded under inclusion, but have no lub.

\[
\begin{array}{c}
\top \\
\alpha \\
\omega \\
\cdot \\
\cdot \\
2 \\
1 \\
0 \\
\beta
\end{array}
\]
Stable Completion in FM-domains

• For a Scott-open set p in an FM-domain D, define

\[
\text{stc}(p) = \text{up} \{x_1 \land x_2 \mid x_1, x_2 \in p \land x_1 \uparrow x_2\}
\]
\[
\text{stc}^0(p) = p
\]
\[
\text{stc}^{n+1}(p) = \text{stc}(\text{stc}^n(p))
\]
\[
\text{stc}^*(p) = \bigcup \{\text{stc}^n(p) \mid n \geq 0\}.
\]

• For any Scott-open p,

– $\text{stc}(p)$ is Scott-open;

– $p \subseteq \text{stc}(p)$;

– $\text{stc}^*(p)$ is the least stable open that contains p.

• For a function $f : D \to E$ and $x \in D$, define

\[
\text{stc}(f)(x) = \bigvee \{f(z_1) \land f(z_2) \mid z_1, z_2 \in D_{\text{fin}} \land
\]
\[
z_1 \uparrow z_2 \land z_1 \land z_2 \leq x\}
\]
\[
\text{stc}^0(f) = f
\]
\[
\text{stc}^{n+1}(f) = \text{stc}(\text{stc}^n(f))
\]
\[
\text{stc}^*(f) = \bigvee \{\text{stc}^n(f) \mid n \geq 0\}.
\]

• If $f : D \to E$ is continuous and f is dominated by a stable function h, then

– $\text{stc}(f)$ is a continuous function;

– $f \leq \text{stc}(f) \leq h$;

– $\text{stc}^*(f)$ is the least stable function that dominates f.

Properties

• The lub of a bounded set F of stable functions is $\text{stc}^*(\bigvee F)$, where $\bigvee F$ is the pointwise lub.

• If f is isolated in $D \rightarrow^\text{ct} E$ then $\text{stc}(f)$ and $\text{stc}^*(f)$ are isolated, and $\text{stc}^*(f) = \text{stc}^n(f)$ for some n.

• The isolated elements of $D \rightarrow^\text{st} E$ are the isolated elements of $D \rightarrow^\text{ct} E$ that are stable.

• The pointwise meet of two stable functions is stable.

• For any FM-domains D and E, $D \rightarrow^\text{st} E$ is an FM-domain.

Sequential Functions on FM-domains

• If D is an FM-domain and E is a flat domain then the sequential functions from D to E, ordered pointwise, forms an FM-domain.
Further Research

• Our notion of sequentiality works well at first-order types.

• Would like to develop an extension to deal adequately with higher-order types. A suitable higher-order notion of sequentiality must not rely on the Kahn-Plotkin operational assumption.

• It seems essential that the syntactic type of a function be used in defining sequentiality, not just the domain structure.

• We are currently working out the details of a definition of sequentiality at type $\tau \to \tau'$ using the above definition at first-order types. This would make application sequential.

• We conjecture that there is a (non-trivial) sub-class of the FM-domains that is closed under the pointwise-ordered sequential function space.

• These developments may lead to a fully abstract sequential model...?