
On the Kahn Principle
and Fair Networks

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

MFPS

May 1998

1

KAHN NETWORKS

A model of deterministic systems. . .

• data as streams

– V ∞ = finite and infinite sequences

– ordered by prefix

• nodes as deterministic processes

– processes communicate asynchronously on
buffered channels

– each process computes a continuous
input-output function

– f : V ∞1 × · · · × V ∞k → V ∞

• Kahn’s principle

– mutually recursive functions

– network behavior is least fixed point

2

EXAMPLE

filter (p, a, b) =
local x in

while true do
(a?x; if x mod p 6= 0 then b!x);

sift(a, out) =
local b, p in

begin
a?p; out!p;
filter (p, a, b) ‖ sift(b, out)

end

nats(k, a) = a!k; nats(k + 1, a)

primes(out) =
local a in (nats(2, a) ‖ sieve(a, out))

3

ADVANTAGES

• Language combines Algol and CSP

– restricted subset

• Simple network calculus

– cascade, feedback

– juxtaposition

– recursion

• Supports network analysis

– safety: every output is prime

– liveness: every prime will be out-
put eventually

• Describes causality

– f (ε) = ε and f (v) 6= ε implies
input causes output

4

OPERATIONAL
JUSTIFICATION

Nodes are computing stations

• finite work in finite time

• compute output from input

• deterministic

Continuity matches intuition

(1) more input ⇒ no less output

(2) finite output needs finite input

(3) infinite output appears as the limit
of its finite prefixes

5

LIMITATIONS

• Deterministic

– limited applicability

– no shared input or output

– visible channels unidirectional

– node waits on at most one input

• Non-homogeneous

– nodes are sequential

– sequential composition is non-monotone

– semantics of nodes given separately

– prevents hierarchical analysis

• Doesn’t easily generalize to
non-deterministic case

– Brock-Ackerman anomaly

– problems with fairness

6

NON-DETERMINISM

• Sharing output channels

merge(left, right, out) =
local x, y in

while true do left?x; out!x
‖while true do right?y; out!y

• Sharing input channels

split(in, left, right) =
local x in

while true do in?x; left!x
‖while true do in?x; right!x

• Bi-directional channels

local x, y in
while true do (a?x‖b?y; a!y‖b!x)

7

GENERALIZING KAHN

Traditional aims:

• as simple as possible

• retain spirit of continuity

• least fixed point

Examples:

• stream relations, hiatons, scenarios

• I/O automata

• sets of continuous functions

Typical limitations:

• only continuous operations

• fairness absent or restricted

• operational justification

8

BROCK-ACKERMAN (1)

P1 = local x, y in (i?x; o!x; i?y; o!y)
P2 = local x, y in (i?x; i?y; o!x; o!y)

str[[P1]] 6= str[[P2]]

S[−] = local l′, r′, i in
D(l, l′) ‖D(r, r′) ‖M ‖ [−]

D(l, l′) = local z in (l?z; l′!z; l′!z)

M = merge(l′, r′, i)

str[[S[P1]]] = str[[S[P2]]]

9

BROCK-ACKERMAN (2)

T [−] = local h, r, o in
[−] ‖ spray ‖ times5

spray = local z in
while true do (o?z; b!z;h!z)

times5 = local z in
while true do (h?z; r!(5× z))

str[[S[P1]]] = str[[S[P2]]]

str[[T [S[P1]]]] 6= str[[T [S[P2]]]]

Stream relations are not compositional
for non-deterministic networks

10

IS CONTINUITY FAIR?

B = local x in
while true do (a?x; b!x)

B′ = local x in
while true do (skip or (a?x; b!x))

B∗ = local x, n in
n:=?; for i:=1 to n do (a?x; b!x)

STREAM BEHAVIORS

str[[B]] = {(ρ, ρ) | ρ ∈ V∞}
str[[B′]] = {(ρ, σ) | σ ≤ ρ & ρ, σ ∈ V∞}
str[[B∗]] = {(ρ, ρ) | ρ ∈ V ∗} not continuous

No operational justification for
imposing continuity

11

OPERATIONAL
CONSIDERATIONS

• Rationale

(1) more input ⇒ no less output

(2) finite output needs finite input

(3) infinite output occurs as limit of
finite prefixes

• Non-deterministic case

– (1), (2) hold, but not (3)

– each finite prefix might come from
a different computation

– continuity rules out fairness

– continuity confuses causality

Operational justification fails

12

A PROBLEM WITH
SEQUENCING

Two deterministic processes:

sink(a, b) = local x in a?x
source(a, b) = b!0

Their stream functions:

str[[sink]] = {(ρ, ε) | ρ ∈ V∞}
str[[source]] = {(ρ, 0) | ρ ∈ V∞}

Not compositional:

str[[sink]] = str[[skip]]
str[[sink; source]](ε) = ε

str[[skip; source]](ε) = 0

13

ASSESSMENT

For non-deterministic networks:

• fairness is fundamental

– abstracts from network details

• continuity is not operationally
justifiable

• stream relations blur causality and
cannot be composed

• stimulus-response behavior is
important

– need a more intensional model

but we’d still like to stay faithful to
Kahn’s Principle. . .

14

FAIR NETWORKS

• nodes are non-deterministic

– asynchronous communication

• nodes and networks are processes

– hierarchical network structure

• processes denote trace sets

– stream relations extended in time

• fair parallel execution

– a reasonable abstraction

• fixed point characterization

– fair parallel composition

– recursive process definitions

• operational justification

– trace sets match operational semantics

15

ADVANTAGES

• compositional

– no anomalies

• supports network analysis

– safety and liveness properties

– stimulus-response

• homogeneous

– supports hierarchical analysis

• dynamic networks

– recursion

– nested parallelism

• fairness incorporated

– vital for liveness

• can extract stream relation

– agrees with Kahn interpretation in deter-
ministic cases

16

TRACES

• A state is a tuple w = (v̄, ρ̄) giving
the values of variables and contents
of channels

• A trace is a sequence
of state changes

〈w0, w
′
0〉〈w1, w

′
1〉 . . . 〈wn, w′n〉 . . .

recording a fair interaction

• A step 〈wi, w′i〉 models a finite se-
quence of atomic actions

INTUITION

communication = state change
interference = action by environment

unrequited input = busy wait

17

CATEGORY of WORLDS

• Objects: countable sets

W = (V1×· · ·×Vn)×(H∗1×· · ·×H∗k)

•Morphisms: expansions

h = (f,Q) : W → W ′

where f : W ′→ W
Q ⊆ W ′ ×W ′

INTUITION

• A world W is a set of states with the
same “shape”

• A morphism h : W → W ′ is an
“expansion”

18

FUNCTORIAL SEMANTICS

Types as functors

[[proc]]W = P†((W ×W)∞)

[[chan[τ]]]W = (Vτ → (W → W)) put
× (W → (W × Vτ)option) get

Phrases as natural transformations

•When π ` P : proc

traces [[P]]W : [[π]]W → [[proc]]W

•When h : W → W ′ and u′ = [[π]]hu

[[proc]]h(traces [[P]]Wu) = traces [[P]]W ′u′

INTUITION

Naturality enforces
locality constraints

19

TRACE SEMANTICS

• A process denotes a total trace set

– total relation, extended in time

– complete recipe for interaction

• Trace sets are closed

αβ ∈ t&w ∈ W ⇒ α〈w,w〉β ∈ t stuttering

α〈w,w′〉〈w′, w′′〉β ∈ t ⇒ α〈w,w′′〉β ∈ t mumbling

CAVEAT

Trace sets are not prefix-closed
and not closed under limit

A trace represents an
entire computation

20

DOMAINS

Total trace sets form a domain

• ordered by reverse inclusion

• measures non-determinism

• not an information order

Traces form a domain

• ordered by prefix

• irrelevant and misleading

Powerdomains not needed

• cannot deal with fairness

• induce wrong ordering

• too complex

21

SEMANTIC DEFINITIONS

Assume W = V × V ∗

• skip has traces of form

〈w0, w0〉 . . . 〈wk, wk〉

• h?x has traces of form

〈(v, nρ), (n, ρ)〉
〈(v0, ε), (v0, ε)〉 . . . 〈(vk, ε), (vk, ε)〉 . . .

• h!0 has traces of form

〈(v, σ), (v, σ0)〉

• sequential composition

concatenation

• parallel composition

fair merge

22

PARALLEL COMPOSITION

h!1 ‖ while true do h!0 = (h!0)∗h!1(h!0)ω

FAIRMERGE

fairmergeA ∈ P(A∞ × A∞ × A∞)

fairmergeA = νR. both ·R ∪ one
= both∗ · one ∪ bothω

where

both = {(α, β, αβ), (α, β, βα) | α, β ∈ A+}
one = {(α, ε, α), (ε, β, β) | α, β ∈ A∞}

fairmerge is natural

23

CHOICE

An external choice

(a?x→ P1)2(b?x→ P2)

can

• input on a and behave like P1

• input on b and behave like P2

• busy-wait while a and b are empty

An internal choice

(a?x→ P1) u (b?x→ P2)

can busy-wait if either a or b is empty

24

LOCAL CHANNELS

The traces of

local h : chan[τ] in P

at worldW are projected from the traces
of P at W × V ∗τ in which

• initially h = ε

• h is never changed externally

EXAMPLES

• local h in (h!e‖h?x) = x:=e

• local h in (h!0;P) = P
if h does not occur free in P

• local h in (h?x;P) = while true do skip
because of unrequited input

25

RECURSION

Recursive process definitions

B = a?x; b!x;B

correspond to guarded functions on
total trace sets,

F (t) = {a?v; b!v;α | v ∈ V & α ∈ t}
with least solutions

B = {a?v; b!v | v ∈ V }ω

obtained by iteration

Generalizes to mutually recursive families

26

STREAM RELATIONS

For a trace set T over V ∗i × V ∗o let
rel(T) ⊆ V∞i × V∞o be

rel(T) = {(ρ, σ) | ρ = 〈ρn〉, σ = 〈σn〉 &
〈(ρ0, ε), (δ0, σ0)〉
〈(δ0ρ1, ε), (δ1, σ1)〉
.
〈(δn−1ρn, ε), (δn, σn)〉
. ∈ T}

EXAMPLES

rel(traces[[B]]) = {(ρ, ρ) | ρ ∈ V∞}
= str [[B]]

rel(traces [[primes]]) = str [[primes]]
rel(traces [[ABP]]) = str [[B]]

27

ANOMALIES?

• Brock-Ackerman

– traces[[P1]] 6= traces[[P2]]

– traces[[S[P1]]] 6= traces[[S[P2]]]

• Sequential composition

– traces[[sink]] 6= traces[[skip]]

• Buffers

– traces[[B]] 6= traces[[B′]] 6= traces[[B∗]]

28

LAWS

• Symmetry

local h1 in
local h2 in P

= local h2 in
local h1 in P

• Scope contraction

local h in (P1‖P2) =
(local h in P1)‖P2

when h not free in P2

• Functional laws

(λx.P)(Q) = P [Q/x]
rec x.P = P [rec x.P/x]

29

FEEDBACK

feedback(N, ī, ō) = local ī in [̄i/ō]N

JUXTAPOSITION

juxtapose(N1, N2) = N1‖N2

CASCADE

cascade(N1, N2) =
local h̄ in

[h̄/ō]N1 ‖ [h̄/ī]N2

30

CONCLUSION

Trace semantics

• can handle non-determinism

– bi-directional channels

– shared channels

– fair parallelism

• generalizes stream functions

• is faithful to Kahn’s spirit

• validates natural laws

• provides a unifying semantic model

– shared-variable parallelism

– non-deterministic networks

– CSP

• is operationally justified

31

FURTHER WORK

• Applications

– security protocols

– deadlock analysis

•Methodology

– unification of paradigms

– exploiting fairness

• Concurrent objects

– private state + methods

• Language design

– Parallel Algol, Idealized CSP

• Full abstraction

• Connection with game semantics

32

ALTERNATING BIT

ABP =

local send , trans , reply , ack in
Accept(0) ‖Medium ‖Replying(1)

•Medium is non-deterministic

– may lose or replicate

– cannot lose forever

– cannot replicate forever

• ABP is deterministic

– behaves like a buffer

• Fairness is crucial

– guarantees liveness

33

