Traces: a unifying semantic framework for parallel programming languages

Stephen Brookes

Department of Computer Science Carnegie Mellon University

PARADIGMS

- Deterministic sequential
 - -while-loops, assignment
- Non-deterministic sequential
 - -guarded commands
- Shared-memory parallel
 - parallel composition
 - conditional atomic actions
- Communicating parallel
 - parallel composition
 - message-passing
 - * synchronous
 - * asynchronous

SEMANTIC MODELS

- \bullet Deterministic sequential partial functions $S \to S_{\perp}$
- Non-deterministic sequential relations $\mathcal{P}(\mathbf{S} \times \mathbf{S}_{\perp})$
- Shared memory parallel transition traces $\mathcal{P}((\mathbf{S} \times \mathbf{S})^{\infty})$
- Asynchronous parallel transition traces $\mathcal{P}((\mathbf{S} \times \mathbf{S})^{\infty})$

• Synchronous parallel failures $\mathcal{P}(\Sigma^* \times \mathcal{P}(\Sigma))$

PROGRAM BEHAVIOR

Partial correctness
{pre} P {post}
Total correctness
[pre] P [post]
Safety properties
pre ⇒ □¬bad

• Liveness properties

$$pre \Rightarrow \Diamond good$$

Fairness is crucial for liveness analysis

FAIRNESS

For shared-memory or asynchrony

Enabling is local
P ||Q → if P → or Q →
Reasonable assumption:

no process is ignored forever

Weak (process) fairness

Satisfied by round-robin scheduler

Can model with *transition traces*

FAIRNESS

For synchronous processes...

Enabling is not local

P||Q → if P h!v & Q h?v

Reasonable assumptions:

no process is ignored forever
no potential synchronization is ignored forever

Satisfied by variant of round-robin

Not modelled by failures

THIS TALK

• A fair semantics for CSP

- avoids complex book-keeping
- -state handled implicitly

• Generalization of failures

- handles deadlock, divergence

• Full abstraction

- safety and liveness
- A unifying framework
 - shared-memory
 - asynchronous
 - synchronous
 - * blocking or non-blocking guards

SYNTAX

• Processes

$$P ::= \mathbf{skip} \mid x := e \mid P_1; P_2$$

$$h?x \mid h!e \mid$$

$$P_1 \parallel P_2 \mid$$

$$\mathbf{if} \ G \ \mathbf{fi} \mid \mathbf{do} \ G \ \mathbf{od} \mid$$

$$\mathbf{local} \ x, h \ \mathbf{in} \ P$$

• Guarded commands

$$G ::= (g \to P) \mid G_1 \square G_2$$

• Guards

$$g ::= b \mid b \land h?x \mid b \land h!e$$

ACTIONS

$\lambda ::= x = v$	read
$\mid x := v$	write
$\mid h?v$	input
$\mid h!v$	output
$\mid \delta_X$	wait

where $X \subseteq \{h?, h! \mid h \in \mathbf{Chan}\}$

TRACES

Finite or infinite sequences of actions $\alpha \in \Lambda^{\infty} = \Lambda^{+} \cup \Lambda^{\omega}$ $\delta \lambda = \lambda \delta = \lambda$

STATES

Characterized implicitly by enabling relation $s \xrightarrow{\lambda} s'$

OPERATIONAL SEMANTICS

• Transitions

$$P \xrightarrow{\lambda} P'$$
$$G \xrightarrow{\lambda} G'$$

• Termination

P term

• Fair execution

 $P \xrightarrow{\alpha}$

TRANSITIONS FOR GUARDED COMMANDS

$$(h?x \rightarrow P) \xrightarrow{h?v} x:=v; P$$

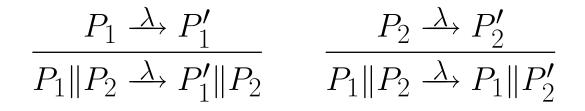
$$(h?x \to P) \xrightarrow{\delta_{h?}} (h?x \to P)$$

$$\frac{G_1 \xrightarrow{\lambda} P_1}{G_1 \square G_2 \xrightarrow{\lambda} P_1} \quad \lambda \not\in \Delta$$

$$\frac{G_2 \xrightarrow{\lambda} P_2}{G_1 \square G_2 \xrightarrow{\lambda} P_2} \quad \lambda \not\in \Delta$$

$$\frac{G_1 \xrightarrow{\delta_X} G_1 \quad G_2 \xrightarrow{\delta_Y} G_2}{G_1 \square G_2 \xrightarrow{\delta_X \sqcup Y} G_1 \square G_2}$$

TRANSITIONS FOR PROCESSES



$$\frac{P_1 \xrightarrow{\lambda_1} P'_1 \quad P_2 \xrightarrow{\lambda_2} P'_2}{P_1 \| P_2 \xrightarrow{\delta} P'_1 \| P'_2} \\
\text{if } match(\lambda_1, \lambda_2)$$

TERMINATION

 $\frac{P_1 \text{ term } P_2 \text{ term}}{P_1 \| P_2 \text{ term}}$

FAIR EXECUTIONS

Parallel composition

$$P \parallel Q \xrightarrow{\gamma} \text{ iff } P \xrightarrow{\alpha}, Q \xrightarrow{\beta}, \\ \gamma \in merges(\alpha, \beta), \\ \neg match(blocks(\alpha), blocks(\beta))$$

- $merges(\alpha, \beta)$ allows synchronization
- $blocks(\alpha)$ is set of directions occurring infinitely often in δ_X steps

Local channels

local h in $P \xrightarrow{\alpha}$ iff $P \xrightarrow{\alpha}$, $h \notin chans(\alpha)$

 \bullet forces synchronization on h

DENOTATIONAL SEMANTICS

• Define trace sets

 $\mathcal{T}(P) \subseteq \Lambda^{\infty}$

with

$$\begin{aligned} \mathcal{T}(e) &\subseteq \Lambda^* \times V \\ \mathcal{T}(g) &\subseteq \Lambda^* \times \{ \mathbf{true}, \mathbf{false} \} \\ \mathcal{T}(G) &\subseteq \Lambda^{\infty} \end{aligned}$$

by structural induction

- Designed to match operational semantics
- $\mathcal{T}(P)$ only includes fair traces

SEMANTIC DEFINITIONS

 $\mathcal{T}(\mathbf{skip}) = \{\delta\}$

 $\mathcal{T}(h?x) = \delta_{h?}^* \{h?v \, x := v \mid v \in V\} \cup \delta_{h?}^\omega$

 $\mathcal{T}(h!e) = \{ \alpha \, \delta_{h!}^* \, h!v, \ \alpha \delta_{h!}^{\omega} \mid (\alpha, v) \in \mathcal{T}(e) \}$

$$\mathcal{T}(P_1 || P_2) = \{ \alpha \in merges(\alpha_1, \alpha_2) \mid \\ \alpha_1 \in \mathcal{T}(P_1), \ \alpha_2 \in \mathcal{T}(P_2), \\ \neg match(blocks(\alpha_1), blocks(\alpha_2)) \}$$

 $\begin{aligned} \mathcal{T}(\mathbf{local}\ h\ \mathbf{in}\ P) = \\ \{ \alpha \backslash h \mid \alpha \in \mathcal{T}(P) \ \& \ h \not\in chans(\alpha) \} \end{aligned}$

$$\mathcal{T}(G_1 \square G_2) = \{ \alpha \in \mathcal{T}(G_1) \cup \mathcal{T}(G_2) \mid \alpha \not\in \Delta^{\omega} \} \cup \\ \{ \delta_{X \cup Y}^{\omega} \mid \delta_X^{\omega} \in \mathcal{T}(G_1), \delta_Y^{\omega} \in \mathcal{T}(G_2) \}$$

RESULTS

• Denotational matches operational $\mathcal{T}(P) = \{ \alpha \mid P \xrightarrow{\alpha} \}$ • Traces are sensitive to deadlock if $(a?x \rightarrow P) \Box(b?y \rightarrow Q)$ fi has $\delta_{\{a?,b?\}}^{\omega}$

if $(\mathbf{true} \to a?x; P) \Box (\mathbf{true} \to b?y; Q)$ fi has $\delta_{a?}^{\omega}$ and $\delta_{b?}^{\omega}$

• Full abstraction $\mathcal{T}(P) = \mathcal{T}(Q) \Leftrightarrow \forall C.\mathcal{B}(C[P]) = \mathcal{B}(C[Q])$ where \mathcal{B} observes sequence of states

SEMANTIC LAWS

Fairness properties

 $\begin{aligned} \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| (h!v;Q) \| R \\ &= \mathbf{local} \ h \ \mathbf{in} \ (x:=v;(P \| Q)) \| R \\ & \text{if} \ h \not\in \mathbf{chans}(R) \end{aligned}$

 $\begin{aligned} \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| (Q_1;Q_2) \\ &= Q_1; \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| Q_2 \\ & \text{if} \ h \not\in \mathtt{chans}(Q_1) \end{aligned}$

 $\begin{aligned} \mathbf{local} \ h \ \mathbf{in} \ (h!v;P) \| (Q_1;Q_2) \\ &= Q_1; \mathbf{local} \ h \ \mathbf{in} \ (h!v;P) \| Q_2 \\ & \text{if} \ h \not\in \mathtt{chans}(Q_1) \end{aligned}$

Not valid in unfair semantics

RELATED WORK

• Traditional CSP models

- used finite, prefix-closed traces
- cannot model fairness
- treat divergence as catastrophic
- Traces subsume (stable) failures $(\alpha, R) \in \mathcal{F}(P) \iff \alpha(\delta_X)^{\omega} \in \mathcal{T}(P)$ for some X such that $\neg match(X, R)$

• Older's models

- different fairness notions
- introduced fairness mod X
- $-\alpha$ is fair mod X if $blocks(\alpha) \subseteq X$

ADAPTABILITY

Can handle other parallel paradigms by making minor changes

- \bullet Choose appropriate set of actions Λ
- Adjust relevant semantic definitions
 - parallel composition
 - input/output
 - local channels

In each case:

- Processes denote trace sets
- Full abstraction for safety and liveness

ASYNCHRONOUS COMMUNICATION

 $\lambda ::= x = v \mid x := v \mid h?v \mid h!v \mid \delta_X$ where $X \subseteq \{h? \mid h \in \mathbf{Chan}\}$

 $\mathcal{T}(h!e) = \{ \alpha \, h!v \mid (\alpha, v) \in \mathcal{T}(e) \}$

 $\mathcal{T}(P_1 || P_2) = \{ \alpha \in merges(\alpha_1, \alpha_2) \mid \\ \alpha_1 \in \mathcal{T}(P_1), \ \alpha_2 \in \mathcal{T}(P_2) \}$

 $\mathcal{T}(\mathbf{local}\ h\ \mathbf{in}\ P) = \\ \{\alpha \backslash h \mid \alpha \in \mathcal{T}(P) \& \ \alpha \lceil h \text{ is FIFO} \}$

- $merges(\alpha, \beta)$ without synchronization
- α [h is FIFO if every input is justified by earlier output

SEMANTIC LAWS asynchronous

Fairness properties

 $\begin{aligned} & \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| (h!v;Q) \| R \\ &= \mathbf{local} \ h \ \mathbf{in} \ (x{:=}v;P) \| Q \| R \\ & \text{if} \ h \not\in \mathbf{chans}(R) \end{aligned}$

 $\begin{aligned} & \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| (Q_1;Q_2) \\ &= Q_1; \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| Q_2 \\ & \text{if} \ h \not\in \mathtt{chans}(Q_1) \end{aligned}$

Not valid in unfair semantics

SHARED MEMORY

$$\lambda ::= x = v \mid x := v \mid \langle \alpha \rangle \quad (\alpha \text{ finite})$$
$$\mathcal{T}(\mathbf{P} \parallel \mathbf{P}) = \{ \alpha \in \mathbf{m} \text{ array}(\alpha \mid \alpha) \}$$

 $\mathcal{T}(P_1 || P_2) = \{ \alpha \in merges(\alpha_1, \alpha_2) \mid \\ \alpha_1 \in \mathcal{T}(P_1), \ \alpha_2 \in \mathcal{T}(P_2) \}$

$$\mathcal{T}(\mathbf{local} \ x \ \mathbf{in} \ P) = \\ \{\alpha \setminus x \mid \alpha \in \mathcal{T}(P) \ \& \ \alpha \lceil x \text{ sequential} \}$$

 $\mathcal{T}(\mathbf{await} \ b \ \mathbf{then} \ a) = wait^* go \ \cup \ wait^{\omega}$ $wait = \{ \langle \alpha \rangle \mid (\alpha, \mathbf{false}) \in \mathcal{A}(b) \}$ $go = \{ \langle \alpha \beta \rangle \mid (\alpha, \mathbf{true}) \in \mathcal{A}(b), \beta \in \mathcal{A}(a) \}$

• $\alpha \lceil x \text{ sequential if each read of } x \text{ is } justified by previous write}$

COMMON THEME

- Programs denote sets of traces — built from action set Λ
- Fully abstract for safety and liveness
- Can extract traditional semantics
- Trace sets form complete lattice
- Program constructs denote monotone functions on trace sets

 $T_1 \subseteq T_2 \Rightarrow F(T_1) \subseteq F(T_2)$

- Recursive constructs denote fixed points
 - least = finite traces
 - -greatest = finite + infinite traces

FUTURE RESEARCH

• Other fairness notions

 $-\operatorname{strong},$ weak / process, channel

• Partial order semantics

- "truly fair" concurrency
- Low-level traces

– pointers, stores, heaps

• Procedures

- possible worlds, parametricity
- Intensional traces
 - abstract runtime

• Probabilistic traces

- "fairly true" correctness

REFERENCES

- Full abstraction for a shared-variable parallel language, S. Brookes, LICS'93
- On the Kahn Principle and Fair Networks, S. Brookes, MFPS 14 (1998)
- Communicating Sequential Processes, C. A. R. Hoare, CACM (1978)
- A Framework for Fair Communicating Processes, S. Older, MFPS 13 (1997)
- On the semantics of fair parallelism, D. Park, Springer LNCS 86 (1979)
- The Theory and Practice of Concurrency, A. W. Roscoe, Prentice-Hall (1998)