
CONCURRENT OBJECTS
IN IDEALIZED CSP

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

July 1998

1

IDEALIZED CSP

communicating processes
+

call-by-name λ-calculus

• simply typed

θ ::= var[τ] | chan[τ]
| exp[τ] | comm
| θ → θ′ | θ × θ′

τ ::= int | bool | unit

• asynchronous communication

channels as unbounded buffers

• fair parallel execution

abstracts from network details

2

CONNECTIONS

• generalizes CSP

– fairness

– nested parallelism

– dynamic process creation

– asynchronous communication

• generalizes Idealized Algol

– typed channels

– communicating processes

• generalizes Kahn networks

– non-determinism and fairness

• supports concurrent objects

– parallel methods

– shared or private state

3

SYNTAX

• Input

π ` h : chan[τ] π ` X : var[τ]

π ` h?X : comm

•Output

π ` h : chan[τ] π ` E : exp[τ]

π ` h!E : comm

• Parallel composition

π ` P1 : comm π ` P2 : comm

π ` P1‖P2 : comm

• Local declaration

π ` D : π′ π, π′ ` P : comm

π ` local D in P : comm

4

CATEGORY of WORLDS

Oles, Reynolds

• Objects: countable sets of states

V1 × · · · × Vk ×H∗1 × · · ·H∗n
• Morphisms:

(f,Q) : W → X

– function f from X to W

– equivalence relation Q on X

– each Q-class isomorphic to W

ADAPTATION

• channels as components of state

• communication as state change

5

EXPANSIONS

• The expansion morphism

−× V : W → W × V
is given by

−× V = (fst : W × V → W, Q)
(w0, v0)Q(w1, v1) ⇐⇒ v0 = v1

• Used to model local variables
and local channels

• Every morphism is an expansion,
modulo isomorphism

6

SEMANTICS

• Types denote functors from worlds
to domains, [[θ]] : W→ D

• Judgements π ` P : θ denote
natural transformations

[[P]] : [[π]] ·→ [[θ]]

i.e. when h : W → X,

[[π]]X

[[π]]W [[θ]]W

[[θ]]X-

[[P]]X

?

[[θ]]h

-
[[P]]W

?

[[π]]h

commutes.

Naturality enforces locality

7

COMMANDS

[[comm]]W = ℘†((W ×W)∞)

• Commands denote closed trace sets

αβ ∈ t & w ∈ W ⇒ α〈w,w〉β ∈ t
α〈w,w′〉〈w′, w′′〉β ∈ t ⇒ α〈w,w′′〉β ∈ t

• A trace 〈w0, w
′
0〉〈w1, w

′
1〉 . . . 〈wn, w′n〉 . . .

models a fair interaction

• A step 〈wi, w′i〉 represents a
finite sequence of atomic actions

8

CHANNELS

An “object-oriented” semantics:

• sender

give : W → (W × Vτ)option

• receiver

take : Vτ → (W → W)

satisfying

give(take v w) =
case give w of

none : some(w, v)
some(w′, v′) : some(take v w′, v′)

9

PARALLEL COMPOSITION

Fair merge of traces

[[P1‖P2]]Wu =
{α | ∃α1 ∈ [[P1]]Wu, α2 ∈ [[P2]]Wu.

(α1, α2, α) ∈ fairmergeW×W}†

where

fairmergeA = both∗A · oneA ∪ bothωA
bothA = {(α, β, αβ), (α, β, βα) | α, β ∈ A+}
oneA = {(α, ε, α), (ε, α, α) | α ∈ A∞}

fairmerge is natural

10

LOCAL CHANNELS

The traces of

local h : chan[τ] in P

at W are projected from the traces
of P at W × V ∗τ in which

• initially h = ε

• contents of h never change across
step boundaries

EXAMPLES

• local h in (h!0;P) = P
if h not free in P

• local h in (h?x;P) = while true do skip

11

LAWS

• Symmetry

local h1 in local h2 in P
= local h2 in local h1 in P

• Scope contraction

local h in (P1‖P2)
= (local h in P1)‖P2

if h not free in P2

. . . justifies graphical notation for
networks of processes

12

LOCAL LAWS

• Local output

local h = ρ in P1‖(h!v;P2)
= local h = ρv in P1‖P2

if h! not free in P1

• Local input

local h = vρ in P1‖(h?x;P2)
= local h = ρ in P1‖(x:=v;P2)

if h? not free in P1

. . . help when channels are uni-directional

13

FAIRNESS LAWS

• Fair prefix

local h in (h?x;P)‖(Q1;Q2)
= Q1; local h in (h?x;P)‖Q2

if h not free in Q1

• Cyclic synchronization

local h1, h2 in = (P1‖P2);
(P1; h1!?; h2??; Q1) local h1, h2
‖ (P2; h2!?; h1??; Q2) in (Q1‖Q2)

if h1, h2 not free in P1, P2

. . . require and reflect fair semantics

14

CLASSES AND OBJECTS

• Declarations as first-class citizens

π ` D : π′

• Class is template for declaration:

class C =
private π1
public π2

• Object instantiates template:

object X : C = private D1
public D2

translates to

local X.D1 in X.D2

15

BUFFER CLASSES

class Buffer1 =
public

put : exp[τ]→ comm
get : var[τ]→ comm

class Buffer2 =
Buffer1 with private data : chan[τ]

class Buffer3 =
Buffer1 with private data : var[τ]

SUBCLASSES

Buffer2 ≤ Buffer1
Buffer3 ≤ Buffer1

16

A BUFFER OBJECT

object B1 : Buffer2 =
private

empty : chan[unit] = [∗];
data : chan[int]

public
put(e) = (empty?∗; data!e);
get(z) = (data?z; empty!∗)

PROPERTIES

• B1 has class Buffer2

• Buffer2 ≤ Buffer1

• B1 also has class Buffer1

• B1 behaves like a 1-place buffer

17

ANOTHER BUFFER

object B2 : Buffer2 =
private

empty : chan[unit] = [∗];
data : chan[int]

public
put(e) = (empty?∗; data!(−e));
get(z) = local x : var[int] in

(data?x; z:=(−x); empty!∗)

PROPERTIES

• Codes and decodes data

• Still behaves like 1-place buffer

18

YET ANOTHER BUFFER

object B3 : Buffer3 =
private

empty : var[bool] = true;
full : var[bool] = false;
data : var[τ]

public
put(e) =

(await empty then empty:=false;
data:=e;
full:=false);

get(x) =
(await full then full:=true;
x:=data;
empty:=true)

19

EQUIVALENCES

• All three implementations of
buffers are “equivalent”

– no way to tell them apart

• Need to compare across paradigms

– communicating processes

– shared-variable

• Trace semantics can be used
in both cases

– all three buffer objects have same
trace semantics

– closure blurs granularity

20

CONCLUSIONS

• Idealized CSP supports a form
of concurrent objects

• Trace semantics validates
natural laws of equivalence

– locality

– fairness

– synchronization patterns

• Can compare across paradigms

• Can abstract from granularity

21

SPECIFICATIONS

spec BUFFER =
interface

empty, full : exp[bool]
with
{empty}put(v){full}

{full}get(x){empty}

put(v1)‖put(v2) =
(put(v1); put(v2)) or (put(v2); put(v1))

{empty}(get(x1)‖get(x2)) =
(get(x1); get(x2)) or (get(x2); get(x1))

{empty}(put(v)‖get(x)) =
put(v); get(x) = x:=v

22

