A Brief History of Shared Memory

Stephen Brookes
CMU
Outline

- Revisionist history
 - Rational reconstruction of early models
 - Evolution of recent models
- A unifying framework
 - Fault-detecting trace semantics
- Some general results
 - Soundness of fault-avoiding logics
Framework

- An abstract notion of state and action
- A recipe for constructing denotational models
 - sequential programs
 - shared memory parallel programs
- Designed to support compositional reasoning
 - fault-avoiding correctness
 - rely/guarantee properties
A state model is a tuple \((S, A, \rightarrow, \#)\) with

\[
S = (S, \otimes)
\]

\(A\)

\(\rightarrow \subseteq S \times A \times S^\dagger\)

\(S^\dagger = S \cup \{\text{error}\}\)

and

\[
\otimes : S \times S \rightarrow S
\]

\(\# \subseteq A \times A\)

satisfying natural axioms ...
State axioms

* (S, \otimes) is a partial commutative monoid...

\[
\sigma \otimes \tau \simeq \tau \otimes \sigma
\]

\[
\rho \otimes (\sigma \otimes \tau) \simeq (\rho \otimes \sigma) \otimes \tau
\]

* ... with unique decomposition

\[
\sigma \otimes \sigma_1 = \sigma \otimes \sigma_2 \Rightarrow \sigma_1 = \sigma_2
\]
Footprint axioms

• **Successful action has unique cause**

For all σ, λ

at most one σ_1 such that

$\sigma_1 \xrightarrow{\lambda} \sigma_1'$, $\sigma = \sigma_1 \otimes \sigma_2$

• **Failure is irrevocable**

If $\sigma_1 \otimes \sigma_2 \xrightarrow{\lambda} \text{error}$,

then $\sigma_1 \xrightarrow{\lambda} \text{error}$
Independence axioms

* Independence implies non-interfering footprints

\[\lambda_1 \not\# \lambda_2 \quad \& \quad \sigma_1 \xrightarrow{\lambda_1} \sigma_1' \quad \& \quad \sigma_2 \xrightarrow{\lambda_2} \sigma_2' \]
\[\& \quad \sigma = \sigma_1 \otimes \tau_1 = \sigma_2 \otimes \tau_2 \]

implies

\[\exists \tau_1', \tau_2'. \quad \sigma_1' \otimes \tau_1 = \sigma_2 \otimes \tau_2' \]
\[\& \quad \sigma_2' \otimes \tau_2 = \sigma_1 \otimes \tau_1' \]
\[\& \quad \sigma_1' \otimes \tau_1' = \sigma_2' \otimes \tau_2' \]

* Symmetry

\[\lambda_1 \not\# \lambda_2 \text{ implies } \lambda_2 \not\# \lambda_1 \]
Enabling

For any state model we can derive an enabling relation

\[\Rightarrow \subseteq S^\dagger \times A \times S^\dagger \]

Let $\sigma \xrightarrow{\lambda} \sigma'$ iff $\exists \sigma_1, \sigma_1', \sigma_2 \in S$.

\[\sigma = \sigma_1 \times \sigma_2 \]
\[\& \quad \sigma' = \sigma_1' \times \sigma_2 \]
\[\& \quad \sigma_1 \xrightarrow{\lambda} \sigma_1' \]

Let $\sigma \xrightarrow{\lambda} \text{error}$ iff $\sigma \xrightarrow{\lambda} \text{error}$ or $\sigma = \text{error}$
CONSEQUENCES

- **Frame**

\[
\sigma_1 \xrightarrow{\lambda} T_1 \neq \text{error} \quad \& \quad \sigma_1 \times \sigma_2 \xrightarrow{\lambda} T
\]

implies

\[T = T_1 \times \sigma_2\]

- **Safety monotonicity**

\[
\sigma_1 \times \sigma_2 \xrightarrow{\lambda} \text{error}
\]

implies

\[\sigma_1 \xrightarrow{\lambda} \text{error}\]
Independent actions don’t interfere

If $\lambda_1 \neq \lambda_2$ then

$\sigma \Rightarrow \tau_1$, $\sigma \Rightarrow \tau_2$

implies

$\exists \tau. \quad \tau_1 \Rightarrow \tau$, $\tau_2 \Rightarrow \tau$
EXAMPLE

global transition traces

- $S = (\text{Ide} \rightarrow V) \cup \{1\}$
- $\sigma \otimes 1 = \sigma = 1 \otimes \sigma$
- $A = S \times S$
- (σ, τ)
- $\sigma \rightarrow \tau$
- $(\sigma_1, \tau_1) \not\equiv (\sigma_2, \tau_2)$ iff $\sigma_1 = \tau_1 = \sigma_2 = \tau_2$

cf. Park 1979
EXAMPLE

local transition traces

$S = \text{Ide} \xrightarrow{\text{fin}} V$

- \boxtimes disjoint union

$A = \{ (\sigma, \tau) \mid \text{dom } \sigma = \text{dom } \tau \}$

(σ, τ)

$\sigma \rightarrow \tau$

$\sigma_1 \rightarrow \text{error}$ iff $\sigma_1 \upharpoonright \text{dom}(\sigma) = \sigma \upharpoonright \text{dom}(\sigma_1) \subset \sigma$

$(\sigma_1, \tau_1) \nmid (\sigma_2, \tau_2)$ iff $\text{dom}(\sigma_1) \cap \text{dom}(\sigma_2) = \emptyset$

cf. LICS 1996
EXAMPLE

action traces, shared store

\[S = \text{Ide} \overset{\text{fin}}\longrightarrow V \]

- \(\bigotimes \) - disjoint union

\[A = \{i=v, i:=v \mid i \in \text{Ide}, v \in V\} \]

\[[i:v] \overset{i=v}\rightarrow [i:v] \]

\[[i:v] \overset{i:=v'}\rightarrow [i:v'] \]

\[\sigma \overset{i=v, i:=v'}\rightarrow \text{error} \quad \text{iff} \quad i \notin \text{dom}(\sigma) \]

\[\neg(i:=v \neq i=v'), \neg(i:=v \neq i:=v') \]

cf. CONCUR 2002
EXAMPLE

action traces, shared mutable state

\[S = \text{Store} \times \text{Heap} \]

- disjoint union, componentwise

\[A = A_{\text{store}} \cup \{[l]=v, [l]:=v, \text{alloc}(l,v), \text{disp} l\} \]

\[
\begin{align*}
\text{alloc}(l,v) & : ([], []) \rightarrow ([], [l:v]) \\
\text{disp} l & : ([], [l:v]) \rightarrow ([], []) \\
\text{disp} l & : (s, h) \rightarrow \text{error} \text{ iff } l \notin \text{dom}(h) \\
\neg (\text{disp} l \not\equiv \text{disp} l)
\end{align*}
\]

cf. CONCUR 2004
Example

permissions

$S = \text{Ide}_\text{fin} V \times P$, (P, \oplus, \top) a permission algebra

- \otimes combines permissions, when compatible

$A = \{(i=v, \pi), (i:=v, \top) \mid \pi \in P, v \in V\}$

$[i:(v, \pi)]_{i=v, \pi} \rightarrow [i:(v, \pi)]$

$[i:(v, \top)]_{i:=v', \top} \rightarrow [i:(v', \top)]$

$\sigma_{i=v, \pi} \rightarrow \text{error} \iff i \notin \text{dom}(\sigma)$

$\sigma_{i:=v', \top} \rightarrow \text{error} \iff \neg \exists v. (i, (v, \top)) \in \sigma$

$(i=v, \pi_1) \not\# (i=v, \pi_2) \text{ when } \pi_1 \oplus \pi_2 \text{ defined}$

cf. MFPS’05
Traces

A trace is a finite or infinite sequence of actions

\(\alpha \) is (sequentially) executable iff \(\exists \sigma. \sigma \Rightarrow \alpha \).

Let \(\alpha \bowtie \beta \) iff \(\alpha \beta \) executable

Let \(\text{Tr}(A) \subseteq \mathcal{P}(A^\infty) \) be sets of executable traces
Semantic Recipe
for sequential programs

★ Given a state model \(\Sigma = (S, A, \rightarrow, \#) \),
we can define a *trace semantics*

\[
\begin{align*}
\llbracket - \rrbracket_\Sigma & : \text{Com} \rightarrow \text{Tr}(A) \\
\llbracket - \rrbracket_\Sigma & : \text{Exp}_{int} \rightarrow \text{Tr}(A) \times V_{int} \\
\llbracket - \rrbracket_\Sigma & : \text{Exp}_{bool} \rightarrow \text{Tr}(A) \times V_{bool}
\end{align*}
\]

by structural induction

★ \(\llbracket c \rrbracket_\Sigma \) is set of executable traces
SEMANTIC CLAUSES

\[[c_1; c_2] = [c_1][c_2] = \{ \alpha \beta \mid \alpha \in [c_1], \beta \in [c_2], \alpha \bowtie \beta \} \]

\[[\text{while } b \text{ do } c] = ([b]_{\text{true}}[c])^* [b]_{\text{false}} \cup ([b]_{\text{true}}[c])^\omega \]
fault-avoiding correctness

Definition

\{p\}c\{q\} is **valid** iff

\[\forall \sigma \in S. \forall \alpha \in [c]. \forall \sigma'. \]

\[\sigma \models p \ \& \ \sigma \xRightarrow{\alpha} \sigma' \implies \sigma' \neq error \ \& \ \sigma' \models q \]

every finite execution of c, from a state satisfying p, is error-free, and ends in a state satisfying q
Validation Theorem

For all sequential programs,
\[
\begin{align*}
\llbracket c_1 \rrbracket &= \llbracket c_2 \rrbracket \\
&\text{implies} \\
\forall C. \ \forall p, q. \\
\{p\} C[c_1]\{q\} \text{ valid iff } \{p\} C[c_2]\{q\} \text{ valid}
\end{align*}
\]

sequential commands with the same executable traces satisfy the same formulas, in all sequential contexts
Parallel programs

- $c_1 \parallel c_2$
 - shared memory
- with r when b do c
 - conditional critical region
- resource r in c
 - local resource

$r \in \text{Res} =$ set of resource names
Resource actions

- $\Delta = \{\text{try } r, \text{ acq } r, \text{ rel } r \mid r \in \text{Res}\}$

- Each resource is exclusive
 - acquired by at most one process at a time
 - available when not currently acquired
 - process must acquire before release, keeps trying when unavailable
A sequence $\alpha \in (A \cup \Delta)^\infty$ is well-resourced iff

$$\forall r. \alpha \upharpoonright \{\text{acq } r, \text{ rel } r\} \leq (\text{acq } r \text{ rel } r)^\omega$$

acquires before releases
Ability to do resource actions depends on resource sets R_1 held by process, R_2 held by environment.

These sets start empty and stay disjoint...

\[
\begin{align*}
\text{acq } r & \quad R_1 \Rightarrow R_1 \cup \{r\} \quad \text{iff} \quad r \notin R_1 \cup R_2 \\
\text{rel } r & \quad R_1 \Rightarrow R_1 - \{r\} \quad \text{iff} \quad r \in R_1 \\
\text{try } r & \quad R_1 \Rightarrow R_1
\end{align*}
\]
Concurrent execution of non-independent actions may yield unpredictable results.

Introduce an action `abort` to model such races.

Let \[A^\dagger = \text{def} \ A \cup \{\text{abort}\} \]

Define \[\sigma \rightarrow \sigma' \ \text{iff} \ \sigma' = \text{error} \]
Let $\text{Tr}(A, \Delta)$ be sets of well-resourced traces over $A^\dagger \cup \Delta$

$$\text{Tr}(A, \Delta) \subseteq \wp(A^\dagger \cup \Delta)$$

A parallel program will denote a set of well-resourced traces

$$\llbracket \cdot \rrbracket : \text{Com} \rightarrow \text{Tr}(A, \Delta)$$
Parallel composition

\[[c_1 || c_2] = [c_1]_\emptyset || [c_2]_\emptyset \]

* Can be characterized as a greatest fixed point

* \(\alpha \stackrel{R_1}{\parallel} \beta \) resource-sensitive, race-detecting fair merges

\[
(\lambda_1 \alpha) \stackrel{R_1 R_2}{\parallel} (\lambda_2 \beta)
= \{ \lambda_1 \gamma \mid R_1 \xrightarrow{\lambda_1} R'_1, \gamma \in \alpha \stackrel{R'_1 R_2}{\parallel} (\lambda_2 \beta) \}
\]

\[
\cup \{ \lambda_2 \gamma \mid R_2 \xrightarrow{\lambda_2} R'_2, \gamma \in (\lambda_1 \alpha) \stackrel{R'_2 R_1}{\parallel} \beta \}
\]

\[\cup \{ \text{abort} \mid \neg (\lambda_1 \neq \lambda_2) \} \]
\[\text{region} \]

\[
\left[\text{with } r \text{ when } b \text{ do } c \right] = \text{wait}^* \text{enter} \cup \text{wait}^\omega
\]

- wait = \{\text{try } r\} \cup (\text{acq } r) \lbrack b \rbrack_{false} (\text{rel } r)

- enter = (\text{acq } r) \lbrack b \rbrack_{true} \lbrack c \rbrack (\text{rel } r)
LOCAL RESOURCE

\[[\text{resource } r \text{ in } c] = \{ \alpha \setminus r \mid \alpha \in \llbracket c \rrbracket_r \} \]

- \(\alpha \setminus r \) obtained by erasing \{acq r, rel r, try r\}
- \(\alpha \in \llbracket c \rrbracket_r \) iff \(\alpha \in \llbracket c \rrbracket \) and

\[\alpha \setminus r \leq (\text{acq } r \text{ (try } r)^\infty \text{ rel } r)^\infty \]

resource not accessible by environment
Fault-avoiding correctness

Definition

\{p\}c\{q\} is **valid** iff

\[\forall \sigma \in S. \forall \alpha \in [c]. \forall \sigma'.\]

\[\sigma \models p \land \sigma \vdash \alpha \sigma' \text{ implies } \sigma' \neq \text{error} \land \sigma' \models q\]

(as before)
For all parallel programs,

$$[c_1] = [c_2]$$

implies

$$\forall C. \forall p,q. \{p\} C[c_1] \{q\} \text{ valid} \iff \{p\} C[c_2] \{q\} \text{ valid}$$

\textit{parallel commands with the same traces satisfy the same formulas, in all parallel contexts}
Examples

... rational reconstruction

State Model

<table>
<thead>
<tr>
<th>Global $S \times S$</th>
<th>Global transition traces</th>
<th>Park ’79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local $S \times S$</td>
<td>Local transition traces</td>
<td>LICS ’96</td>
</tr>
<tr>
<td>Reads/writes</td>
<td>Store action traces</td>
<td>CONCUR’ 02</td>
</tr>
<tr>
<td>Store+heap</td>
<td>Store/heap action traces</td>
<td>CONCUR’ 04</td>
</tr>
<tr>
<td>Permissive state</td>
<td>Permissive action traces</td>
<td>MFPS ’05</td>
</tr>
</tbody>
</table>
Executable traces

- Validity of \{p\}c\{q\} depends only on the *executable* traces of c

- But the *executable* traces of \(c_1 \parallel c_2\) cannot be derived from the *executable* traces of \(c_1\) and \(c_2\)

- So our semantic recipe for \(c_1 \parallel c_2\) includes *non-sequential* traces

- But how non-sequential do we need to be?
Dijkstra’s principle

- A rule for designing correct concurrent programs

 “... regard processes as independent, except when they synchronize”

- Suggests working with “almost sequential” traces...
Almost sequential
... sequential except at synchronizations

- A trace α is *almost sequential* iff

 $$\alpha\backslash\{\text{try, rel}\} = \alpha_1 (\text{acq } r_1) \alpha_2 (\text{acq } r_2) ...$$

 where each $\alpha_n \in A^\infty$ is *sequential*

- The *almost sequential* traces of $c_1 \| c_2$ are fair merges of *almost sequential* traces of c_1 and c_2

- Easy to adjust semantic clauses to obtain just the *almost sequential* traces

 $$\llbracket c \rrbracket_{a\circ} \subseteq \llbracket c \rrbracket$$
Validation Theorem (improved)

For all parallel programs,

\[[c_1]_{a^*} = [c_2]_{a^*} \]

implies

\[\forall C. \ \forall p, q. \quad \{p\}C[c_1]\{q\} \text{ valid iff } \{p\}C[c_2]\{q\} \text{ valid} \]

parallel commands with the same almost sequential traces satisfy the same formulas, in all parallel contexts
Equivalent traces

... same effect, same resource protocol, in all contexts

- For $\alpha, \beta \in A^{\infty}$ let $\alpha \approx \beta$ iff

 $|\alpha| = |\beta|$ and $\forall \lambda. (\alpha \not\equiv \lambda \Rightarrow \beta \not\equiv \lambda)$

 where $|\alpha| = \{(\sigma, \sigma') \mid \sigma \xrightarrow{\alpha} \sigma'\}$

- Extend to Tr(A, Δ) so that $\alpha \approx \beta$ iff

 $\alpha = \alpha_1 \delta_1 \ldots \alpha_n \delta_n \ldots$

 $\beta = \beta_1 \delta_1 \ldots \beta_n \delta_n \ldots$

 where each $\alpha_i \in (A^\dagger)^{\infty}$, $\delta_i \in \Delta^+$

 and $\forall n. \alpha_n \approx \beta_n$
EQUIVALENT TRACE SETS

Let $T_1 \approx T_2$ iff

\[\forall \alpha \in T_1. \exists \beta \in T_2. \alpha \approx \beta \]

and

\[\forall \beta \in T_2. \exists \alpha \in T_1. \alpha \approx \beta \]
Validation theorem
(improved again)

For all parallel programs,

$$[c_1] \approx [c_2]$$

implies

$$\forall C. \forall p, q. \{p\} C[c_1] \{q\} \text{ valid} \iff \{p\} C[c_2] \{q\} \text{ valid}$$

parallel commands with equivalent trace sets satisfy the same formulas, in all parallel contexts
Footstep traces

- Obtained from *action trace* model by quotient
- Traces have form
 \[(\sigma_1, \sigma_1') X_1 \delta_1 (\sigma_1, \sigma_1') X_2 \delta_2 \ldots\]
 where each \(X_i\) is a *read-only* set
- For all parallel programs
 \[[c_1]_{\sigma'} = [c_2]_{\sigma'} \iff [c_1]_{a_\sigma} \approx [c_2]_{a_\sigma}\]

cf. MFPS ’06
Advantages

- For a *synchronization-free* parallel program, the footstep traces form a non-deterministic relation on states.
- Taming the combinatorial explosion
Validation theorem
(final version)

For all parallel programs
\[
[c_1]_{f_0} = [c_2]_{f_0}
\]
implies
\[
\forall C. \forall p,q. \{p\}C[c_1]\{q\} \text{ valid iff } \{p\}C[c_2]\{q\} \text{ valid}
\]

parallel commands with the same footstep traces satisfy the same formulas, in all parallel contexts
Compositionality

- Semantic model is compositional and supports reasoning about fault-avoiding partial correctness

- But partial correctness properties of $c_1 \parallel c_2$ cannot be deduced from partial correctness properties of c_1 and c_2

- For a compositional logic, we need to work with more general formulas
 - fault-avoiding rely/guarantee properties
Fault-avoiding logics

\[\Gamma \vdash \{p\}c\{q\} \]

- \(\Gamma \) specifies protection rules and resource invariants
- Rely/guarantee interpretation...

Every finite interactive execution of \(c \), in an environment that respects \(\Gamma \), from a state satisfying \(p \), respects \(\Gamma \), is error-free, and ends in a state satisfying \(q \)

- Implies fault-avoiding correctness
Examples

- Separation logic
 - sequential pointer-programs
 - Reynolds

- Simple shared memory
 - shared memory parallel, no pointers
 - Owicki/Gries

- Concurrent separation logic
 - shared memory parallel, pointers
 - O’Hearn

- Permissions logic
 - shared memory parallel, pointers
 - Bornat et al
Validity

Definition

\(\Gamma \vdash \{p\}c\{q\} \) is **valid** iff

\[
\forall \sigma \in S_\Gamma. \forall \alpha \in \llbracket c \rrbracket. \forall \sigma'.
\]

\[
\sigma \models p \land \sigma \xrightarrow{\alpha} \Gamma \sigma' \text{ implies } \sigma' \neq \text{error} \land \sigma' \models q
\]

every finite interactive execution of \(c \), in an environment that respects \(\Gamma \), from a state satisfying \(p \), respects \(\Gamma \), is error-free, and ends in a state satisfying \(q \)
INTERACTIVE VALIDATION

THEOREM

For all parallel programs

$\llbracket c_1 \rrbracket_{f^*} = \llbracket c_2 \rrbracket_{f^*}$

implies

$\forall C. \forall \Gamma, p, q.$

$\Gamma \vdash \{p\} C[c_1]\{q\}$ valid iff $\Gamma \vdash \{p\} C[c_2]\{q\}$ valid

parallel commands with
the same footstep traces
satisfy the same rely/guarantee formulas,
in all parallel contexts
SEPARATION LOGIC

* S = Store × Heap

* (s,h) ⊨ p₁ ⋆ p₂ iff ∃s₁, s₂. ∃h₁ ⊥ h₂. s = s₁ ∪ s₂, h = h₁ ⊔ h₂,
 (s₁,h₁) ⊨ p₁ \& (s₂,h₂) ⊨ p₂

* p is precise iff

 \forall (s,h). ∃ at most one h′ ⊲ h
 such that (s,h′) ⊨ p

* Γ = r₁(X₁):I₁, ..., rₙ(Xₙ):Iₙ
 Xᵢ disjoint, Iᵢ precise, ...
PARALLEL RULE

\[\Gamma \vdash \{p_1\}c_1\{q_1\} \quad \Gamma \vdash \{p_2\}c_2\{q_2\} \]
\[\Gamma \vdash \{p_1\star p_2\}c_1 \parallel c_2\{q_1\star q_2\} \]

provided

\[
\begin{align*}
\text{free}(c_1) \cap \text{writes}(c_2) &\subseteq \text{owned}(\Gamma) \\
\text{free}(c_2) \cap \text{writes}(c_1) &\subseteq \text{owned}(\Gamma) \\
\text{free}(p_2, q_2) \cap \text{writes}(c_1) &= \emptyset \\
\text{free}(p_1, q_1) \cap \text{writes}(c_2) &= \emptyset
\end{align*}
\]
REGION RULE

\[\Gamma \vdash \{(p \star I) \land b\}c\{q \star I\} \]
\[\Gamma, r(X) : I \vdash \{p\} \text{with} \ r \text{ when} \ b \ \text{do} \ c\{q\} \]

RESOURCE RULE

\[\Gamma, r(X) : I \vdash \{p\}c\{q\} \]
\[\Gamma \vdash \{p \star I\} \text{with} \ r \text{ when} \ b \ \text{do} \ c\{q \star I\} \]
Soundness
Theorem

- Each rule of concurrent separation logic is valid

Use semantic model to formalize
- local state
- ownership transfer

Proof reveals key role of precision
Similarly...

- Soundness proofs for
 - Owicki-Gries permissions logic

 based on appropriate choice of state model
Conclusions

- A general, abstract notion of *state model*
- A recipe for constructing semantic models
- Suitable for compositional reasoning
 - fault-avoiding partial correctness
 - rely/guarantee partial correctness properties
- Soundness proofs for fault-avoiding logics
Future research

- Fault-avoiding logics
 - total correctness
 - safety and liveness
- Semantic models
 - full abstraction?
- Synchronization
 - other primitives
 - abstract model?