
Using transition traces
to model a security protocol.

Stephen Brookes
Carnegie Mellon University

March 12, 2003

1 Introduction

Security protocols are often difficult to specify formally and hard to prove
correct, because of the potentially complex patterns of interaction between
processes executing in parallel. Many people have proposed the use of formal
methods in such applications (cf. [13, 14, 15, 16, 18, 23, 24]). For example,
Roscoe and his colleagues have used the model checker FDR [10], based
on the failures-divergences semantics of CSP, to discover bugs in various
key-exchange protocols [21]. Schneider and Sidiropoulos [25] used FDR to
specify and verify an “anonymity” property of a security protocol known as
the “dining cryptographers” [8].

Semantically-based tools and methodologies such as these have tended to
be paradigm-specific, based on a particular choice of programming or spec-
ification language. It is difficult to adapt tools embedded in one parallel
paradigm (like CSP) to problems concerning other parallel paradigms (such
as shared-variable programs); at a more abstract level, semantic models for
shared-variable programming languages have so far had little in common
with semantic models for CSP-like languages. Yet we might want to prove
the correctness of a security protocol concerning protection of private data,
couched in terms of shared variable parallelism, with respect to a specification
phrased in terms of communication patterns and written in CSP. It would be
difficult even to say precisely what such a correctness criterion means if the
underlying semantic models for the two paradigms differ. This motivates the

1

use of a unifying semantic framework capable of modelling parallel systems
in a variety of paradigms.

In our recent work we have introduced a semantic framework based on
transition traces, suitable for modelling both shared-variable parallel pro-
grams and asynchronous networks of communicating processes [2, 3, 4, 5].
This semantics supports compositional analysis of safety and liveness proper-
ties, and incorporates fairness, which is vital in establishing liveness proper-
ties. Our semantics validates a number of useful laws of program equivalence,
including laws which reflect the underlying fairness assumption.

Because we employ such a simple semantic infrastructure we believe that
our approach can lead to simpler proofs – even comprehensible manual proofs
in reasonably sized examples – and better understanding of the principles
behind correct protocol design. In particular one does not always need to
rely solely on a “ box” such as a model checker. This is not intended to
belittle the role played by model checking: obviously many complex systems
cannot easily be analyzed “manually” and the support of automated tools
is generally beneficial. However there is still a role for semantics to play in
identifying general laws of program equivalence that can be used to justify
protocol design or network design. Indeed, we expect that such laws may
prove useful in improving the efficiency of model checkers; note that (for
instance) the FDR model checker relies on a collection of CSP laws in deriving
a normal form for finite-state CSP programs [1].

To illustrate our ideas we outline our specification and proof of correctness
for the dining cryptographers protocol, which differs significantly from the
specification and automated analysis in [25].

2 Outline of paper

Notation

We use an amalgam of CSP and a parallel Algol-like language, as in Idealized
CSP [4]. We assume that communication is asynchronous, so that an output
command is always enabled but an input command is blocked if the relevant
channel is empty. One can model synchronized communication within this
framework by means of an obvious request-acknowledge protocol. We also
allow processes to share variables. The programming language is (implicitly)

2

strongly typed; for example, a variable of type chan[int] represents a channel
capable of transmitting integer values.

The notation local h in P denotes a process P equipped with a local
variable h; processes outside the scope of this declaration for h do not affect
this variable. When h represents a channel we write local h = ρ in P to
indicate that the contents of h is initialized to the (finite sequence) ρ. When
ρ is the empty sequence this coincides with the previous notation.

2.1 Transition traces

A process P denotes a set of transition traces [2, 3, 4, 5]. A finite trace has the
form (s0, s

′
0)(s1, s

′
1) . . . (sn, s

′
n) and represents an interactive computation of

P starting in state s0, ending in s′n. Each step (si, s
′
i) represents the effect of

a finite sequence of atomic actions by P , and each interference step from s′i−1

to si represents a sequence of atomic actions by the process’s environment.
An infinite trace represents an infinite interactive computation, assuming
(weakly) fair interaction between the process and environment.

A denotational description of the trace semantics of processes is given
in [2, 4]. The traces of a network are fair merges of traces of its component
processes [19]. The traces of local h = ρ in P are obtained by projection
(ignoring the h-component) from traces of P in which the initial value of h
is ρ and the contents of h is never altered across step boundaries, since the
environment has no access to h.

The trace set of P is closed under two natural conditions that reflect
our use of a step to stand for an arbitrary finite sequence of atomic actions:
stuttering and mumbling. For instance, whenever αβ is a trace of P and s is
a state, the trace α(s, s)β obtained by inserting an extra “stuttering” step is
also possible for P ; and whenever P has a trace α(s, s′)(s′, s′′)β containing
adjacent steps with the same intermediate state, it also has the trace α(s, s′′)β
in which these steps are “mumbled” together. These closure conditions enable
our model to validate a number of laws of program equivalence that fail in
more finely grained semantics [19].

We incorporate channels directly into the state, essentially treating a
channel as a variable capable of holding a finite sequence of data values;
an input or output action is modelled as a state change. The potential for
deadlock is modelled by a form of infinite stuttering.

3

2.2 Laws of equivalence

Rather than relying on semantic definitions directly we list a number of useful
laws of program equivalence validated by our semantics [5]. Each law, written
as an equation of form P1 = P2, should be interpreted as asserting that the
traces of P1 coincide with the traces of P2.

Scope contraction

• local h in (P‖Q) = (local h in P)‖Q
if h does not occur free in Q.

Local input

• local h = vρ in P‖(h?x; Q) = local h = ρ in P‖(x:=v; Q)
provided h? does not occur free in P .

We write vρ for the sequence with head v and tail ρ.

Local output

• local h = ρ in P‖(h!v; Q) = local h = ρv in P‖Q
provided h! does not occur free in P .

We write ρv for the sequence obtained by appending the item v onto ρ.
These local laws show that under certain circumstances we lose no gen-

erality in assuming that a suitably enabled communication involving a local
channel occurs immediately, regardless of the enabledness of other activity.

Global promotion

• local h = ε in (h?x; P)‖(Q1; Q2) = Q1; local h = ε in (h?x; P)‖Q2

if h does not occur free in Q1.

The soundness of this law relies crucially on fairness. It can be used to
simplify reasoning in cases where local channels are used to enforce synchro-
nization. The significance of this law, and of its obvious generalization to the
case when there are several components waiting on local channels, is that it
allows one to “promote” an initial segment of code performable by a parallel

4

component, provided that code is “global” in that it does not affect any local
channel, and provided the “rest” of the parallel composition is waiting on a
local channel that is currently empty. This permits us to assume that the
“visible” piece of code happens first, even though operationally what really
happens is that the two parallel components are interleaved fairly. No gener-
ality is lost because the blocked component contributes only stuttering steps
to the traces, and these steps are absorbed by the closure conditions.

2.3 Dining cryptographers

We now put our semantics to use in the analysis of a security protocol from
the literature [8]. The scenario involves three cryptographers sharing a meal
around a circular table in an expensive restaurant. Each is told (secretly) by
their employer (NSA) if he must pay. At most one is told to pay, and is then
responsible for the entire bill. If no-one is told to pay the NSA will pick up
the tab. The cryptographers want to discover collectively if NSA is paying,
while retaining anonymity: no individual, when told not to pay, should be
able to determine which of the other two has been told to pay.

In Chaum’s protocol [8] each cryptographer tosses a private coin and
shows it to his right-hand neighbor. Each examines the two coins he can see
and votes publicly on the relationship between these coins. If told not to pay,
he lies about whether the coins agree. If told to pay, he tells the truth. The
participants tally the votes; the parity of the number of true votes predicts
if lunch is free.

We model the cryptographers C[i] (i = 0, 1, 2) as processes:

local coin[i], c, p in
begin

toss(coin[i]);
look[i	 1]!coin[i]; look[i]?c; pay[i]?p;
vote[i]!(p xor coin[i] xor c)

end

Here toss is a random boolean assignment, the look channels link each par-
ticipant to his right-hand neighbor, the pay channels link up with the NSA,
and the vote channels are “public”. We write 	 and ⊕ for subtraction and
addition, modulo 3, and xor is “exclusive-or”.

5

NSA

C[0]

C[2] C[1]

...

...

...

...

...

...6
pay[0]

................................=
pay[2]

................................~
pay[1]

..?

look[2]

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..

look[0]

........................�

...-
look[1]

?

vote[2]

6

vote[0]

?

vote[1]

Figure 1: Three dining cryptographers

We represent the NSA process as a non-deterministic choice:

NSA = PAYS or FREE
PAYS = PAYS[0] or PAYS[1] or PAYS[2]
PAYS[i] = pay[i]!true ‖ pay[i⊕ 1]!false ‖ pay[i	 1]!false
FREE = pay[0]!false ‖ pay[1]!false ‖ pay[2]!false

The network is shown pictorially in Figure 1, with “internal” channels drawn
as dotted lines.

The fact that the cryptographers can tell if the meal is free is deducible
from the following characterizations of trace sets, which are straightforward
to derive from the laws given above:

local pay, look in
PAYS[i] ‖ C[0] ‖ C[1] ‖ C[2]

=

⋃
{(vote[0]!v0 ‖ vote[1]!v1 ‖ vote[2]!v2) |

#true{v0, v1, v1}is odd}

local pay, look in
FREE ‖ C[0] ‖ C[1] ‖ C[2]

=

⋃
{(vote[0]!v0 ‖ vote[1]!v1 ‖ vote[2]!v2) |

#true{v0, v1, v1}is even}

6

Note that the votes can come in any order, and no-one is able to deduce any
secret information based on the voting sequence.

In establishing these characterizations much use is made of the local input
and local output laws, since most of the activity in the network is carried
out “locally”; we thus avoid having to deal with arbitrary interleavings of
“internal” actions.

The desired anonymity property amounts to the following equivalences
(i = 0, 1, 2):

Li[PAYS[i	 1]] = Li[PAYS[i⊕ 1]],

where
Li[−] = local look[i	 1], look[i⊕ 1], pay in

[−] ‖ C[0] ‖ C[1] ‖ C[2].

Again it is straightforward to show that both processes have trace sets of the
same form:

(look[i]?bi⊕1; vote[i]!(bi xor bi⊕1))
‖ (look[i]!bi⊕1; vote[i⊕ 1]!(¬bi⊕1 xor bi	1))
‖ vote[i	 1]!(bi	1 xor bi)

where b0, b1, b2 ∈ {true, false}. Certain timing constraints are implicitly
present in these descriptions, notably that in any interleaving the output on
channel look[i] (done by C[i ⊕ 1]) must precede the input (done by C[i]).
Again the secrets are not deducible from the order in which events happen.

The case when four or more cryptographers are involved offers further
potential for trouble. See Figure 2 for a picture of the network structure.
Again local channels are drawn as dotted lines.

As before we have the same kind of anonymity as above, and a similar
proof suffices to show this. However, there is now the possibility of collusion
between two cryptographers, in an attempt to determine which of the other
two is the payer.

If two neighbors collude they do not gain enough information to break
anonymity. This is shown by the following equivalence:

Ci,i⊕1[PAYS[i⊕ 2]] = Ci,i⊕1[PAYS[i⊕ 3]],

where
Ci,i⊕1[−] = local look[i⊕ 2], look[i⊕ 3], pay in

[−] ‖ C[0] ‖ C[1] ‖ C[2] ‖ C[3].

7

NSA

C[0] C[1]

C[2]C[3]

.....
.....

.....
.....

.....
....I pay[0]

.....
.....
.....
.....
.....
....�pay[1]

...............................R
pay[2]

...............................	
pay[3]

...?

look[3]

....

....

....

....

....

....

....

....

....

....

....

....

...6

look[1]

..� look[0]

..-
look[2]

@
@

@I

vote[0]
�

�
��

vote[1]

�
�

�	

vote[3] @
@

@R

vote[2]

Figure 2: Four dining cryptographers

Again a simple “normal form” for the trace sets can be derived.
However, if cryptographers sitting in opposite chairs collude they can

break anonymity. The trace semantics shows this too, since

Ci,i⊕2[PAYS[i⊕ 1]] 6= Ci,i⊕2[PAYS[i	 1]],

where
Ci,i⊕2[−] = local look[i	 1], look[i⊕ 1], pay in

[−] ‖ C[0] ‖ C[1] ‖ C[2] ‖ C[3].

Of course in this particular example the danger of cross-table collusion is
intuitively obvious: between them the two opposite cryptographers get to
see all four of the coins. Nevertheless our semantics lends itself naturally
to specification of the desired security and correctness properties, and the
succinctness of the representations given for trace sets is appealing. Our
characterization of anonymity as a program equivalence is rather different
from the way FDR is used in [25]. It seems very natural that an anonymity
property like this turns out to be expressible as a program equivalence, and
we believe this idea is rather widely applicable. Our approach thus offers a
fresh way to look at this kind of problem.

8

The benefits of using a flexible, simple and widely applicable semantic
foundation should be significant. Our semantic model has the advantage
of building in fairness, and supports laws of program equivalence that can
help tame the combinatorial explosion. In cases such as this we are able to
give a proof couched in easily comprehensible terms, rather than resorting
immediately to the use of a model checker. It should also be noted in any
case that the use of a model checker does not come for free: the task of
converting a specification into a format acceptable as input to the model
checker is error-prone and time-consuming. Moreover, while model checking
is applicable only for finite-state programs, our semantics can also be used to
reason about infinite-state programs and can be used to reason inductively
about parameterized families of networks. Of course in larger-scale examples
the need for automation may be more compelling.

2.4 Further work

Laws of program equivalence such as global promotion and local input/output
can be used to help tame the combinatorial explosion inherent in naive ex-
ploration of the state space of finite-state systems. Such laws enable us to
reason “as if” execution happens in a particularly helpful order, without
loss of generality. We will show how this can lead to straightforward and
streamlined proofs of correctness for a variety of communications protocols
and security protocols from the literature. For example, we can prove the
correctness of the alternating bit protocol, assuming that a message can be
dropped or duplicated an arbitrary finite number of times. We can prove
directly, using our semantically-based laws, that the system consisting of
sender and receiver processes and the lossy communication medium, with all
internal channels localized, is exactly equivalent to a one-place buffer process;
this shows both safety (any output must have been input earlier) and liveness
(every input is eventually output). Similarly we can prove the equivalence of
a network based on a sliding window protocol with parameter n (as given in
CSP by [18]) and an (n + 2)-place buffer; again we obtain both safety and
liveness, unlike the proof given in [18], which focusses on safety.

9

References

[1] Blamey, S., The soundness and completeness of axioms for CSP pro-
cesses, in: Topology and category theory in computer science, Reed, M.
and Roscoe, A.W., and Wachter, R. (editors), Oxford University Press,
1991.

[2] Brookes, S., Full abstraction for a shared-variable parallel language,
Proc. 8th IEEE Symposium on Logic in Computer Science, IEEE Com-
puter Society Press (1993), 98–109. Journal version in: Information and
Computation, vol 127, No. 2, Academic Press (June 1996).

[3] Brookes, S., The essence of Parallel Algol, Proc. 11th IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press (1996)
164–173. Journal version to appear in Information and Computation,
1998.

[4] Brookes, S., Idealized CSP: Combining Procedures with Communicat-
ing Processes, MFPS’97, Pittsburgh, March 1997. Electronic Notes
in Theoretical Computer Science 6, Elsevier Science (1997). URL:
http://www.elsevier.nl/locate/entcs/volume6.html.

[5] Brookes, S., On the Kahn Principle and Fair Networks, MFPS’98, Queen
Mary Westfield College, May 1998. Full version submitted to Theoretical
Computer Science.

[6] Brookes, S. and Roscoe, A.W., An improved failures model for CSP,
Seminar on concurrency, Springer-Verlag, LNCS 197, 1984.

[7] Brookes, S. and Roscoe, A.W., Deadlock Analysis in networks of com-
municating processes, Distributed Computing (1991) 4:209-230.

[8] Chaum, D., The dining cryptographers problem: unconditional sender
and recipient untraceability, J. Cryptology (1), 1988.

[9] Clarke, E. M. and Emerson, E. A. and Sistla, A. P., Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications,
ACM Transactions on Programming Languages and Systems, 8 (2), 1986

10

[10] Formal Systems (Europe), Ltd., Failures-Divergence Refinement: FDR2
Manual, 1997.

[11] Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM,
21(8):666–677 (1978).

[12] Kahn, G. and MacQueen, D. B., Coroutines and Networks of Parallel
Processes, Information Processing ’77, North Holland, 1977.

[13] Lowe, G., Breaking and fixing the Needham-Schroeder public-key potocol
using FDR, 2nd International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems, Springer-Verlag, LNCS vol.
1055, 1996.

[14] Marrero, W. and Clarke, E. M., and Jha, S., Model Checking for Security
Protocols, Carnegie Mellon University, Technical report CMU-CS-97-
139, May 1997.

[15] Meadows, C., Analyzing the Needham-Schroeder public-key protocol: a
comparison of two approaches, European Symposium on Research in
Computer Security, Springer-Verlag, 1996.

[16] Mitchell, J. and Mitchell, M. and Stern, U., Automated Analysis of Cryp-
tographic Protocols Using Murφ, IEEE Symposium on Security and Pri-
vacy, IEEE Computer Society Press, 1997.

[17] Needham, R. and Schroeder, M., Using encryption for authentication in
large networks of computers, Comm. ACM, 21(12), pages 993-9, 1978.

[18] Paliwoda, K. and Sanders, J.W., The sliding window protocol in
CSP, Oxford University Computing Laboratory, Programming Research
Group, Technical Report PRG-66 (1988).

[19] Park, D., On the semantics of fair parallelism. In D. Bjørner, editor, Ab-
stract Software Specifications, Springer-Verlag LNCS vol. 86 (1979),
504–526.

[20] Roscoe, A.W., Model checking CSP, in A Classical Mind: Essays in
honor of C. A. R. Hoare, Prentice-Hall, 1994.

11

[21] Roscoe, A.W., Modelling and verifying key-exchange protocols using
CSP and FDR, IEEE Workshop on Computer Security Foundations,
IEEE Computer Society Press, 1995.

[22] Roscoe, A.W., The Theory and Practice of Concurrency, Prentice-
Hall, 1998.

[23] Schneider, S., Security properties and CSP, IEEE Symposium on Secu-
rity and Privacy, IEEE Computer Society Press, 1996.

[24] Schneider, S., Verifying authentication protocols in CSP, IEEE Sympo-
sium on Security and Privacy, IEEE Computer Society Press, 1997.

[25] Schneider, S. and Sidiropoulos, A., CSP and Anonymity, ESORICS,
Springer-Verlag, LNCS vol. 1146, 1996.

12

