CONCURRENT OBJECTS IN IDEALIZED CSP

Stephen Brookes

Department of Computer Science Carnegie Mellon University

July 1998

IDEALIZED CSP communicating processes

 $+$ call-by-name λ-calculus- simply typed

$$
\begin{aligned}
& \theta::=\operatorname{var}[\tau] \mid \operatorname{chan}[\tau] \\
& \mid \exp [\tau] \mid \operatorname{comm} \\
&\left|\theta \rightarrow \theta^{\prime}\right| \theta \times \theta^{\prime}
\end{aligned}
$$

- asynchronous communication channels as unbounded buffers
- fair parallel execution abstracts from network details

CONNECTIONS

- generalizes CSP
- fairness
- nested parallelism
- dynamic process creation
- asynchronous communication
- generalizes Idealized Algol
- typed channels
- communicating processes
- generalizes Kahn networks
- non-determinism and fairness
- supports concurrent objects
- parallel methods
- shared or private state

SYNTAX

- Input

$$
\frac{\pi \vdash h: \operatorname{chan}[\tau] \quad \pi \vdash X: \operatorname{var}[\tau]}{\pi \vdash h ? X: \operatorname{comm}}
$$

- Output

$$
\frac{\pi \vdash h: \operatorname{chan}[\tau] \quad \pi \vdash E: \exp [\tau]}{\pi \vdash h!E: \operatorname{comm}}
$$

- Parallel composition
$\pi \vdash P_{1}:$ comm $\quad \pi \vdash P_{2}:$ comm

$$
\pi \vdash P_{1} \| P_{2}: \text { comm }
$$

- Local declaration

$$
\frac{\pi \vdash D: \pi^{\prime} \quad \pi, \pi^{\prime} \vdash P: \text { comm }}{\pi \vdash \operatorname{local} D \text { in } P: \text { comm }}
$$

CATEGORY of WORLDS

Oles, Reynolds

- Objects: countable sets of states

$$
V_{1} \times \cdots \times V_{k} \times H_{1}^{*} \times \cdots H_{n}^{*}
$$

- Morphisms:

$$
(f, Q): W \rightarrow X
$$

- function f from X to W
- equivalence relation Q on X
- each Q-class isomorphic to W

ADAPTATION

- channels as components of state
- communication as state change

EXPANSIONS

- The expansion morphism

$$
-\times V: W \rightarrow W \times V
$$

is given by

$$
\begin{aligned}
& -\times V=(\text { fst }: W \times V \rightarrow W, Q) \\
& \left(w_{0}, v_{0}\right) Q\left(w_{1}, v_{1}\right) \quad \Longleftrightarrow \quad v_{0}=v_{1}
\end{aligned}
$$

- Used to model local variables and local channels
- Every morphism is an expansion, modulo isomorphism

SEMANTICS

- Types denote functors from worlds to domains, $\llbracket \theta \rrbracket: \mathbf{W} \rightarrow \mathbf{D}$
- Judgements $\pi \vdash P: \theta$ denote natural transformations

$$
\llbracket P \rrbracket: \llbracket \pi \rrbracket \dot{\rightarrow} \llbracket \theta \rrbracket
$$

i.e. when $h: W \rightarrow X$,

$$
\begin{array}{rc}
\llbracket \pi \rrbracket W & \llbracket P \rrbracket W \\
\llbracket \pi \rrbracket h & \llbracket \theta \rrbracket W \\
\llbracket \pi \rrbracket X & \\
\llbracket P \rrbracket X & \llbracket \theta \rrbracket X
\end{array}
$$

commutes.
Naturality enforces locality

COMMANDS

$$
\llbracket \operatorname{comm} \rrbracket W=\wp^{\dagger}\left((W \times W)^{\infty}\right)
$$

- Commands denote closed trace sets

$$
\begin{aligned}
& \alpha \beta \in t \& w \in W \Rightarrow \alpha\langle w, w\rangle \beta \in t \\
& \alpha\left\langle w, w^{\prime}\right\rangle\left\langle w^{\prime}, w^{\prime \prime}\right\rangle \beta \in t \Rightarrow \alpha\left\langle w, w^{\prime \prime}\right\rangle \beta \in t
\end{aligned}
$$

- A trace $\left\langle w_{0}, w_{0}^{\prime}\right\rangle\left\langle w_{1}, w_{1}^{\prime}\right\rangle \ldots\left\langle w_{n}, w_{n}^{\prime}\right\rangle \ldots$ models a fair interaction
- A step $\left\langle w_{i}, w_{i}^{\prime}\right\rangle$ represents a finite sequence of atomic actions

CHANNELS

An "object-oriented" semantics:

- sender

$$
\text { give }: W \rightarrow\left(W \times V_{\tau}\right) \text { option }
$$

- receiver

$$
\text { take }: V_{\tau} \rightarrow(W \rightarrow W)
$$

satisfying
give (take $v w)=$
case give w of
none:
some (w, v)
some $\left(w^{\prime}, v^{\prime}\right)$: some $\left(\right.$ take $\left.v w^{\prime}, v^{\prime}\right)$

PARALLEL COMPOSITION

Fair merge of traces

$$
\begin{aligned}
& \llbracket P_{1} \| P_{2} \rrbracket W u= \\
& \left\{\alpha \mid \exists \alpha_{1} \in \llbracket P_{1} \rrbracket W u, \alpha_{2} \in \llbracket P_{2} \rrbracket W u .\right. \\
& \left.\quad\left(\alpha_{1}, \alpha_{2}, \alpha\right) \in \text { fairmerge }_{W \times W}\right\}^{\dagger}
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { fairmerge }_{A}=\text { both }_{A}^{*} \cdot \text { one }_{A} \cup \text { both }_{A}^{\omega} \\
& \text { both }_{A}=\left\{(\alpha, \beta, \alpha \beta),(\alpha, \beta, \beta \alpha) \mid \alpha, \beta \in A^{+}\right\} \\
& \text {one }_{A}=\left\{(\alpha, \epsilon, \alpha),(\epsilon, \alpha, \alpha) \mid \alpha \in A^{\infty}\right\}
\end{aligned}
$$

fairmerge is natural

LOCAL CHANNELS

The traces of
local h : $\operatorname{chan}[\tau]$ in P
at W are projected from the traces of P at $W \times V_{\tau}^{*}$ in which

- initially $h=\epsilon$
- contents of h never change across step boundaries

EXAMPLES

- local h in $(h!0 ; P)=P$ if h not free in P
- local h in $(h ? x ; P)=$ while true do skip

LAWS

- Symmetry

> local h_{1} in local h_{2} in P
> $\quad=$ local h_{2} in local h_{1} in P

- Scope contraction

if h not free in P_{2}
... justifies graphical notation for
networks of processes

LOCAL LAWS

- Local output

$$
\begin{aligned}
& \text { local } h=\rho \text { in } P_{1} \|\left(h!v ; P_{2}\right) \\
& \quad=\text { local } h=\rho v \text { in } P_{1} \| P_{2}
\end{aligned}
$$

if h ! not free in P_{1}

- Local input
local $h=v \rho$ in $P_{1} \|\left(h ? x ; P_{2}\right)$
$=$ local $h=\rho$ in $P_{1} \|\left(x:=v ; P_{2}\right)$
if h ? not free in P_{1}
... help when channels are uni-directional

FAIRNESS LAWS

- Fair prefix
local h in $(h ? x ; P) \|\left(Q_{1} ; Q_{2}\right)$
$=Q_{1} ;$ local h in $(h ? x ; P) \| Q_{2}$
if h not free in Q_{1}
- Cyclic synchronization local h_{1}, h_{2} in $\quad=\left(P_{1} \| P_{2}\right)$;
$\left(P_{1} ; h_{1}!\star ; h_{2} ? \star ; Q_{1}\right) \quad$ local h_{1}, h_{2}
$\|\left(P_{2} ; h_{2}!\star ; h_{1} ? \star ; Q_{2}\right) \quad$ in $\left(Q_{1} \| Q_{2}\right)$
if h_{1}, h_{2} not free in P_{1}, P_{2}
... require and reflect fair semantics

CLASSES AND OBJECTS

- Declarations as first-class citizens

$$
\pi \vdash D: \pi^{\prime}
$$

- Class is template for declaration:

$$
\begin{gathered}
\text { class } C= \\
\text { private } \pi_{1} \\
\text { public } \pi_{2}
\end{gathered}
$$

- Object instantiates template:

$$
\begin{aligned}
\text { object } X: C= & \text { private } D_{1} \\
& \text { public } D_{2}
\end{aligned}
$$

translates to

$$
\text { local } X . D_{1} \text { in } X . D_{2}
$$

BUFFER CLASSES

class Buffer $_{1}=$ public

> put : $\exp [\tau] \rightarrow$ comm get $: \operatorname{var}[\tau] \rightarrow$ comm
class Buffer $_{2}=$ Buffer r_{1} with private data: $\operatorname{chan}[\tau]$
class Buffer $_{3}=$

$$
\begin{gathered}
\text { Buffer }_{1} \text { with private data: var }[\tau] \\
\text { SUBCLASSES } \\
\text { Buffer }_{2} \leq \text { Buffer }_{1} \\
\text { Buffer }_{3} \leq \text { Buffer }_{1}
\end{gathered}
$$

A BUFFER OBJECT

object $B_{1}:$ Buffer $_{2}=$ private empty : chan $[$ unit $]=[*] ;$ data : chan[int]

public

$$
\begin{aligned}
& \text { put }(e)=(\text { empty } 2 * ; \text { data!e }) ; \\
& \operatorname{get}(z)=(\text { data?z; empty! } *)
\end{aligned}
$$

PROPERTIES

- B_{1} has class Buffer $_{2}$
- Buffer $_{2} \leq$ Buffer $_{1}$
- B_{1} also has class Buffer 1
- B_{1} behaves like a 1-place buffer

ANOTHER BUFFER

object $B_{2}:$ Buffer $_{2}=$
private

$$
\begin{aligned}
& \text { empty }: \operatorname{chan}[\mathbf{u n i t}]=[*] ; \\
& \text { data }: \text { chan }[\text { int }]
\end{aligned}
$$

public

$$
\begin{aligned}
\operatorname{put}(e)= & (\text { empty? } ? * \operatorname{data!}(-e)) ; \\
\operatorname{get}(z)= & \operatorname{local} x: \operatorname{var}[\text { int }] \text { in } \\
& (\text { data? } x ; z:=(-x) ; \text { empty }!*)
\end{aligned}
$$

PROPERTIES

- Codes and decodes data
- Still behaves like 1-place buffer

YET ANOTHER BUFFER

object $B_{3}:$ Buffer $_{3}=$
private

> empty $: \operatorname{var}[$ bool $]=$ true; full $: \operatorname{var}[$ bool $]=$ false; data $: \operatorname{var}[\tau]$
public

$$
\operatorname{put}(e)=
$$

(await empty then empty:=false; data:=e; full:=false);

$$
\operatorname{get}(x)=
$$

(await full then full:=true;

$$
\begin{aligned}
& x:=d a t a ; \\
& \text { empty:=true) }
\end{aligned}
$$

EQUIVALENCES

- All three implementations of buffers are "equivalent"
- no way to tell them apart
- Need to compare across paradigms
- communicating processes
- shared-variable
- Trace semantics can be used in both cases
- all three buffer objects have same trace semantics
- closure blurs granularity

CONCLUSIONS

- Idealized CSP supports a form of concurrent objects
- Trace semantics validates natural laws of equivalence
- locality
- fairness
- synchronization patterns
- Can compare across paradigms
- Can abstract from granularity

SPECIFICATIONS

spec $B U F F E R=$ interface

$$
\text { empty, full : } \exp [\mathbf{b o o l}]
$$

with
\{empty\}put(v)\{full\}
$\{$ full $\} \operatorname{get}(x)\{e m p t y\}$
$\operatorname{put}\left(v_{1}\right) \| \operatorname{put}\left(v_{2}\right)=$ $\left(\operatorname{put}\left(v_{1}\right) ; \operatorname{put}\left(v_{2}\right)\right)$ or $\left(\operatorname{put}\left(v_{2}\right) ; \operatorname{put}\left(v_{1}\right)\right)$
$\{\operatorname{empty}\}\left(\operatorname{get}\left(x_{1}\right) \| \operatorname{get}\left(x_{2}\right)\right)=$ $\left(\operatorname{get}\left(x_{1}\right) ; \operatorname{get}\left(x_{2}\right)\right)$ or $\left(\operatorname{get}\left(x_{2}\right) ; \operatorname{get}\left(x_{1}\right)\right)$
$\{\operatorname{empty}\}(\operatorname{put}(v) \| \operatorname{get}(x))=$ $\operatorname{put}(v) ; \operatorname{get}(x)=x:=v$

