REASONING ABOUT PARALLEL PROGRAMS WITH LOCAL VARIABLES

Stephen Brookes

Carnegie Mellon University School of Computer Science

MFPS'94

SHARED VARIABLE PARALLELISM

- Parallel imperative programs reading and writing shared memory
- $C_1 \| C_2$ modelled by interleaving of atomic actions
- Synchronization using conditional atomic action: **await** B **then** C

Coarseness Assumption

Assignment and boolean expressions are atomic.

OPERATIONAL SEMANTICS

 $\frac{\langle B, s \rangle \to^* \mathsf{tt} \quad \langle C, s \rangle \to^* \langle C', s' \rangle \mathrm{term}}{\langle \mathsf{await} \ B \ \mathsf{then} \ C, s \rangle \to \langle \mathsf{skip}, s' \rangle}$

cf. Hennessy and Plotkin (1979)

PROGRAM BEHAVIOR

- Partial correctness: $\mathcal{M}\llbracket C \rrbracket = \{ (s, s') \mid \langle C, s \rangle \to^* \langle C', s' \rangle \text{term} \}$
- Strong correctness: $\mathcal{M}\llbracket C \rrbracket = \{(s, s') \mid \langle C, s \rangle \to^* \langle C', s' \rangle \text{term} \}$ $\cup \{(s, \bot) \mid \langle C, s \rangle \to^{\omega} \}$
- Total correctness: $\mathcal{M}\llbracket C \rrbracket = \{(s, s') \mid \langle C, s \rangle \to^* \langle C', s' \rangle \text{term} \}$ $\cup \{(s, s') \mid s' \in S_{\perp} \& \langle C, s \rangle \to^{\omega} \}$
- Deadlock: $\mathcal{M}\llbracket C \rrbracket = \{ (s, s') \mid \langle C, s \rangle \to^* \langle C', s' \rangle \text{dead} \}$

FULL ABSTRACTION

Milner (1977):

A semantics is *fully abstract* if two phrases have the same meaning precisely when they induce the same behavior in all program contexts.

- A natural criterion for judging merit of a semantics.
- Often difficult to achieve.
- A fully abstract semantics supports compositional reasoning.
- Failure of full abstraction may suggest:
 - defective semantic model
 - missing language features

TRACE SEMANTICS

Transitions: $\Sigma = S \times S$ Transition traces: $\Sigma^{\infty} = \Sigma^+ \cup \Sigma^{\omega}$ Trace semantics: $\mathcal{T}\llbracket C \rrbracket \subseteq \Sigma^{\infty}$

- A trace represents a sequence of snapshots taken during computation, allowing for possible interruption.
- Operational definition:

$$\mathcal{T}\llbracket C \rrbracket = \{ (s_0, s'_0)(s_1, s'_1) \dots (s_k, s'_k) \mid \\ \langle C, s_0 \rangle \to^* \langle C_1, s'_0 \rangle \& \\ \langle C_1, s_1 \rangle \to^* \langle C_2, s'_1 \rangle \& \\ \dots & \& \\ \langle C_k, s_k \rangle \to^* \langle C', s'_k \rangle \text{term} \}$$

• Partial correctness behavior corresponds to "interference-free" subset:

$$\mathcal{M}\llbracket C \rrbracket = \{ (s, s') \mid (s, s') \in \mathcal{T}\llbracket C \rrbracket \}.$$

PROPERTIES

• $\mathcal{T}\llbracket C \rrbracket$ is closed under stuttering: $\alpha\beta \in \mathcal{T}\llbracket C \rrbracket \Rightarrow \alpha(s,s)\beta \in \mathcal{T}\llbracket C \rrbracket.$

• $\mathcal{T}\llbracket C \rrbracket$ is closed under **mumbling**: $\alpha(s, s')(s', s'')\beta \in \mathcal{T}\llbracket C \rrbracket \Rightarrow \alpha(s, s'')\beta \in \mathcal{T}\llbracket C \rrbracket.$

DEFINITION

For $T \subseteq (S \times S)^+$ let T^{\dagger} be smallest closed set including T.

FACT

Closed sets of traces, ordered by inclusion, form a complete lattice.

DENOTATIONAL SEMANTICS

 $\mathcal{T}[\mathbf{skip}] = \{(s,s) \mid s \in S\}^{\dagger}$ $\mathcal{T}[\![I:=E]\!] = \{(s, [s|I=n]) \mid (s, n) \in \mathcal{E}[\![E]\!]\}^{\dagger}$ $\mathcal{T}\llbracket C_1; C_2 \rrbracket = \mathcal{T}\llbracket C_1 \rrbracket; \mathcal{T}\llbracket C_2 \rrbracket$ $= \{ \alpha \beta \mid \alpha \in \mathcal{T} \llbracket C_1 \rrbracket \& \beta \in \mathcal{T} \llbracket C_2 \rrbracket \}^{\dagger}$ $\mathcal{T}[\![C_1]\!] = \mathcal{T}[\![C_1]\!] \| \mathcal{T}[\![C_2]\!]$ $= \bigcup \{ \alpha \| \beta \mid \alpha \in \mathcal{T} \llbracket C_1 \rrbracket \& \beta \in \mathcal{T} \llbracket C_2 \rrbracket \}^{\dagger}$ \mathcal{T} [await *B* then *C*] = $\{(s,s') \in \mathcal{T}\llbracket C \rrbracket \mid (s,\texttt{tt}) \in \mathcal{B}\llbracket B \rrbracket\}^{\dagger}$ $\mathcal{T}[\mathbf{if} B \mathbf{then} C_1 \mathbf{else} C_2] =$ $\mathcal{T}\llbracket B \rrbracket; \mathcal{T}\llbracket C_1 \rrbracket \cup \mathcal{T}\llbracket \neg B \rrbracket; \mathcal{T}\llbracket C_2 \rrbracket$ $\mathcal{T}\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket = (\mathcal{T}\llbracket B \rrbracket; \mathcal{T}\llbracket C \rrbracket)^*; \mathcal{T}\llbracket \neg B \rrbracket$ where $\mathcal{T}\llbracket B \rrbracket = \{(s, s) \mid (s, \mathsf{tt}) \in \mathcal{B}\llbracket B \rrbracket\}.$

PROPERTIES

- Sequential and parallel composition are continuous operations on closed sets of traces.
- Loop semantics can be expressed as a least fixed point:
 - $\mathcal{T}\llbracket\mathbf{while} \ B \ \mathbf{do} \ C\rrbracket = \\ \mu T.(\mathcal{T}\llbracketB\rrbracket; \mathcal{T}\llbracketC\rrbracket; T \ \cup \ \mathcal{T}\llbracket\neg B\rrbracket)$
- Denotational and operational definitions of \mathcal{T} coincide.

INFINITE TRACES

- Let Σ be $S \times S$.
- $\mathcal{T}\llbracket C \rrbracket \subseteq \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$
- $\mathcal{T}\llbracket C \rrbracket$ is closed under stuttering and mumbling.
- Extend *concatenation* to infinite traces:

 $\alpha\beta = \alpha$ if α is infinite.

• Loop semantics as an "operational" fixed point:

 $\mathcal{T}\llbracket\mathbf{while} \ B \ \mathbf{do} \ C\rrbracket = \\ (\mathcal{T}\llbracketB\rrbracket; \mathcal{T}\llbracketC\rrbracket)^*; \mathcal{T}\llbracket\negB\rrbracket \\ \cup (\mathcal{T}\llbracketB\rrbracket; \mathcal{T}\llbracketC\rrbracket)^\omega$

• Full abstraction for strong correctness.

FAIR PARALLELISM

"No parallel component is delayed forever"

- $\mathcal{T}\llbracket C_1 \Vert C_2 \rrbracket = \mathcal{T}\llbracket C_1 \rrbracket \Vert \mathcal{T}\llbracket C_2 \rrbracket$
- $T_1 || T_2 = \cup \{ \alpha || \beta | \alpha \in T_1 \& \beta \in T_2 \}^\dagger$
- $\alpha \| \beta = \{ \gamma \mid (\alpha, \beta, \gamma) \in fairmerge \}$
- $fairmerge = (L^*RR^*L)^{\omega} \cup (L \cup R)^*A$, where

$$L = \{ (\sigma, \epsilon, \sigma) \mid \sigma \in \Sigma \}$$

$$R = \{ (\epsilon, \sigma, \sigma) \mid \sigma \in \Sigma \}$$

$$A = \{ (\epsilon, \alpha, \alpha), (\alpha, \epsilon, \alpha) \mid \alpha \in \Sigma^* \cup \Sigma^\omega \}$$

cf. Park (1979)

• Fair parallel composition is a *continuous function* on closed sets of traces.

RELATED WORK

- Abrahamson (1979), Park (1979):
 - no stuttering or mumbling
 - not fully abstract
- de Boer, Kok, Palamidessi, Rutten (1991):
 - only restricted mumbling
 - different language and behavior
 - ignores fairness
- Abadi, Plotkin (1993):
 - finite traces, stuttering, mumbling
 - $-\operatorname{closed}$ under prefix
 - full abstraction for safety properties
 - ignores fairness

FURTHER RESEARCH

- Connection with logic:
 - generalized Hoare logics
 - safety and liveness
 - $\bmod logics$ (e.g. LTL, CTL, $\mu\text{-calculus})$
- Laws of program equivalence, for:
 - program transformation, derivation
 - parallelization
 - $-\operatorname{simplification}$ of program proofs
- Full abstraction for fairly communicating processes
 - Hoare's CSP
 - Milner's CCS with value-passing