A race-detecting semantics for concurrent programs

Stephen Brookes Carnegie Mellon University

Concurrency

- processes read and write to shared state
 - synchronize via conditional critical regions
 - mutually exclusive use of resources

Race condition

Concurrent write to identifier
 being read or written by another
 process

x:=1 *ll x*:=2

What's the value of x? Depends on granularity...

- Ignore races semantically
- Assume known granularity

$$[x:=1 || x:=2] = \{x:=1 | x:=2, x:=2 | x:=1\}$$

High-level $x \in \{1, 2\}$

$$[x:=1 || x:=2]] = (x.0:=1 x.1:=0)||(x.0:=0 x.1:=1))$$

Low-level $x \in \{0, 1, 2, 3\}$

- Avoid races syntactically
- Rules for critical variables
 Owicki-Gries
- Semantics just for race-free programs

- Avoid races syntactically
- Rules for critical variables
 Owicki-Gries
- Semantics just for race-free programs

$$x := 1 || x := 2$$
 disqualified

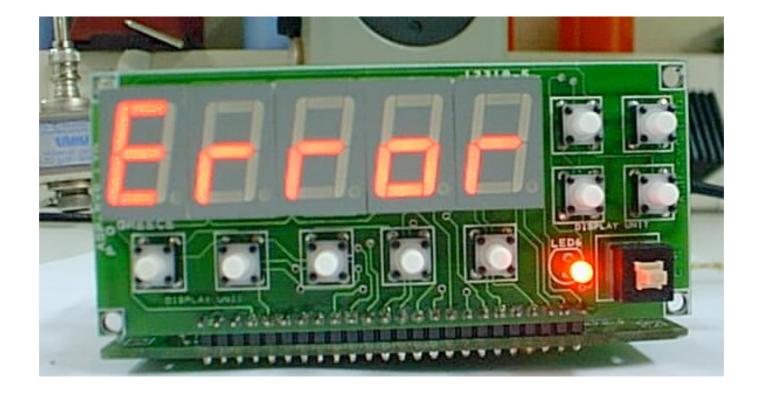
- Avoid races syntactically
- Rules for critical variables
 Owicki-Gries
- Semantics just for race-free programs

$$x:=1 || x:=2 \quad \text{disqualified}$$
with r do $x:=1 ||$ with r do $x:=2$
 $x \in \{1,2\}$

Problems with the traditional approaches

- Granular semantics
 - combinatorial explosion
 - too specific, not uniform
- Race-avoiding syntax
 - static constraints have limits
 - too draconian

- Semantics with race-detection
 - potential race treated as catastrophic cf. Reynolds



Outline

- Trace semantics
 - process denotes set of action traces
- High-level model
 - granularity of integer operations
- Low-level semantics
 - granularity of word operations
- Granularity Theorem
 - high-level consistent with low-level

Actions High-level model

- read
- write

i:=v try(r), acq(r), rel(r) abort

 λ

δ

i=v

• error

resource

 $i \in \mathbf{Ide}$ identifiers $r \in \mathbf{Res}$ resource names $v \in V$ integers

Traces

Concatenation

$$\alpha \delta \beta = \alpha \beta$$

$$\alpha \ abort \ \beta = \alpha \ abort$$

 $\alpha, \beta \in Tr$

State

- Global store
 - maps identifiers to integers
- Resources
 - each process owns a finite set A
 - must be disjoint

changes dynamically...

- State *enables* certain actions
- Action has an effect

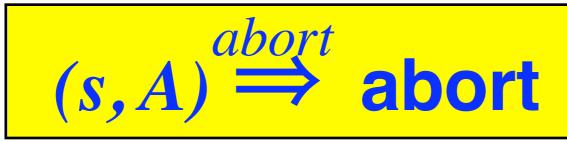
$$(s,A) \xrightarrow{\lambda} (s',A')$$
$$(s,A) \xrightarrow{\lambda} \text{abort}$$

$$(s,A) \stackrel{\delta}{\Rightarrow} (s,A)$$

$$(s,A) \stackrel{i=v}{\Longrightarrow} (s,A)$$
$$if (i,v) \in s$$

$$(s,A) \stackrel{i:=v}{\Rightarrow} ([sli:v],A)$$

if $i \in dom(s)$



$$(s,A) \stackrel{try(r)}{\Longrightarrow} (s,A)$$

$$\begin{array}{c} acq(r) \\ \textbf{(s,A)} \implies \textbf{(s,A} \cup \{r\}) & \text{if } r \notin A \end{array}$$

$$(s,A) \xrightarrow{rel(r)} (s,A - \{r\}) \text{ if } r \in A$$

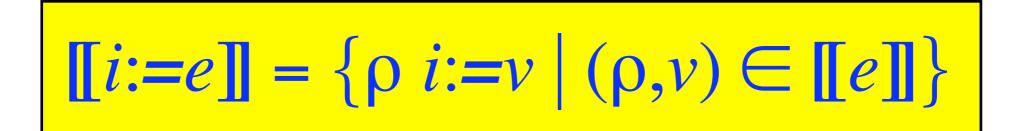
Semantics of expressions $[[e]] \subseteq \operatorname{Tr} \times V$

$$[[i]] = \{(i=v, v) \mid v \in V\}$$

$$[[e+e']] = \{(\rho\rho', v+v') | \\ (\rho, v) \in [[e]] \& (\rho', v') \in [[e']] \}$$

Semantics of commands

 $\llbracket c \rrbracket \subseteq \mathbf{Tr}$



[[c; c']] = [[c]] [[c']]

 $\llbracket c \parallel c' \rrbracket = \llbracket c \rrbracket_{\varnothing} \parallel_{\varnothing} \llbracket c' \rrbracket$

mutex fairmerge with race-detection

Mutual exclusion

At most one process holds each

 $\begin{aligned} (acq(r) \ x:=1 \ rel(r)) \parallel (acq(r) \ x:=2 \ rel(r)) \\ & \text{only includes} \\ acq(r) \ x:=1 \ rel(r) \ acq(r) \ x:=2 \ rel(r) \\ & \text{and} \\ acq(r) \ x:=2 \ rel(r) \ acq(r) \ x:=1 \ rel(r) \end{aligned}$

Mutex fairmerge Traditional Definition

$$\begin{aligned} & \left(\lambda_{1} \alpha\right)_{A_{1}} \Big\|_{A_{2}} \left(\lambda_{2} \beta\right) \\ &= \left\{\lambda_{1} \gamma \mid (A_{1}, A_{2}) \xrightarrow{\lambda_{1}} (A_{1}', A_{2}) \& \gamma \in \alpha_{A_{1}'} \|_{A_{2}} (\lambda_{2} \beta)\right\} \\ & \cup \left\{\lambda_{2} \gamma \mid (A_{2}, A_{1}) \xrightarrow{\lambda_{2}} (A_{2}', A_{1}) \& \gamma \in (\lambda_{1} \alpha)_{A_{1}} \|_{A_{2}'} \beta\right\} \end{aligned}$$

each process constrained by the other to maintain disjoint sets of resources

Race-detecting mutex fairmerge

$$(\lambda_1 \alpha)_{A_1} \|_{A_2} (\lambda_2 \beta) = \{abort\}$$

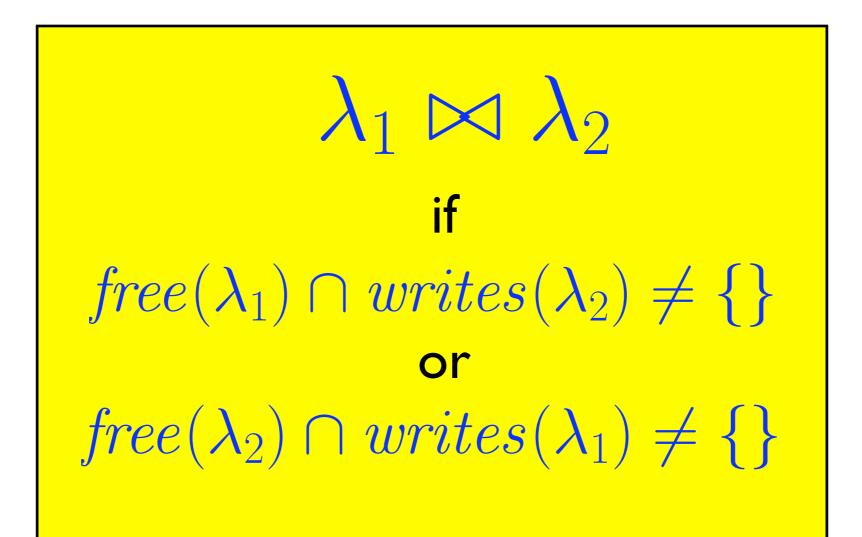
if $\lambda_1 and \lambda_2$ interfere

$$= \{\lambda_{1} \gamma \mid (A_{1}, A_{2}) \xrightarrow{\lambda_{1}} (A'_{1}, A_{2}) \& \gamma \in \alpha_{A'_{1}} \|_{A_{2}} (\lambda_{2} \beta) \}$$

$$\cup \{\lambda_{2} \gamma \mid (A_{2}, A_{1}) \xrightarrow{\lambda_{2}} (A'_{2}, A_{1}) \& \gamma \in (\lambda_{1} \alpha)_{A_{1}} \|_{A'_{2}} \beta \}$$

otherwise

Interference Definition



concurrent write to identifier being used by other process

Semantics

$$\llbracket c \parallel c' \rrbracket = \llbracket c \rrbracket_{\varnothing} \parallel_{\varnothing} \llbracket c' \rrbracket$$

mutex fairmerge with race detection

Example

$$[[x := x+1 || x := x+1]]$$

= {x=v abort | v \le V}

Semantics

[[with *r* when *b* do *c*]] =

wait* enter \cup wait⁰

wait =
$$acq(r) \llbracket b \rrbracket_{false} rel(r) \cup \{try(r)\}$$

 $enter = acq(r) \llbracket b \rrbracket_{true} \llbracket c \rrbracket rel(r)$

critical region protected by resource

Semantics

 $[[resource r in c]] = \{ \alpha \ r / \alpha \in [[c]]_r \}$

 $\begin{bmatrix} c \end{bmatrix}_r$ traces sequential for r

 αr hide actions on r

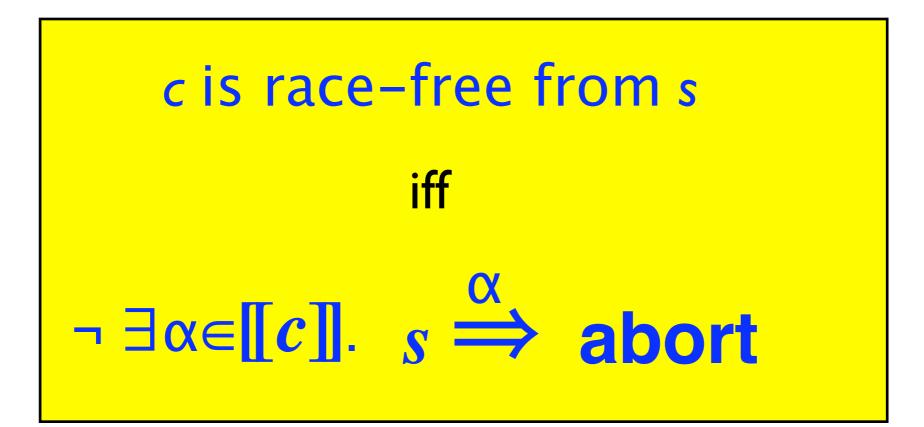
statically scoped local resource

Examples

$$[[with r do x := x+1]] = try(r)^{\infty} \{acq(r) | x=v | x:=v+1 | rel(r) | v \in V \}$$

Respect for resources Lemma If $\alpha \in [C]$ and $(s, \emptyset) \stackrel{\alpha}{\Rightarrow} (s', A')$ then $A' = \emptyset$

Race-free programs Definition



Low-level model

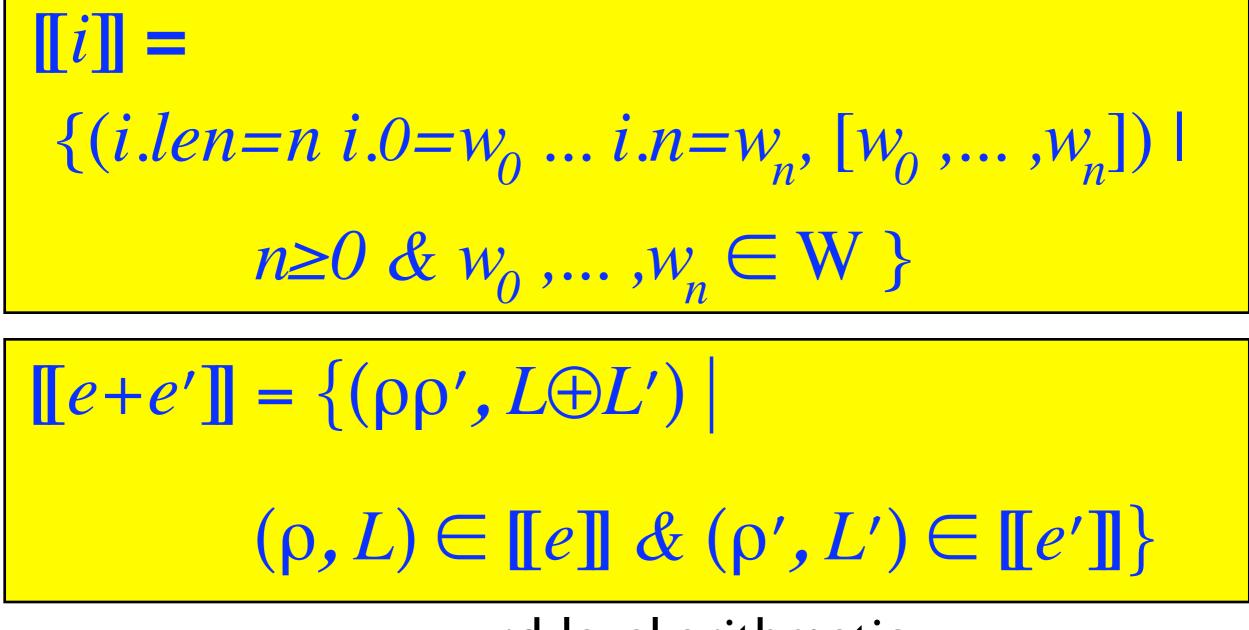
- Word size M
- Integer represented as list of words
- Word-level actions

 $0 \leq w \leq 2^{M}$

Low-level states

- Global store **S**
 - maps identifiers to lists of words
- Each process has set of resources A
 - pairwise disjoint

Low-level semantics of expressions



word-level arithmetic

Low-level semantics of commands

$$\llbracket i := e \rrbracket = \{ \rho \ i.len := n \ i.0 := w_0 \ ... \ i.n := w_n \\ | (\rho, [w_0, ..., w_n]) \in \llbracket e \rrbracket \}$$

Interference at low level

$$writes(i.j:=v) = \{i.j\}$$

writes(i.len:=n) = \{\}
writes(i.j=v) = \{\}

$$\begin{aligned} reads(i.j:=v) &= \{\}\\ reads(i.len:=n) &= \{\}\\ reads(i.j=v) &= \{i.j\} \end{aligned}$$

Representation Definitions

Word lists represent integers

$$[w_0, w_1, \dots, w_n]_M = w_0 + 2^M w_1 + \dots + 2^{nM} w_n$$

Low-level states represent high-level states

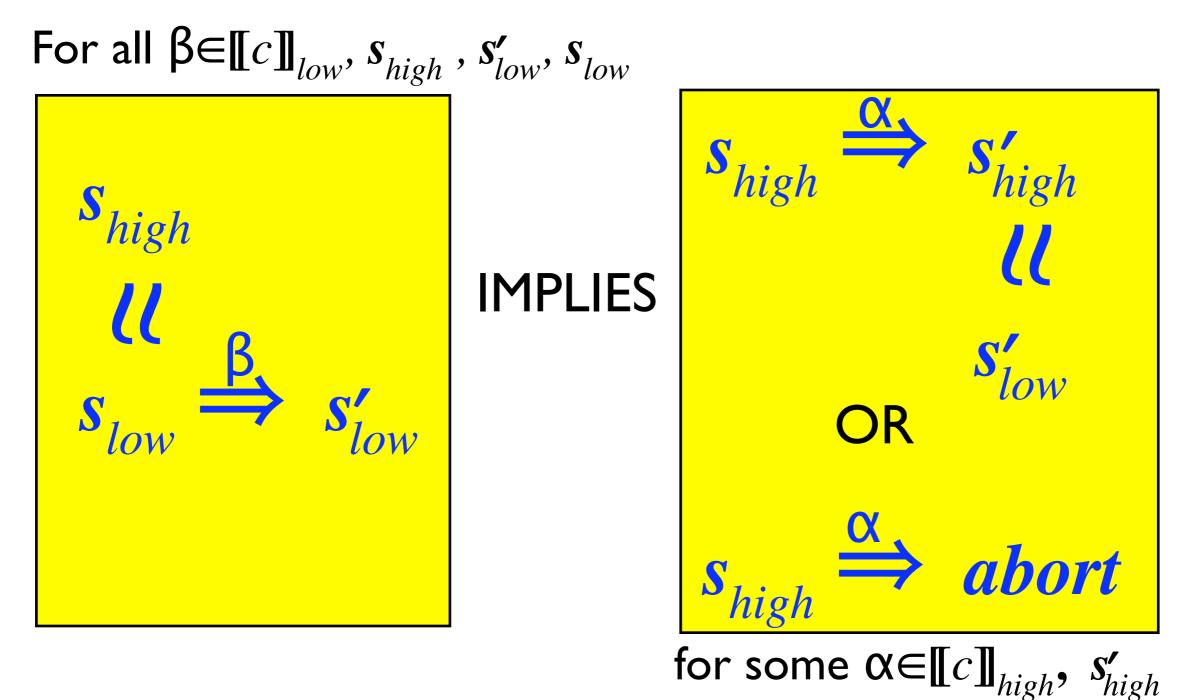
Granularity Theorem (1)

 Every high-level error-free computation simulates a low-level computation



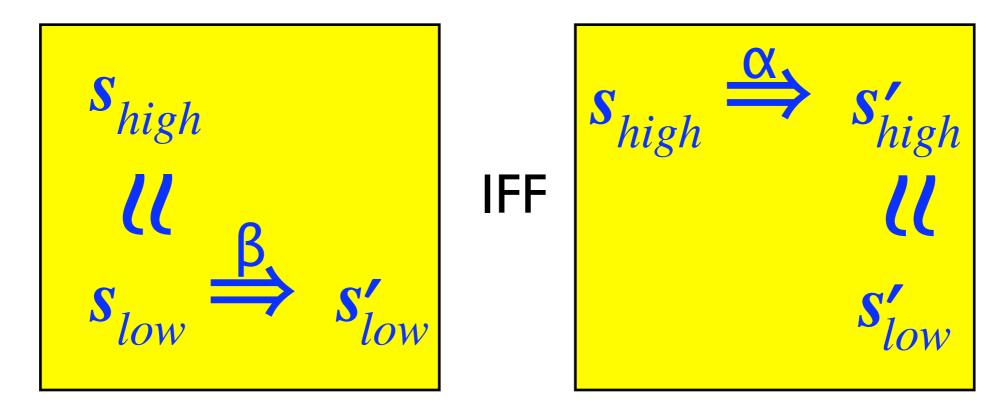
Granularity Theorem(2)

 Every low-level computation is (weakly) simulated by a high-level computation



Race-free case

• Simulation both ways if **c** is race-free



More concrete

- Low-level state = store + heap
- Effect of *i.len:=n* includes *allocation* and/or *deallocation* of heap cells
- Results still go through

Further work

- Soundness of Owicki-Gries logic
- Ideas extend to include pointers
 - concurrent separation logic O'Hearn, Brookes

to appear at CONCUR '04

