
Communicating
Parallel Processes

Stephen Brookes
Carnegie Mellon University

Deconstructing CSP

1

CSP

• sequential processes

• input and output as primitives

• named parallel composition

• synchronized communication

• generalized guarded commands

Communicating Sequential Processes,
CACM, 1978

2

Parallel composition

[π1::P1‖ · · · ‖πn::Pn]

• disjoint processes Pi

• distinct process names πi

• πj?x in Pi matches πi!e in Pj

Guarded commands

if (g1→ P1)2 · · ·2(gk → Pk) fi
do (g1→ P1)2 · · ·2(gk → Pk) od

• input guards: b ∧ π?x

• b ∧ πj?x in πi is true when b holds
and πj is at a matching output

• input-guarded conditional waits for match

3

Contrasts

• shared-memory (Dijkstra 68)

– “cooperating sequential processes”

– no input-output

– global state

– conditional critical regions

• dataflow networks (Kahn/MacQueen 77)

– asynchronous communication

– deterministic, CSP-like syntax

– fair execution

Despite common roots, these paradigms
have grown apart from CSP

4

Design issues

• Communication vs. assignment

• Limited parallelism

• Naming and scope

• Synchronous vs. asynchronous

• Fairness

• Extending CSP

– procedures

– objects

5

Communication vs. assignment

• Regarded as “independent concepts”

– communication affects environment

– assignment affects local state

• Semantic models reflect this separation

– traces, refusals, failures

– local state change

Nevertheless it can be advantageous
to blur the distinction. . .

6

Limited parallelism

• No nesting of parallel constructs

– static network topology

– need n-ary parallel operators

Naming and scope

• Explicit process names cause library problem

• Awkward scope rules:

[π1::[σ1::P11 ‖ σ2::P12] ‖ π2::P2]

How do π1 and π2 communicate?
Hard to formulate associativity law

Solution

• Plotkin: decouple name binding 1983

• Hoare: named channels,

hiding operator TCSP, occam

7

TCSP

• Process algebra based on CSP
(cf. Milner’s CCS, 1982)

• Channel-based events
h?v input
h!v output

• Processes, alphabets

P 2Q external choice
P uQ internal choice
a→ P prefix
P ‖Q parallel composition
P\a hiding

• Algebraic laws

(P uQ)‖R = (P‖R) u (Q‖R)

A theory of communicating sequential processes,

HBR 81, J. ACM, 1984

8

Synchrony vs. asynchrony

• Synchronous communication

– input or output waits until a match is ready

• Asynchronous communication

– output always proceeds

– input only waits if no output available

CSP assumed synchrony

“Equally reasonable to assume asynchrony”

9

Why synchrony?

• “easy to implement”. . . (?)

• “simple” models

Why not asynchrony?

• “less realistic to implement”

• “can readily be specified”

Reassessment

• asynchrony is easier to implement

• asynchrony is more realistic

• synchronization can readily be specified

• simplicity is misleading

– ignores fairness

– hard to generalize

10

Fairness

•Want to abstract away from scheduler

• Assume that processes are executed
without unreasonable delay

• Pragmatically important

– “every reasonable scheduler is fair”

– vital for liveness properties

• Semantically awkward

– hard to model with powerdomains

• A plethora of fairness notions

– (strong, weak) process fairness

– (strong, weak) channel fairness

– unconditional Γ-extreme fairness. . .

11

Strong vs. weak

A scheduler is strongly fair if every process
enabled infinitely often will run eventually

A scheduler is weakly fair if every process
enabled persistently will run eventually

• For shared-variable programs weak fairness
is reasonable (Park, 80)

• For synchronous processes weak fairness
is reasonable but not very useful

– enabledness is not local

• Strong fairness is not realistic

– too much book-keeping (Older, 96)

• For asynchronous processes weak fairness
is both reasonable and useful

12

Example

a!0 ‖ n:=0; go:=true;
do

(go ∧ a?x→ go:=false)
2 (go → n:=n + 1)
od

“It would be unfair to keep executing the
second alternative. . . , since this would keep
ignoring the potential for synchronized
communication between the two processes,
which could have been performed on an
infinite number of occasions.”

“An efficient implementation should try to be
reasonably fair. . . and should ensure that an
output command is not delayed unreasonably
often after it first becomes executable.”

13

What’s fair?

• Such an execution is not strongly fair,
but weakly fair.

• Assuming strong fairness the program
terminates with n ≥ 0.

• Assuming weak fairness the program
may also diverge.

CSP isn’t fair

“Should a programming language definition
specify that an implementation must be fair?”

i.e. strongly fair

Hoare was “fairly sure that the answer is NO”:

• unbounded non-determinism

• strong fairness isn’t realistic

But we shouldn’t dismiss weak fairness.

14

Deadlock

P = if (true→ a?x)2(true→ b?x) fi

Q = if (a?x→ skip)2(b?x→ skip) fi

• P\a may deadlock, Q\a cannot

Divergence

R = [do (a?x→ skip) od
‖ do (true→ a!0) od]\a

R′ = [do (a?x→ skip) 2 (in?y → out!y) od
‖ do (true→ a!0) od]\a

• R must diverge, R′ may diverge

15

Models of TCSP

• traces (H, 1980)

– communication sequences

– P = Q

• failures (HBR, 1981)

– traces, refusals

– P ⊇ Q

• failures/divergences (BR, 1982)

– traces, refusals, divergences

– “divergence is catastrophic”

– R = R′, P ⊇ Q

• stable failures (Jategaonkar/Meyer/Roscoe/Valmari)

– traces, stable refusals

– “ignore divergence”

– R ⊆ R′, P ⊇ Q

16

Features

• Close ties to operational intuition

– describe partial behaviors

– natural closure conditions

– full abstraction results

– ordering based on non-determinism

• Algebraic laws

– basis for model checking

• Reasoning principles

– unique fixed-point

– Milner-style expansion

Limitations

• Fairness hard to incorporate

• Extreme view of divergence

17

Idealized CSP

• parallel imperative processes

• asynchronous communication

• weakly fair parallel composition

• local variable declarations

• recursive processes

Unification

• asynchronous CSP

• shared-variable

• Kahn-style dataflow

Generalization

• CSP + procedures

• Idealized Algol + processes

• non-deterministic Kahn networks

18

Semantic model

Transition traces

〈s0, s
′
0〉〈s1, s

′
1〉 . . . 〈sn, s′n〉 . . .

• fair interactive computation

• process changes vs. environment changes

Communication

• Channel = queue-valued “variable”

• Input and output = state change

•Waiting = stuttering

Process

• set of traces

• closed under stuttering and mumbling

• trace sets ordered by inclusion

19

Semantics

• P ⊇ Q,R 6= R′

• Sequential composition = concatenation

• Parallel composition = fair merge

• Recursion = greatest fixed-point

• Environment never changes local variables

Advantages

•Mathematically simple

– traces suffice. . .

– models deadlock and divergence

– fairness built-in

• Unification of paradigms

– one model fits all

20

Features

• Close ties to operational intuition

– describes complete behaviors

– safety and liveness properties

– full abstraction at ground types

• Algebraic laws

– locality properties

– fairness

• Reasoning principles

– fixed-point

– fair expansion

ΣAi;Pi ‖ΣBj;Qj = Σ(Ai‖Bj); (Pi‖Qj)

No unique fixed-point property,
but. . .

21

Fixed-point theorems

Parallel recursion

• If pi =
∑
j
Aij; pj are fair expansions then

pij =
∑
i′,j′

(Aii′‖Ajj′); pi′j′

are valid and the fixed-points satisfy

pij = pi‖pj

Local recursion

• If pi =
∑
j
Aij; pj are fair expansions and

` {x = vi}Aij{x = vj}
A′ij =def local x = vi in Aij

then qi =
∑
j
A′ij; qj are valid and the

fixed-points satisfy

qi = local x = vi in pi

22

Laws

Local input

local h = vρ in P‖(h?x;Q)
= local h = ρ in P‖(x:=v;Q)

if h? not free in P

Local output

local h = ρ in P‖(h!v;Q)
= local h = ρv in P‖Q

if h! not free in P

Fair promotion

local h = ε in (h?x;P)‖(Q1;Q2)
= Q1; local h = ε in (h?x;P)‖Q2

if h not free in Q1

23

Desiderata

• develop practical tools

– model checking

– theorem-proving

• exploit unification

– reasoning across paradigms

• explore further

– probabilistic processes

– real-time

– concurrent objects

• stay faithful to ideals

– simplicity

– elegance

24

References

Full abstraction for a shared-variable
parallel language

LICS’93

The essence of Parallel Algol
LICS’96

Idealized CSP: combining procedures
with communicating processes

MFPS’97

On the Kahn Principle and fair networks
MFPS’98

Reasoning about recursive processes:
Expansion isn’t always fair

MFPS’99

25

