
A brief history of shared memory

Stephen Brookes

Carnegie Mellon University
Department of Computer Science

Abstract. We present a general framework for defining denotational
semantic models of shared memory parallel programs, based on an ab-
stract notion of state. We show how this framework can be used to es-
tablish natural relationships between traditional models of concurrency
and more recent models based on separation principles. We formulate an
intuitively reasonable characterization of when one model of state imple-
ments another, and we show that semantics based on related notions of
state induce the same notions of partial and total correctness behavior.

1 Introduction

Parallel programs involve the concurrent execution of processes which share state
and are intended to cooperate interactively. It is notoriously difficult to ensure
absence of runtime errors such as races, in which one process changes a piece
of state being used by another process, and dangling pointers, which may occur
if two processes attempt simultaneously to deallocate the same storage. Such
phenomena can cause unpredictable or irreproducible behavior.

Rather than relying on assumptions about the granularity of hardware prim-
itives, it is preferable to use program design rules and proof techniques that
guarantee error-freedom. The classic example is the syntax-directed logic for
partial correctness properties of (pointer-free) parallel programs introduced by
Owicki and Gries [15], building on prior work of Hoare [7]. This approach focusses
on critical variables, the identifiers concurrently written by one process and read
or written by another. The programmer must partition the critical variables
among named resources, and each occurrence of a critical variable must be in-
side a region naming the relevant resource. Assuming that resource management
is implemented by a suitable synchronization primitive, such as semaphores [6,
1], the design rules guarantee mutually exclusive access to critical variables and
therefore freedom from races. Each process relies on its environment to ensure
that when a resource is available the corresponding resource invariant holds, and
guarantees that when the process releases the resource the invariant will hold
again (cf. rely/guarantee methodology as in [9]). This use of resource invariants
abstracts away from what happens “inside” a critical region and focusses on the
places where synchronization occurs.

This method works well for simple (pointer-free) parallel programs, but the
task of reasoning about parallel pointer-programs is made more difficult by the
potential for aliasing, when distinct expressions may denote the same pointer:

static design rules no longer suffice to prevent races involving pointer values. For
example, the program [x]:=0‖[y]:=1 has a race if x and y are aliases, and this
aliasing cannot be determined from the syntax of the program. O’Hearn [11, 12]
has proposed an adaptation of the Owicki-Gries inference rules to handle parallel
pointer-programs, incorporating ideas from separation logic [17, 14, 8]. The main
technical novelty in this adaptation involves the use of separating conjunction
in the rules dealing with resource invariants and parallel composition. Although
this may appear superficially to produce “obvious” variants of the traditional
rules, the original rules (using the standard form of conjunction) are unsound for
pointer-programs, and soundness of the new rules is far from obvious. Indeed,
Reynolds has shown that O’Hearn’s rules are unsound without restrictions on
resource invariants [18, 13].

O’Hearn provides a series of compelling examples with informal correctness
proofs, but (as he remarks) the logic cannot properly be assessed without a suit-
able semantic model [11]. Such a model is not readily available in the literature:
traditional models for concurrency do not include pointers or race-detection, and
models for pointer-programs do not typically handle concurrency. In this paper
we give a denotational semantics, using action traces, that solves these prob-
lems, using a form of parallel composition that detects races and treats them as
catastrophic1. Our semantic model embodies a classic principle of concurrent
program design, originally articulated by Dijkstra [6] and echoed in the design
of the classic inference rules for shared-memory programs [7, 15]:

. . . processes should be loosely connected; by this we mean that apart
from the (rare) moments of explicit intercommunication, the individual
processes are to be regarded as completely independent of each other.

In other words, concurrent processes do not interfere (or cooperate) except
through explicit synchronization. Our semantics makes this idea concrete through
the interplay between traces, which describe interleaved behaviors of processes,
and an enabling relation on “local states” that models “no interference from
outside except at synchronization”. This interplay permits a formalization of
O’Hearn’s “processes that mind their own business” [12], and leads to a Parallel
Decomposition Lemma that reflects the intuition behind Dijkstra’s principle in
a semantically precise manner.

The Owicki-Gries logic, and O’Hearn’s adaptation, assume a fixed collection
of resources and a fixed set of parallel processes. We reformulate O’Hearn’s
inference rules in a more semantically natural manner, allowing statically scoped
resource declarations and nested parallel compositions. We assume that each
resource invariant is a precise separation logic formula, so that every time a
program acquires or releases a resource there is a uniquely determined portion of
the heap whose ownership can be deemed to transfer. We give a suitably general
(and compositional) notion of validity, and we prove that the proof rules, using
precise invariants, are sound. Our soundness proof demonstrates that a verified
program has no race conditions.
1 This idea was suggested by John Reynolds [18].

We omit proofs, and we do not include examples to illustrate the logic;
the reader should see O’Hearn’s paper [12] for such examples, which may be
replicated quite straightforwardly in our more formal setting. O’Hearn’s paper
also discusses the limitations of the logic and identifies opportunities for further
research. We assume familiarity with the syntax and semantics of separation
logic [17]. Apart from this we have tried to include enough technical detail to
make the paper self-contained.

2 Syntax

Our programming language combines shared-memory parallelism with pointer
operations. The syntax for commands (ranged over by c) is given by the following
abstract grammar, in which r ranges over resource names, i over identifiers, e
over integer expressions, and b over boolean expressions:

c ::= skip | i:=e | i:=[e] | [e]:=e′ | i:=cons (e0, . . . , en) | dispose e |
c1; c2 | c1‖c2 | if b then c1 else c2 | while b do c |
resource r in c | with r when b do c

Expressions are pure, so evaluation has no side-effect and the value of an expres-
sion depends only on the store. An assignment command i:=e affects only the
store; allocation i:=cons(e0, . . . , en), lookup i:=[e], update [e]:=e′, and disposal
dispose(e) involve the heap. A command of form resource r in c introduces a
local resource name r, whose scope is c. A command of form with r when b do c
is a conditional critical region for resource r. A process attempting to enter a
region must wait until the resource is available, acquire the resource and evaluate
b: if b is true the process executes c then releases the resource; if b is false the
process releases the resource and waits to try again. A resource can only be held
by one process at a time. We use the abbreviation with r do c when b is true.

Let free(c) be the set of identifiers occurring free in c, with similar no-
tation for expressions. Let writes(c) be the set of identifiers having a free
write occurrence in c, and res(c) be the set of resource names occurring free
in c. These sets are defined as usual, by structural induction. For instance,
res(with r when b do c) = res(c)∪{r}, res(resource r in c) = res(c)−{r}.

3 Semantics

We give a trace-theoretic semantics for expressions and commands. The meaning
of an expression will be a set of trace-value pairs, and the meaning of a command
will be a set of traces. The trace set denoted by a program describes in abstract
terms the possible interactive computations that the program may perform when
executed fairly, in an environment which is also capable of performing actions.
We interpret sequential composition as concatenation of traces, and parallel
composition as a resource-sensitive form of interleaving of traces that enforces
mutually exclusive access to each resource. By presenting traces as sequences of

actions we can keep the underlying notion of state more or less implicit.2 We
will exploit this feature later, when we use the semantics to prove soundness of
a concurrent separation logic. We start by providing an interpretation of actions
using a global notion of state; later we will set up a more refined local notion of
state with which it is easier to reason about ownership.

Our semantics is designed to support reasoning about partial correctness and
the absence (or potential presence) of runtime errors. The semantics also models
deadlock, as a form of infinite waiting, and allows reasoning about safety and
liveness properties. The semantics assumes that parallel processes are executed
under the control of a weakly fair scheduler [16], so that each process that has
not yet terminated will eventually be scheduled for execution.

States, actions, and traces

A value is either an integer, or an address. We use v to range over values, l over
addresses. Let Vint be the set of integers, Vaddr be the set of addresses3, and
Vbool be the set of truth values. A resource set is a finite set of resource names.
A state σ comprises a store s, a heap h, and a resource set A. The store maps a
finite set of identifiers to values; the heap maps a finite set of addresses to values.
We use notations such as [i1 : v1, . . . , ik : vk] and [l1 : v1, . . . , ln : vn] to denote
stores and heaps, and [s | i : v] and [h | l : v] for updated stores and heaps.
We write s\X for the store obtained by removing the identifiers in X from the
domain of s, and h\l for the heap obtained from h by deleting l from its domain.
When heaps h1 and h2 have disjoint domains we write h1 ⊥ h2, and we let h1 ·h2

denote their union. We use a similar notation for stores. An “initial” state will
have the form (s, h, {}); we may use the abbreviation (s, h) in such a case.

We will describe a program’s behavior in terms of actions. These include
store actions: reads i=v and writes i:=v to identifiers; heap actions: lookups
[l]=v, updates [l]:=v, allocations alloc(l, [v0, . . . , vn]), and disposals disp(l) of
addresses; and resource actions: try(r), acq(r), rel(r) involving resource names.
We also include an idle action δ, and an error action abort . We use λ to range
over the set of actions.

Each action λ is characterized by its effect, a partial function λ==⇒ from states
to states. This partial function describes the set of states in which the action
is enabled, and the state change caused by executing the action. Note that an
action may cause a runtime error, for which we employ the error state abort.

2 An advantage of action traces [4, 3] over the transition traces [5] often used to model
shared-memory parallel languages is succinctness: an action typically acts the same
way on many states, and we can express this implicitly, without enumerating all
pairs of states related by the action.

3 Actually we treat addresses as integers, so that our semantic model can incorporate
address arithmetic, but for moral reasons we distinguish between integers as values
and integers which happen to be addresses in current use.

Definition 1 The effect λ==⇒ of an action λ is given by the following clauses:

(s, h, A) δ==⇒ (s, h, A) always
(s, h, A) i=v====⇒ (s, h, A) iff (i, v) ∈ s

(s, h, A) i=v====⇒ abort iff i 6∈ dom(s)
(s, h, A) i:=v====⇒ ([s | i : v], h, A) iff i ∈ dom(s)
(s, h, A) i:=v====⇒ abort iff i 6∈ dom(s)

(s, h, A)
[l]=v

=====⇒ (s, h, A) iff (l, v) ∈ h

(s, h, A)
[l]=v

=====⇒ abort iff l 6∈ dom(h)

(s, h, A)
[l]:=v

=====⇒ (s, [h | l : v], A) iff l ∈ dom(h)

(s, h, A)
[l]:=v

=====⇒ abort iff l 6∈ dom(h)

(s, h, A)
alloc(l,[v0,...,vn])

===============⇒ (s, [h | l:v0, . . . , l + n:vn], A) iff ∀m ≤ n. l + m 6∈ dom(h)

(s, h, A)
disp(l)

======⇒ (s, h\l, A) iff l ∈ dom(h)

(s, h, A)
disp(l)

======⇒ abort iff l 6∈ dom(h)

(s, h, A)
try(r)

======⇒ (s, h, A) iff r ∈ A

(s, h, A)
acq(r)

======⇒ (s, h, A ∪ {r}) iff r 6∈ A

(s, h, A)
rel(r)

=====⇒ (s, h, A− {r}) iff r ∈ A

(s, h, A) abort=====⇒ abort always
abort λ==⇒ abort always

It is obvious from the above definition that store actions depend only on the
store, heap actions depend only on the heap, and resource actions depend only
on the resource set. In general an action is either enabled or stuck in a given
state. For example, if s(x) = 0 the action x=0 is enabled, but the action x=1 is
stuck. The stuck cases play only a minor role in the development.

Note that a try(r) action is allowed, from a state (s, h, A) in which r ∈ A,
to model the case where one parallel component of the program has already
acquired r but another component process wants to acquire it and must wait
until the resource is released. A process can only acquire a resource that it does
not already possess, and can only release a resource that it currently holds.

The clause defining the effect of an allocation action is non-deterministic,
to model our assumption that storage management is governed by a mutual
exclusion discipline and ensures the use of “fresh” heap cells. A given state
(s, h, A) enables all allocation actions of the form alloc(l, [v0, . . . , vn]) for which
the heap cells l, l + 1, . . . , l + n are all outside of dom(h). We assume that the
storage allocator never chooses to allocate a heap cell in current use, so we do
not need to include an error case for allocate actions. On the other hand, since
disposals are done by the program we include an error case for disposal actions
to account for the possibility of a dangling pointer.

A trace is a non-empty finite or infinite sequence of actions. Let Tr be the set
of all traces. We use α, β as meta-variables ranging over the set of traces, and

T1, T2 range over trace sets. We write αβ for the trace obtained by concatenating
α and β; when α is infinite this is just α. We assume that α abort β = α abort ,
and αδβ = αβ, for all traces α and β.

For trace sets T1 and T2 we let T1 T2 = {α1α2 | α1 ∈ T1 & α2 ∈ T2}, and we
use the usual notations T ∗ and Tω for the finite and infinite concatenations of
traces from the set T . We let T∞ = T ∗ ∪ Tω.

We define the effect α==⇒ of a trace α in the obvious way, by composing the
effects of the actions occurring in the trace. When (s, h, A) α==⇒ (s′, h′, A′) the
trace α can be executed from (s, h, A) without the need for interference from
outside; we call such a trace sequential4. As is well known, the sequential traces
of c1‖c2 cannot generally be determined from the sequential traces of c1 and c2,
so we need to include non-sequential traces in order to achieve a compositional
semantics.

Parallel composition

The behavior of a command depends on resources: those held by the command
and those being used by its environment. These sets of resources start empty
and will always be disjoint. Accordingly we define for each action λ a resource
enabling relation (A1, A2) λ−−→ (A′

1, A2) on disjoint pairs of resource sets, to spec-
ify when a process holding resources A1, in an environment that holds A2, can
perform this action, and the action’s effect on the resources held by the program:

(A1, A2)
try(r)−−−−−→ (A1, A2)

(A1, A2)
acq(r)−−−−−→ (A1 ∪ {r}, A2) if r 6∈ A1 ∪A2

(A1, A2)
rel(r)−−−−−→ (A1 − {r}, A2) if r ∈ A1

(A1, A2) λ−−→ (A1, A2) if λ is not a resource action

Clearly if A1 and A2 are disjoint and (A1, A2) λ−−→ (A′
1, A

′
2) then A2 = A′

2 and
A′

1 is disjoint from A2.
This resource enabling notion generalizes in the obvious way to a sequence

of actions; we write (A1, A2) α−−→ · to indicate that a process holding resources
A1 in an environment holding A2 can perform the trace α.

We want to detect race conditions caused by an attempt to write to an
identifier or address being used concurrently. This can be expressed succinctly
as follows. Extend the definitions of free and writes to actions:

free(i:=v) = {i} writes(i:=v) = {i}
free(i=v) = {i} writes(i=v) = {}
free([l]:=v) = {l} writes([l]:=v) = {l}
free([l]=v) = {l} writes([l]=v) = {}
free(disp(l)) = {l} writes(disp(l)) = {l}
free(alloc(l, [v0, . . . , vn]) = {} writes(alloc(l, [v0, . . . , vn]) = {}
free(λ) = {} writes(λ) = {} otherwise

4 Technically we say that α is sequential if and only if
α

==⇒ 6= {}.

Informally, free(λ) contains the identifiers or addresses whose current values are
needed to enable the action, and writes(λ) contains the identifiers or addresses
whose values in the current state are affected by the action. We do not include
addresses l, . . . , l+n in the free- or write-set of alloc(l, [v0, . . . , vn]), because these
addresses are assumed to be fresh when the action occurs.

We write λ1]λ2 (λ1 interferes with λ2) when λ1 and λ2 represent a race:

λ1]λ2 ⇔ free(λ1) ∩ writes(λ2) 6= {} ∨ writes(λ1) ∩ free(λ2) 6= {}.

Notice that we do not regard two concurrent reads as a disaster.
We now define, for each pair (A1, A2) of disjoint resource sets and each pair

(α1, α2) of action sequences, the set α1A1‖A2α2 of all mutex fairmerges of α1

using A1 with α2 using A2. The definition is inductive5 in the lengths of α1 and
α2, and we include the empty sequence ε, to allow a simpler formulation:

α1 A1‖A2 ε = {α1 | (A1, A2)
α1−−−→ ·}

ε A1‖A2 α2 = {α2 | (A2, A1)
α2−−−→ ·}

(λ1α1) A1‖A2 (λ2α2) = {abort} if λ1]λ2

= {λ1β | (A1, A2)
λ1−−→ (A′

1, A2) & β ∈ α1 A′
1
‖A2(λ2α2)}

∪ {λ2β | (A2, A1)
λ2−−→ (A′

2, A1) & β ∈ (λ1α1) A1‖A′
2
α2}

otherwise

For traces α1 and α2, let α1‖α2 be defined to be α1{}‖{}α2. For trace sets
T1 and T2 we define T1‖T2 =

⋃
{α1‖α2 | α1 ∈ T1 & α2 ∈ T2}.

Semantics of expressions

An expression will denote a set of evaluation traces paired with values: we define
[[e]] ⊆ Tr×Vint for an integer expression e, and [[b]] ⊆ Tr×Vbool for a boolean ex-
pression b. Since expression values depend only on the store, the only non-trivial
actions participating in such traces will be reads. To allow for the possibility
of interference during expression evaluation we include both non-sequential and
sequential evaluation traces. Again the sequential traces describe what happens
if an expression is evaluated without interference.

The semantic functions are given, by structural induction, in the usual way.
For example:

[[10]] = {(δ, 10)}
[[i]] = {(i=v, v) | v ∈ Vint}
[[e1 + e2]] = {(ρ1ρ2, v1 + v2) | (ρ1, v1) ∈ [[e1]] & (ρ2, v2) ∈ [[e2]]}
[[(e0, . . . , en)]] = {(ρ0 . . . ρn, [v0, . . . , vn]) | ∀j. 0 ≤ j ≤ n ⇒ (ρj , vj) ∈ [[ej]]}.

The use of concatenation in these semantic clauses assumes that sum expressions
and lists are evaluated in left-right order. This assumption is not crucial; it would
5 We can also give a coinductive definition of the mutex fairmerges of two infinite

traces, starting from a given disjoint pair of resource sets. We need mostly to work
here with finite traces, so we omit the details.

be just as reasonable to assume parallel evaluation for such expressions. With an
appropriately modified semantic definition, this adjustment can be made without
affecting the ensuing development.

Let [[b]]true ⊆ Tr be the set of traces ρ such that (ρ, true) ∈ [[b]], and [[b]]false
be the set of traces ρ such that (ρ, false) ∈ [[b]].

Semantics of commands

A command c denotes a set [[c]] ⊆ Tr of action traces, defined by structural
induction.

Definition 2
The trace set [[c]] of a command c is defined by the following clauses:

[[skip]] = {δ}
[[i:=e]] = {ρ i:=v | (ρ, v) ∈ [[e]]}
[[i:=[e]]] = {ρ [v]=v′ i:=v′ | (ρ, v) ∈ [[e]]}
[[i:=cons (e0, . . . , en)]] = {ρ alloc(l, L) i:=l | (ρ, L) ∈ [[(e0, . . . , en)]]}
[[[e]:=e′]] = {ρ ρ′ [v]:=v′ | (ρ, v) ∈ [[e]] & (ρ′, v′) ∈ [[e′]]}
[[dispose(e)]] = {ρ disp(l) | (ρ, l) ∈ [[e]]}
[[c1; c2]] = [[c1]] [[c2]] = {α1α2 | α1 ∈ [[c1]] & α2 ∈ [[c2]]}
[[if b then c1 else c2]] = [[b]]true [[c1]] ∪ [[b]]false [[c2]]
[[while b do c]] = ([[b]]true [[c]])∗ [[b]]false ∪ ([[b]]true [[c]])ω

[[c1‖c2]] = [[c1]]‖[[c2]]
[[with r when b do c]] = wait∗ enter ∪ waitω

where wait = acq(r) [[b]]false rel(r) ∪ {try(r)}
and enter = acq(r) [[b]]true [[c]] rel(r)

[[resource r in c]] = {α\r | α ∈ [[c]]r}

In the above semantic clauses we have prescribed a left-to-right sequential
evaluation order for i:=cons(e0, . . . , en) and [e]:=e′, reflected in the use of con-
catenation on the traces of sub-expressions; again this assumption is not crucial,
and it is straightforward to adapt the ensuing development to allow for parallel
evaluation of sub-expressions.

The iterative structure of the traces of a conditional critical region reflect its
use to achieve synchronization: waiting until the resource is available and the
test condition is true, followed by execution of the body command while holding
the resource, and finally releasing the resource. Note the possibility that the
body may loop forever or encounter a runtime error, in which case the resource
will not get released. Since [[true]]false = {} and [[true]]true = {δ} it is easy to
derive a simpler formula for the trace set of with r do c: we have

[[with r do c]] = try(r)∗ acq(r) [[c]] rel(r) ∪ {try(r)ω}.

Since the command resource r in c introduces a local resource named r,
whose scope is c, its traces are obtained from traces of c in which r is assumed
initially available and the actions involving r are executed without interference.

We let [[c]]r be the set of traces of c which are sequential for r in this manner6.
We let α\r be the trace obtained from α by replacing each action on r by δ.

Examples

1. [[x:=x + 1]] = {x=v x:=v + 1 | v ∈ Vint}
This program always terminates, when executed from a state in which x has
a value; its effect is to increment the value of x by 1.

2. [[x:=x + 1‖x:=x + 1]] = {x=v abort | v ∈ Vint}
Concurrent assignments to the same identifier cause a race, no matter what
the initial value of x is.

3. [[with r do x:=x + 1]] = try(r)∗ acq(r) [[x:=x + 1]] rel(r) ∪ {try(r)ω}
This program needs to acquire r before incrementing x, and will wait forever
if the resource never becomes available.

4. [[with r do x:=x + 1‖with r do x:=x + 1]] contains traces of the forms
acq(r)α rel(r) acq(r) β rel(r), acq(r) α rel(r) try(r)ω, and try(r)ω, where α, β ∈

[[x:=x+1]], as well as traces of similar form containing additional try(r) steps.
Only the first kind are sequential for r. It follows that

[[resource r in (with r do x:=x + 1‖with r do x:=x + 1)]]
= {αβ | α, β ∈ [[x:=x + 1]]} = [[x:=x + 1;x:=x + 1]].

The overall effect is the same as that of two consecutive increments.
5. The command x:=cons(1)‖y:=cons(2) has the trace set

{alloc(l, [1])x:=l | l ∈ Vaddr}‖{alloc(l′, [2]) y:=l′ | l′ ∈ Vaddr}.

This set includes traces of the form

alloc(l, [1])x:=l alloc(l, [2]) y:=l,

and other interleavings of alloc(l, [1])x:=l with alloc(l, [2]) y:=l, none of
which are sequential. The set also includes traces obtained by interleaving
alloc(l, [1]) x:=l and alloc(l′, [2]) y:=l′, where l 6= l′; all of these are sequen-
tial.

6. The command dispose(x)‖dispose(y) has trace set

{x=v disp(v) | v ∈ Vaddr}‖{y=v′ disp(v′) | v′ ∈ Vaddr}.

This includes traces of the form x=v y=v abort because of the race-detecting
clause in the definition of fairmerge. If this command is executed from a
state in which x and y are aliases a race will occur, with both processes
attempting to dispose the same heap cell: if s(x) = s(y) = v and v ∈ dom(h)
we have (s, h, {}) x=v y=v abort=============⇒ abort.

6 Technically, we say that α is sequential for r if ({}, {}, {}) αdr
====⇒ · holds, where αdr

is the subsequence of α consisting of actions on resource r. This expresses formally
the requirement that α represents an execution in which r is initially available and
r is never acquired (or released) by the environment. Equivalently, αdr is a prefix of
a trace in the set (acq(r) try(r)∞ rel(r))∞.

4 Concurrent separation logic

Separation logic [17] provides a class of formulas for specifying properties of
stores and heaps. The syntax includes separating conjunction, denoted p1 ∗ p2,
and formulas emp and e 7→ e′ specifying an empty heap and a singleton heap.
We write (s, h) |= p when(s, h) satisfies p. In particular, (s, h) |= p1 ∗ p2 if and
only if there are disjoint heaps h1, h2 such that h = h1 · h2, (s, h1) |= p1, and
(s, h2) |= p2. Reynolds [17] provides a Hoare-style partial correctness logic for
sequential pointer-programs in which the pre- and post-conditions are separation
logic formulas.

We now introduce resource-sensitive partial correctness formulas of the form
Γ ` {p}c{q}, where p and q are separation logic formulas, c is a parallel pointer-
program, and Γ is a resource context r1(X1) : R1, . . . , rk(Xk) : Rk associating
resource names rj with protection lists Xj and resource invariants Rj . Each
protection list represents a finite set of identifiers. We require each resource
invariant to be a precise separation logic formula. A separation logic formula p
is precise [17] if for all s and h, there is at most one h′ ⊆ h such that (s, h′) |= p.

Let dom(Γ) = {r1, . . . , rk} be the set of resource names in Γ , owned(Γ) =⋃k
j=1 Xj be the set of identifiers protected by Γ , and free(Γ) =

⋃k
j=1 free(Rj)

be the set of identifiers mentioned in the invariants. Let inv(Γ) = R1∗· · ·∗Rk be
the separating conjunction of the resource invariants in Γ . In particular, when
Γ is empty this is emp. Since each resource invariant is precise it follows that
inv(Γ) is precise.

We will impose some syntactic well-formedness constraints on contexts and
formulas, designed to facilitate modularity. Specifically:

– Γ is well-formed if its entries are disjoint, in that if i 6= j then ri 6= rj ,
Xi ∩Xj = {}, and free(Ri) ∩Xj = {}.

– Γ ` {p}c{q} is well-formed if Γ is well-formed, and p and q do not mention
any protected identifiers, i.e. free(p, q) ∩ owned(Γ) = {}.

Thus in a well-formed context each identifier belongs to at most one resource.
We do not require that the free identifiers in a resource invariant be protected,
i.e. that free(Ri) ⊆ Xi. This allows us to use a resource invariant to connect
the values of protected identifiers and the values of non-critical variables.

The inference rules will enforce the following syntactic constraints on com-
mands, relative to the relevant resource context7:

– Every critical identifier is protected by a resource.
– Every free occurrence of a protected identifier is within a region for the

corresponding resource.
– Every free write occurrence of an identifier mentioned in a resource invariant

is within a region for the corresponding resource.

7 We will not formalize these properties or give a proof that they hold in all provable
formulas. We state them explicitly since they recall analogous requirements in the
Owicki-Gries logic and in O’Hearn’s rules.

Intuitively, a resource-sensitive partial correctness formula specifies how a
program behaves when executed in an environment that respects the resource
context, assuming that at all times the separating conjunction of the resource
invariants holds, for the currently available resources. The program guarantees to
stay within these bounds, provided it can rely on its environment to do likewise.
This informal notion of validity for formulas should help provide intuition for the
structure of the following inference rules. Later we will give a formal definition
of validity.

We allow all well-formed instances of the following inference rules. Some
of the rules have side conditions to ensure well-formedness and the syntactic
requirements given above, as in [12].

– Skip

Γ ` {p}skip{p}
– Assignment

Γ ` {[e/i]p}i:=e{p}
if i 6∈ owned(Γ) ∪ free(Γ)

– Lookup

Γ ` {[e′/i]p ∧ e 7→ e′}i:=[e]{p ∧ e 7→ e′}
if i 6∈ free(e, e′) and i 6∈ owned(Γ) ∪ free(Γ)

– Allocation

Γ ` {emp}i:=cons(e0, . . . , en){i 7→ e0 ∗ · · · ∗ i + n 7→ en}

if i 6∈ free(e0, . . . , en) and i 6∈ owned(Γ) ∪ free(Γ)

– Update

Γ ` {e 7→ −}[e]:=e′{e 7→ e′}
– Disposal

Γ ` {e 7→ −}dispose e{emp}
– Sequential

Γ ` {p1}c1{p2} Γ ` {p2}c2{p3}
Γ ` {p1}c1; c2{p3}

– Conditional

Γ ` {p ∧ b}c1{q} Γ ` {p ∧ ¬b}c2{q}
Γ ` {p}if b then c1 else c2{q}

– Loop
Γ ` {p ∧ b}c{p}

Γ ` {p}while b do c{p ∧ ¬b}

– Parallel
Γ ` {p1}c1{q1} Γ ` {p2}c2{q2}

Γ ` {p1 ∗ p2}c1‖c2{q1 ∗ q2}
if free(p1, q1) ∩ writes(c2) = free(p2, q2) ∩ writes(c1) = {}
and (free(c1) ∩ writes(c2)) ∪ (free(c2) ∩ writes(c1)) ⊆ owned(Γ)

– Resource
Γ, r(X) : R ` {p}c{q}

Γ ` {p ∗R}resource r in c{q ∗R}
– Renaming resource

Γ ` {p}resource r′ in [r′/r]c{q}
Γ ` {p}resource r in c{q}

if r′ 6∈ res(c)

– Region
Γ ` {(p ∗R) ∧ b}c{q ∗R}

Γ, r(X) : R ` {p}with r when b do c{q}
– Frame

Γ ` {p}c{q}
Γ ` {p ∗ I}c{q ∗ I}

if free(I) ∩ writes(c) = {}

– Consequence
p′ ⇒ p Γ ` {p}c{q} q ⇒ q′

Γ ` {p′}c{q′}
provided p′ ⇒ p and q ⇒ q′ are universally valid

– Auxiliary
Γ ` {p}c{q}

Γ ` {p}c\X{q}
if X is auxiliary for c, and X ∩ free(p, q) = {}.

– Conjunction
Γ ` {p1}c{q1} Γ ` {p2}c{q2}

Γ ` {p1 ∧ p2}c{q1 ∧ q2}

– Expansion
Γ ` {p}c{q}

Γ, Γ ′ ` {p}c{q}
if writes(c) ∩ free(Γ ′) = {} and free(c) ∩ owned(Γ ′) = {}

– Contraction
Γ, Γ ′ ` {p}c{q}

Γ ` {p}c{q}
if res(c) ⊆ dom(Γ)

Comments

1. The rules dealing with the sequential program constructs are natural adapta-
tions of the rules given by Reynolds [17], with the incorporation of a resource
context and side conditions to ensure well-formedness and adherence to the
protection policy. The Frame and Consequence rules similarly generalize
analogous rules from the sequential setting.

2. The Parallel, Region and Resource rules are based on O’Hearn’s adap-
tations of Owicki-Gries inference rules. A side condition in the Parallel
rule enforces the requirement that each critical variable must be associated
with a resource, just as in the original Owicki-Gries rule.

3. The Auxiliary rule similarly adapts the Owicki/Gries rule for auxiliary
variables8. As usual, a set of identifiers X is said to be auxiliary for c if
every free occurrence in c of an identifier from X is in an assignment that
only affects the values of identifiers in X. In particular, auxiliary identifiers
cannot occur in conditional tests or loop tests, and do not influence the
control flow of the program. The command c\X is obtained from c by deleting
assignments to identifiers in X.

4. In the Resource renaming rule we write [r′/r]c for the command obtained
from c by replacing each free occurrence of r by r′.

5. We have omitted the obvious structural rules permitting permutation of
resource contexts.

5 Validity

We wish to establish that every provable resource-sensitive formula is valid, but
we need to determine precisely what that should mean. Adapting the notion of
validity familiar from the sequential setting, we might try to interpret validity
of Γ ` {p}c{q} as the property that every finite computation of c from a state
satisfying p ∗ inv(Γ) is error-free and ends in a state satisfying q ∗ inv(Γ).
However, this notion of “sequential validity” is not compositional for parallel
programs; although it expresses a desirable property we need a notion of validity
that takes account of process interaction.

Informally we might say that the formula Γ ` {p}c{q} is valid if every finite
interactive computation of c from a state satisfying p∗inv(Γ), in an environment
that respects Γ , is error-free, also respects Γ , and ends in a state satisfying
q ∗ inv(Γ). However, such a formulation would be incomplete, since it does not
properly specify what “respect” for Γ entails. To obtain a suitably formal (and
compositional) notion of validity we need to keep track of the portions of the
state deemed to be “owned” by a process, its environment, and the available
resources.

With respect to a resource context Γ , a process holding resource set A should
be allowed to access identifiers protected by resources in A, but not identifiers
8 Owicki and Gries cite Brinch Hansen [2] and Lauer [10] as having first recognized the

need for auxiliary variables in proving correctness properties of concurrent programs.

protected by other resources. We say that (s, h, A) is a local state consistent with
Γ if dom(s) ∩ owned(Γ) = owned(Γ dA), where Γ dA is the subset of Γ involving
resources in A. We let Γ\A be the rest of Γ . We introduce local enabling relations
between local states: a step

(s, h, A) λ−−→
Γ

(s′, h′, A′)

means that in state (s, h, A) a process can perform action λ, causing its local state
to change to (s′, h′, A′) and respecting the resource invariants and protection
rules. We use the error state abort to handle runtime errors and logical errors
such as an attempt to release a resource in a state for which no sub-heap satisfies
the corresponding invariant, or a write to an identifier mentioned in a resource
invariant without first acquiring the resource.

Definition 3 The local enabling relations λ−−→
Γ

are given by the following clauses,
in which (s, h, A) ranges over local states consistent with Γ :

(s, h, A) δ−−→
Γ

(s, h, A) always

(s, h, A) abort−−−−−→
Γ

abort always
(s, h, A) i=v−−−→

Γ
(s, h, A) iff (i, v) ∈ s

(s, h, A) i=v−−−→
Γ

abort iff i 6∈ dom(s)
(s, h, A) i:=v−−−−→

Γ
([s | i : v], h, A) iff i ∈ dom(s)− free(Γ\A)

(s, h, A) i:=v−−−−→
Γ

abort iff i 6∈ dom(s) or i ∈ free(Γ\A)

(s, h, A) [l]=v−−−−→
Γ

(s, h, A) iff (l, v) ∈ h

(s, h, A) [l]=v−−−−→
Γ

abort iff l 6∈ dom(h)

(s, h, A) [l]:=v′
−−−−−−→

Γ
(s, [h | l : v′], A) iff l ∈ dom(h)

(s, h, A) [l]:=v′
−−−−−−→

Γ
abort iff l 6∈ dom(h)

(s, h, A) alloc(l,[v0,...,vn])−−−−−−−−−−−−−−→
Γ

(s, [h | l:v0, . . . , l + n:vn], A) iff ∀m ≤ n. l + m 6∈ dom(h)

(s, h, A) disp(l)−−−−−−→
Γ

(s, h\l, A) iff l ∈ dom(h)

(s, h, A) disp(l)−−−−−−→
Γ

abort iff l 6∈ dom(h)

(s, h, A) try(r)−−−−−→
Γ

(s, h, A) always

(s, h, A) acq(r)−−−−−→
Γ

(s · s′, h · h′, A ∪ {r}) iff r(X):R ∈ Γ, r 6∈ A, h ⊥ h′,

dom(s′) = X, and (s · s′, h′) |= R

(s, h, A) rel(r)−−−−−→
Γ

(s\X, h− h′, A− {r}) iff r(X):R ∈ Γ, r ∈ A, h′ ⊆ h, (s, h′) |= R

(s, h, A) rel(r)−−−−−→
Γ

abort iff r(X):R ∈ Γ and ∀h′ ⊆ h. ¬(s, h′) |= R

The clauses for acq(r) and rel(r) deal with ownership transfer: when a pro-
cess acquires a resource its local state grows to include the identifiers protected
by the resource and the heap portion in which the resource invariant holds; when
a process releases a resource its local state ceases to include the protected identi-
fiers and the heap associated with the resource invariant; a “logical” error occurs

if the invariant is not suitably satisfied. Since resource invariants are assumed to
be precise formulas in each case there is a uniquely determined portion of heap
associated with the relevant invariant.

We write σ α−−→
Γ

σ′ when there is a local computation α from σ to σ′.
Note that non-sequential traces play a non-trivial role in the local enabling

relation, and in a local computation external interference can occur only at a re-
source acquisition step. Thus the local enabling relation provides a formalization
of “loosely connected” processes in the spirit of Dijkstra.

The following result connects the local enabling relations α−−→
Γ

, which model
interactive execution in an environment that respects a resource context, and
the effect relations α==⇒, which represent interference-free executions, when α is
a sequential trace.

Lemma 1 (Empty Transfer Lemma)
Let α be a finite trace, let {r1, . . . , rn} be the set of resource names occurring in
actions of α, and let Γ0 be the resource context r1({}) : emp, . . . , rn({}) : emp.
Then (s, h, A) α==⇒ σ′ if and only if (s, h, A) α−−→

Γ0
σ′.

Theorem 2 (Respect for resources)
If α ∈ [[c]] and (s, h, A) α−−→

Γ
(s′, h′, A′), then dom(s′) = dom(s) and A = A′.

Note that these results imply the corresponding property for sequential traces.

Corollary 3
If α ∈ [[c]] and (s, h, A) α==⇒ (s′, h′, A′), then dom(s) = dom(s′) and A = A′.

The following parallel decomposition property relates a local computation
of a parallel program to local computations of its components. If the critical
identifiers of c1 and c2 are protected by resources in Γ , a local computation of
c1‖c2 can be “projected” into a local computation of c1 and a local computation
of c2. In stating this property we use (s, h) as an abbreviation for (s, h, {}).

Theorem 4 (Parallel Decomposition)
Suppose (free(c1) ∩ writes(c2)) ∪ (writes(c1) ∩ free(c2)) ⊆ owned(Γ) and
α ∈ α1‖α2, where α1 ∈ [[c1]] and α2 ∈ [[c2]]. Suppose h1 ⊥ h2 and h = h1 · h2.

– If (s, h) α−−→
Γ

abort then
(s\writes(c2), h1)

α1−−−→
Γ

abort or (s\writes(c1), h2)
α2−−−→
Γ

abort.
– If (s, h) α−−→

Γ
(s′, h′) then

(s\writes(c2), h1)
α1−−−→
Γ

abort or (s\writes(c1), h2)
α2−−−→
Γ

abort,
or there are disjoint heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2 and
• (s\writes(c2), h1)

α1−−−→
Γ

(s′\writes(c2), h′1)
• (s\writes(c1), h2)

α2−−−→
Γ

(s′\writes(c1), h′2)

The definition of local enabling formalizes the notion of a computation by a
process, in an environment that respects resources, and “minds its own business”
by obeying the ownership policy of a given resource context. This leads us to
the following rigorous formulation of validity. Again we write (s, h) for (s, h, {}).

Definition 5
The formula Γ ` {p}c{q} is valid if for all traces α of c, all local states (s, h) such
that dom(s) ⊇ free(c, Γ) − owned(Γ), and all σ′, if (s, h) |= p and (s, h) α−−→

Γ
σ′

then σ′ 6= abort and σ′ |= q.

This definition uses the local enabling relation, so that the quantification ranges
over local states (s, h) consistent with Γ , for which dom(s) ∩ owned(Γ) = {}.
Furthermore, this notion of validity involves all traces of c, not just the sequential
traces and not just the finite traces9.

When Γ is the empty context and res(c) = {}, validity of {} ` {p}c{q}
implies the usual notion of partial correctness together with the guaranteed
absence of runtime errors. More generally, the same implication holds when
res(c) = {r1, . . . , rn} and Γ is the context r1({}) : emp, . . . , rn({}) : emp.

We now come to the main result of this paper: soundness of concurrent
separation logic.

Theorem 6 (Soundness)
Every provable formula Γ ` {p}c{q} is valid.

Proof:
Show that each well formed instance of an inference rule is sound: if the rule’s
premisses and conclusion are well formed, the side conditions hold, and the
premisses are valid, then the conclusion is valid. It then follows, by induction on
the length of the derivation, that every provable formula is valid.

We give details for the Parallel rule.

– Parallel Composition
Suppose that Γ ` {p1}c1{q1} and Γ ` {p2}c2{q2} are well formed and valid,
and that free(p1, q1) ∩ writes(c2) = free(p2, q2) ∩ writes(c1) = {} and
(free(c1) ∩ writes(c2)) ∪ (writes(c1) ∩ free(c2)) ⊆ owned(Γ).
It is clear that Γ ` {p1 ∗p2}c1‖c2{q1 ∗q2} is well formed. We must show that
Γ ` {p1 ∗ p2}c1‖c2{q1 ∗ q2} is valid.
Let (s, h) |= p1 ∗ p2, and suppose h1 ⊥ h2, h = h1 · h2, and (s, h1) |= p1,
(s, h2) |= p2. Since free(p1) ∩ writes(c2) = free(p2) ∩ writes(c1) = {} we
also have (s\writes(c2), h1) |= p1 and (s\writes(c1), h2) |= p2.
Let α ∈ [[c1‖c2]], and (s, h) α−−→

Γ
σ′. Choose traces α1 ∈ [[c1]] and α2 ∈ [[c2]] such

that α ∈ α1‖α2. If σ′ = abort the Parallel Decomposition Lemma would
imply that (s\writes(c2), h1)

α1−−−→
Γ

abort or (s\writes(c1), h2)
α2−−−→
Γ

abort.
Neither of these is possible, since they contradict the assumed validity of
the premisses Γ ` {p1}c1{q1} and Γ ` {p2}c2{q2}. If α is infinite that is
all we need. Otherwise α is finite, and σ′ has the form (s′, h′). Again by
the Parallel Decomposition Lemma and validity of the premisses, there are
heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2,

(s\writes(c2), h1)
α1−−−→
Γ

(s′\writes(c2), h′1)
(s\writes(c1), h2)

α2−−−→
Γ

(s′\writes(c1), h′2),

9 The infinite traces only really matter in the no-abort requirement, since we never
get σ

α−−→
Γ

σ′ when α is infinite and σ′ is a proper state.

and (s′\writes(c2), h′1) |= q1, (s′\writes(c1), h′2) |= q2. Since q1 does not
depend on writes(c2) and q2 does not depend on writes(c1) we also have
(s′, h′1) |= q1 and (s′, h′2) |= q2, from which it follows that (s′, h′) |= q1 ∗ q2,
as required.

6 Provability implies no races

For a process holding resource set A and a corresponding global state (s, h, A),
let s↓A = s\owned(Γ\A). This is the “local” portion of the global store “visible”
to the process by virtue of its current resource set.

The following result shows how the local effect of an action relates to its
global effect, modulo the protection policy imposed by the resource context,
assuming that the process performing the action owns resources in A and the
global heap contains a sub-heap in which the resource invariants for the available
resources hold, separately.

Lemma 7 (Connection Property)
Let (s, h, A) be a global state and suppose h = h1 · h2 with (s, h2) |= inv(Γ\A).

– If (s, h, A) λ==⇒ abort then (s↓A, h1, A) λ−−→
Γ

abort.

– If (s, h, A) λ==⇒ (s′, h′, A′) then
• either (s↓A, h1, A) λ−−→

Γ
abort

• or there are heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2, (s′, h′2) |= inv(Γ\A′),
and (s↓A, h1, A) λ−−→

Γ
(s′↓A′, h′1, A

′)

We can then deduce the following result for all commands c, letting A = A′ = {}
and using induction on trace structure.

Corollary 8
Let α ∈ [[c]]. Suppose h = h1 · h2, and (s, h2) |= inv(Γ).

– If (s, h) α==⇒ abort then (s\owned(Γ), h1) α−−→
Γ

abort.
– If (s, h) α==⇒ (s′, h′) then

• either (s\owned(Γ), h1) α−−→
Γ

abort,
• or there are heaps h′1 ⊥ h′2 such that h′ = h′1 · h′2, (s′, h′2) |= inv(Γ),

and (s\owned(Γ), h1) α−−→
Γ

(s′\owned(Γ), h′1).

Finally, combining this with the definition of validity we obtain a link with the
earlier notion of “sequential validity”, which we can express rigorously in terms
of the interference-free enabling relations α==⇒.

Theorem 9 (Valid implies race-free)
If Γ ` {p}c{q} is valid and well formed, then c is error-free from every global
state satisfying p ∗ inv(Γ). More specifically, for all states σ, σ′ and all traces
α ∈ [[c]], if σ |= p ∗ inv(Γ) and σ

α==⇒ σ′ then σ′ 6= abort and σ′ |= q ∗ inv(Γ).

Combining this result with the Soundness Theorem, it follows that provability
of Γ ` {p}c{q} implies that c is race-free from all states satisfying p ∗ inv(Γ).

7 Acknowledgements

I have benefitted immensely from discussions with Peter O’Hearn, whose ideas
from [11] prompted this work; John Reynolds, who suggested treating races
catastrophically; and Josh Berdine, whose insights led to technical improve-
ments. The anonymous referees also made helpful suggestions.

References

1. P. Brinch Hansen. Structured multiprogramming. Comm. ACM, 15(7):574-578, July
1972.

2. P. Brinch Hansen. Concurrent programming concepts. ACM Computing Surveys
5(4):223-245, December 1973.

3. S. Brookes, Traces, pomsets, fairness and full abstraction for communicating pro-
cesses. Proc. CONCUR 2002, Brno. Springer LNCS vol. 2421, pp. 466-482. August
2002.

4. S. Brookes. Communicating Parallel Processes: Deconstructing CSP. In: Mille-
nium Perspectives in Computer Science, Proc. 1999 Oxford-Microsoft Sym-
posium in honour of Sir Tony Hoare. Palgrave, 2000.

5. S. Brookes. Full abstraction for a shared-variable parallel language. Inf. Comp., vol
127(2):145-163, Academic Press, June 1996.

6. E. W. Dijkstra. Cooperating sequential processes. In: Programming Languages,
F. Genuys (editor), pp. 43-112. Academic Press, 1968.

7. C.A.R. Hoare, Towards a Theory of Parallel Programming. In Operating Sys-
tems Techniques, C. A. R. Hoare and R. H. Perrott, editors, pp. 61-71, Academic
Press, 1972.

8. S. Isthiaq and P. W. O’Hearn. BI as an assertion language for mutable data struc-
tures. Proc. 28th POPL conference, pp. 36-49, January 2001.

9. C.B. Jones. Specification and design of (parallel) programs. Proc. IFIP Conference,
1983.

10. H.C. Lauer. Correctness in operating systems. Ph. D. thesis, Carnegie Mellon Uni-
versity, 1973.

11. P. W. O’Hearn. Notes on separation logic for shared-variable concurrency. Unpub-
lished manuscript, January 2002.

12. P.W. O’Hearn. Resources, Concurrency, and Local Reasoning. This volume,
Springer LNCS, CONCUR 2004, London, August 2004.

13. P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and Information Hiding.
Proc. 31st POPL conference, pp 268-280, Venice. ACM Press, January 2004.

14. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215-244, June 1999.

15. S. Owicki and D. Gries, Verifying properties of parallel programs: An axiomatic
approach, Comm. ACM. 19(5):279-285, May 1976.

16. D. Park, On the semantics of fair parallelism. In: Abstract Software Specifi-
cations, Springer-Verlag LNCS vol. 86, 504–526, 1979.

17. J.C. Reynolds, Separation logic: a logic for shared mutable data structures, Invited
paper. Proc. 17th IEEE Conference on Logic in Computer Science, LICS 2002, pp.
55-74. IEEE Computer Society, 2002.

18. J. C. Reynolds. Lecture notes on separation logic (15-819A3), chapter 8, page
178. Department of Computer Science, Carnegie-Mellon University, Spring 2003.
Revised May 23, 2003.

