
Deconstructing CCS and CSP
Asynchronous Communication,
Fairness, and Full Abstraction

Stephen Brookes
Carnegie Mellon University

Paper presented at MFPS 16
In honor of Robin Milner

Abstract

The process algebras CCS and CSP assume that processes interact
by means of handshake communication, although it would have been
equally reasonable to have adopted asynchronous communication as
primitive. Traditional semantics of CCS (based on bisimulation) and
CSP (such as the failures model) do not assume fair parallel compo-
sition, although fairness is often vital in ensuring liveness properties.
It appears to be difficult to adapt these semantic models to incorpo-
rate fairness. We consider a process algebra based on asynchronous
communication and fair parallel execution. We show that a simple se-
mantic model based on traces suffices for reasoning about safety and
liveness, including deadlock analysis. We prove that this semantics is
fully abstract, in that processes have the same trace sets if and only
if they induce identical safety and liveness properties in all program
contexts. Our semantic framework also exposes the underlying simi-
larities between communicating processes and shared-variable parallel
programs, despite the disparity between their traditional models. We
also propose a form of fair bisimulation, which can be viewed as the
finest reasonable notion of equivalence for fair asynchronously com-
municating processes.

1

1 Introduction

The process algebras CCS [28] and CSP [10] have been used widely to specify
and reason about the behavior of parallel systems. Their semantic founda-
tions have been explored extensively, leading to the development of theories
(based on bisimulation for CCS, and on failure equivalence for CSP) and
practical tools for verification of safety and liveness properties (such as the
Concurrency Workbench [12] and the model checker FDR [17]). Many ex-
tensions, generalizations, and offshoots of the original algebras have been
introduced, attesting to their significance and fundamental importance.

CSP and CCS were designed to model asynchronous processes, running at
indeterminate relative speed; the form of parallel composition typical of CCS
and CSP allows independent progress to be made by individual processes.
Moreover, processes were assumed to interact by means of handshake commu-
nication; a process attempting to perform an input action synchronizes with
another process attempting a matching output, waiting if necessary until a
match becomes available.

As Hoare commented in the original CSP paper, it would have been
equally reasonable to have assumed asynchronous communication instead,
since each communication mechanism is implementable using the other. Hoare
believed that the synchronizing form would lend itself to a simpler semantics.
Whatever the original philosophical justification or pragmatic considerations,
the handshake mechanism has become a fundamental building block in the
theory of CCS and CSP.

In retrospect it is worth re-examining the rationale for this choice. With
the benefit of hindsight it can be argued that the simplicity permitted by
the assumption of handshake communication is deceptive, achieved at the
expense of ignoring fairness [18]. When reasoning about a parallel system it
is natural to assume (weakly) fair execution: that every process is eventually
scheduled. Weak fairness is a convenient abstraction, allowing us to ignore
scheduling details while ensuring that program correctness proofs provide
guarantees about program behavior when execution follows a “reasonable”
scheduling strategy. For example, any round-robin scheduling strategy en-
sures weakly fair execution. Many liveness properties of parallel systems
cannot be proven without fairness assumptions, so that fairness issues are
obviously important.

Park [34] provided a fair semantics for a simple language of shared-
variable parallel programs, based on a form of “transition trace”, with par-

2

allel composition modelled by a fairmerge operator on trace sets. For this
class of programs weak (process) fairness is a natural assumption to make, is
relatively easy to formalize, is evidently a sensible abstraction from network
implementation details, and there is no pressing need to consider alternative
notions of fairness proposed in the literature, such as strong (process) fair-
ness [18]. Park’s ideas have been further developed and fine-tuned, yielding
fully abstract semantic models for shared-variable programs [3].

For processes in the CCS/CSP style, communicating by handshake, the
fairness problem is not as clean-cut, and weak process fairness turns out to
be rather ineffective as an assumption in reasoning about liveness [32]. The
reason for this is that the ability of a process to make progress typically de-
pends on the simultaneous ability of another process to perform a matching
action. This makes fairness for synchronizing processes difficult both to im-
plement and to model mathematically. Indeed, a plethora of distinct notions
of fairness exists for handshaking processes (including strong and weak vari-
ants of “process fairness” and “channel fairness”), and it is debatable if these
constitute sensible abstractions from reasonable scheduling strategies. The
difficulties that crop up in trying to devise tractable fair semantic models
for CSP are brought out clearly in Older’s Ph.D. thesis [32] and related pa-
pers such as [9]. It has proven difficult to adapt models of CCS and CSP to
incorporate fairness while retaining the structural simplicity of the original
models.

Furthermore, there is little apparent structural similarity between the
various models and concepts that have been developed for process algebras
such as CCS and CSP (including synchronization trees, weak- and strong
bisimilarity, and failure sets) and those for shared-variable parallel systems.
Roughly speaking, traditional models of shared-variable programs tend to
explicitly mention “state” and are clearly “imperative” in nature, whereas
traditional accounts of process algebras typically ignore or abstract away
from state.

In this paper we introduce a process algebra in the CCS/CSP vein but
based explicitly on asynchronous communication and fair parallel composi-
tion. We claim that by building our theories on top of asynchronous com-
munication instead of handshakes, and by building (weak, process) fairness
in directly, we can provide a mathematically simple account of fair commu-
nicating processes, robust enough for further generalization (for instance, by
adding procedures or a form of “concurrent object”).

We begin by recalling the notation, terminology, and semantic concepts

3

behind CCS and CSP, assuming handshake communication. We then show
that the assumption of asynchronous communication leads to a process alge-
bra with a mathematically straightforward semantic model (closely related to
Park’s semantics for shared-variable programs), in which it is easy to model
fair execution. In fact we present two equivalent formulations of our seman-
tics: one couched in terms of communication traces, obtained by abstracting
away from state, and one based on transition traces that abstracts away from
action labels but retains information about state. Thus we are able to es-
tablish a common semantic foundation for state-free and state-ful notions of
process. We establish a number of fundamental semantic properties, which
confirm the naturality of our approach. In particular, we prove that our se-
mantics is fully abstract [27], in that two processes have the same meaning if
and only if they induce the same observable behaviors in all (fair) program
contexts. This guarantees that our semantics supports compositional reason-
ing about safety and liveness properties of parallel systems. We also discuss
briefly a more refined semantic equivalence that amounts to a fair version of
bisimilarity.

2 Milner’s CCS

In 1980 Milner introduced A Calculus of Communicating Systems, a notation
for specifying systems of parallel computing agents, or processes, which com-
municate by handshake message-passing [28]. The syntax of CCS processes
P , and action labels λ, is based on the following grammar:

P ::= nil | inaction
λ.P | prefix
P1 + P2 | sum
(P1|P2) | parallel
P\a restriction

λ ::= a?v | a!v | τ

Here a ranges over the set Ch of channel names, and v ranges over the set V
of communicable values, which we assume for simplicity is the set of integers.
We define ch(λ), the channel used by action λ, by: ch(a?v) = ch(a!v) = a,
ch(τ) = ε.

4

λ.P
λ−→ P

P
λ−→ P ′

P + Q
λ−→ P ′

Q
λ−→ Q′

P + Q
λ−→ Q′

P
λ−→ P ′

P |Q λ−→ P ′|Q
Q

λ−→ Q′

P |Q λ−→ P |Q′

P
λ−→ P ′ Q

λ̄−→ Q′

P |Q τ−→ P ′|Q′

P
λ−→ P ′ ch(λ) 6= a

P\a λ−→ P ′\a

Figure 1: Transition rules for CCS

Milner presented an operational semantics for CCS terms, generated by
a labelled transition system. A transition of form

P
λ−−→ Q

is taken to represent the ability of process P to perform the action labelled
λ and thereafter behave like the process Q. In fact, since communication is
intended to require synchronized participation by both sender and receiver,
it might be better to view such a transition as representing the potential for
P to perform its part of the desired communication. The label τ represents
a handshake action. The transition rules are summarized in Figure 1. Note
that we use the notation λ for the action matching λ: a?v = a!v, a!v = a?v.

2.1 Observational equivalence and bisimilarity

Milner’s original CCS semantics was based on observational equivalence, char-
acterized as the “limit” of a series of increasingly finer equivalence relations
≈n (for n ≥ 0) on CCS terms (or, more generally, on labelled transition sys-
tems). These relations were defined inductively, with ≈0 being the universal
relation and with the inductive clause being:

5

P ≈n+1 Q if and only if

• ∀λ, P ′. P
λ

==⇒ P ′ implies ∃Q′. Q
λ

==⇒ Q′ & P ′ ≈n Q′

• ∀λ, Q′. Q
λ

==⇒ Q′ implies ∃P ′. P
λ

==⇒ P ′ & P ′ ≈n Q′

where
λ

==⇒ = (τ−→)∗◦ λ−→ ◦(τ−→)∗

Building on work of David Park [35], Milner recast these ideas in a slightly
more general and uniform framework by introducing weak bisimilarity, the
equivalence relation on processes given by:

Definition 1
P ≈ Q if and only if

• ∀λ, P ′. P
λ

==⇒ P ′ implies ∃Q′. Q
λ

==⇒ Q′ & P ′ ≈ Q′

• ∀λ, Q′. Q
λ

==⇒ Q′ implies ∃P ′. P
λ

==⇒ P ′ & P ′ ≈ Q′

Weak bisimilarity is an equivalence relation, and is respected by prefixing,
parallel composition, and restriction. However, the choice operator causes
some technical difficulty, since τ.Q ≈ Q always holds but P + τ.Q may fail to
be weakly bisimilar to P + Q. As a result, weak bisimilarity is not a congru-
ence for CCS. The largest CCS congruence consistent with weak bisimilarity,
known as observation congruence and denoted ≈c, is characterized as follows.

Definition 2

P ≈c Q ⇐⇒ ∀R. P + R ≈ Q + R.

Milner’s book on Communication and Concurrency [29] uses the symbol =
(and the name “equality”) for this congruence, emphasizing its fundamental
role in the theory of CCS.

The calculus of CCS involves a large collection of simple laws and rules
of process equivalence, including:

• static laws, such as
P |Q = Q|P

P + nil = P

6

• dynamic laws, such as
P + τ.P = τ.P

• expansion laws, such as

(λ.P)|(µ.Q) = λ.(P |(µ.Q)) + µ.((λ.P)|Q) if λ̄ 6= µ

• the unique fixed point rule:

Q = P [Q/p]

Q = rec p.P
if p is guarded in P

3 Hoare’s CSP

CSP was introduced as an imperative language of parallel processes, com-
municating by synchronized message-passing [22]. The CSP process alge-
bra [10, 23] was also designed to model asynchronously executing parallel
processes with handshake communication. As in CCS, the process algebra
is typically presented in a manner that abstracts away from the imperative
nature of process state, focussing instead on the patterns of communication
in which processes may engage. CSP process syntax is based on the following
grammar:

P ::= nil | inaction
λ.P | prefix
P12P2 | external choice
P1 u P2 | internal choice
(P1|P2) | parallel
P/a hiding

λ ::= a?v | a!v | τ

Note that CSP replaces the choice operator of CCS with two distinct choice
operators: internal choice, written P uQ; and external choice, written P2Q.
These two forms of choice correspond to special cases of Dijkstra’s guarded
choice construct, as adapted in Hoare’s original CSP paper to permit in-
put and output commands to appear in guards [22]. A guarded choice with
purely boolean guards needs no external communication to proceed, whereas

7

a guarded choice with input or output guards needs to consult its “environ-
ment” to determine which of its guards is enabled. Thus for example the
processes which would be written as

P = if (true → a?x.P1) 2 (true → b?x.P2) fi
Q = if (a?x → Q1) 2 (b?x → Q2) fi

in the notation of Hoare’s original paper are represented as

P = (a?x.P1) u (b?x.P2)
Q = (a?x.Q1) 2 (b?x.Q2)

In fact the treatment of 2 and u as fully fledged binary operators on processes
is much more general than is implied by their origins, allowing for instance
such intuitively peculiar constructs as (P |Q)2R.

CSP also uses a “hiding” operator instead of the CCS restriction operator.
We have actually changed the syntax a little to facilitate the contrast with
CCS; originally the CSP hiding operator was also written as P\a, but we
will write P/a instead to avoid confusion with the CCS restriction operator.
The intended behavior of the hiding operator is rather different from that of
the CCS restriction operator, as will be evident shortly. For this reason it is
particularly helpful to use distinct notation for the two constructs.

We also work with a version of CSP in which communication is two-
way, rather than allowing multiple synchronization or broadcast events. This
reflects the structure of Hoare’s original language, in which processes were
named and each communication specified explicitly the name of its source and
its target process. In the CSP process algebra it is common to regard input
and output as “symmetric” events, to equip processes (either explicitly or
implicitly) with alphabets, and to permit multiple synchronization whenever
an event belongs to the alphabets of several processes. The role of such a
general form of communication as primitive is rather questionable, as is its
implementability. When constrained to permit only two-way synchronization
between a sender and a receiver process, the CSP form of parallel composition
operates in exactly the same manner as the CCS form of parallel composition,
so we will continue to use the notation P |Q, rather than P‖Q as in most
papers on CSP.

8

P uQ
τ−→ P P uQ

τ−→ Q

P
λ−→ P ′ λ 6= τ

P2Q
λ−→ P ′

Q
λ−→ Q′ λ 6= τ

P2Q
λ−→ Q′

P
τ−→ P ′

P2Q
τ−→ P ′2Q

Q
τ−→ Q′

P2Q
τ−→ P2Q′

P
λ−→ P ′ ch(λ) 6= a

P/a
λ−→ P ′/a

P
λ−→ P ′ ch(λ) = a

P/a
τ−→ P ′/a

P
λ−→ P ′

P |Q λ−→ P ′|Q
Q

λ−→ Q′

P |Q λ−→ P |Q′

P
λ−→ P ′ Q

λ̄−→ Q′

P |Q τ−→ P ′|Q′

Figure 2: Transition rules for CSP

3.1 Operational semantics

Again the operational behavior of CSP processes is specified by a labelled
transition system, with transitions of form

P
λ−→ Q

interpreted as expressing the potential for process P to perform action λ
and evolve to process Q. The transition rules are summarized in Figure 2.
Note that hiding a channel causes actions involving that channel to occur
“uncontrollably” whenever they are enabled.

3.2 Failure equivalence

Apart from syntactic differences, the major difference between CCS and CSP
concerns the choice of semantic foundations. The semantic model for CSP
was chosen to be as simple as possible while supporting compositional rea-
soning about the ability or inability of a process to perform sequences of

9

communication; in particular, the model was designed to incorporate infor-
mation about the potential for a process to deadlock when run in parallel with
other processes. This was the motivation behind the design of the failures
semantics of CSP [10].

A failure of a process P is a pair (α, X) consisting of a finite sequence α
of communication actions and a set X of actions such that P is capable (if
run in a context that offers the required matching actions) of performing α
and then “refusing” the actions in X. Thus P can cause deadlock if run in a
context which offers only actions from X as its possible next steps. A Hoare
trace of P is a finite sequence of actions α such that (α, {}) is a failure of P ,
i.e. such that α is a potential communication sequence for P . Note that such
traces form a non-empty prefix-closed set and each Hoare trace corresponds
to a partial record of a (not necessarily completed) computation of P .

Definition 3 The failures of P form the set f(P) characterized operationally
by:

f(P) = {(α, X) | P α
==⇒ P ′ & P ′ ref X}

where
P ref X ⇐⇒ ∀λ ∈ X ∪ {τ}. ¬(P

λ−→)

Failures can also be determined in a compositional manner, obtaining a
denotational semantic description that supports syntax-directed analysis of
deadlock [10]. We define failure equivalence for CSP processes by:

Definition 4
P ≡f Q ⇐⇒ f(P) = f(Q)

Failure equivalence is a congruence for CSP, and can be regarded as the
coarsest reasonable congruence, in view of the well known full abstraction
property: two processes are failure equivalent if and only if they induce
identical deadlock behavior in all CSP contexts.

Although the fact seems to be less well known, weak bisimilarity is also
a CSP congruence. (This property is implied by some of the results of the
author’s Ph.D. thesis [2].) It is easy to see that weak bisimilarity implies
failure equivalence, but the converse fails. It seems reasonable to regard
weak bisimulation as the finest reasonable congruence for CSP. Note that
there is no need to involve ≈c, since both forms of choice operator in CSP
respect weak bisimulation, unlike the CCS choice operator.

10

4 Limitations

The CCS and CSP frameworks outlined above have proven highly influential,
stimulating an enormous body of research concerned with foundational issues
as well as practical applications. The original work was tailored to reasoning
about specific classes of program property; later work has striven to generalize
further. In particular, neither of the above semantic frameworks provides a
proper account of infinite computations. We identify two problems: the
potential for divergence, and the need to assume fair parallel composition.

4.1 Divergence and infinite behaviors

Divergence is the potential for an infinite ‘internal” computation without any
“visible” communication. A process which may diverge might never commu-
nicate with its environment. Nevertheless according to the CCS semantics
the recursive processes defined by

P = a!0.P + τ.P Q = a!0.Q

are equal, despite the fact that only P has the potential for divergence. Sim-
ilar problems with the treatment of divergence arose in the CSP framework.
Indeed, according to the operational characterization of failures given above,
process P has no failures whatsoever.

In order to distinguish between processes such as P and Q one can de-
fine a form of bisimilarity sensitive to divergence, along lines developed by
Walker [41]. In generalizing the failures approach to cope with divergent
processes the decision was made to regard even the potential for divergence
as “catastrophic”. This led to a more refined failures/divergences model of
CSP, in which all possibly diverging processes are equated with the most
non-deterministic process of all.

4.2 Fairness

The early models of CCS and CSP, even including these divergence-sensitive
variants, made no distinction between fair and unfair executions. Neverthe-
less, when reasoning about the behavior of a parallel system it is natural to
assume fairness, in that each process will eventually be scheduled for exe-
cution. (Technically, this amounts to assuming weak process fairness.) For

11

example, writing µω for a process capable of repeating the atomic action µ
forever, if we assume fair execution we would expect that

λ|µω = µ∗λµω.

However, this equivalence fails both in CCS and in CSP, because in neither
case is parallel composition interpreted as fair.

Recognition of this defect led to work on incorporating (certain forms of)
fairness into CCS, notably by Parrow, who augmented the syntax of CCS
with infinitary restriction operators and introduced a form of weak bisimilar-
ity sensitive to the potential for infinite computation. Attempts to develop
fair models of CCS and CSP are hampered by the underlying assumption of
handshake communication, since this makes it difficult to keep track of the
enabledness of a process: one process is only enabled to perform a handshake
step when it offers an action λ for which another process simultaneously offers
a matching λ̄ action.

As Hoare commented in his original CSP paper, it would have been
equally reasonable to have assumed asynchronous communication as the
means of process interaction. Hoare rationalized his decision to adopt hand-
shake communication by asserting that this led to a simpler theory, and that
asynchronous communication could always be simulated within the synchro-
nized setting by using “buffer” processes. Hoare also chose to ignore fairness.
In retrospect the simplicity of the failures model is misleading; it turns out
to be extremely difficult to extend the failure/divergences approach to incor-
porate fair parallelism.

We will now examine what happens when we revisit the CCS/CSP designs
but assume fair process interaction and asynchronous communication. We
will use the CSP notation as above, except for the hiding operator, which
we will replace by a form of local channel declaration similar in intent to the
“encapsulation” operators common in ACP [1].

5 Asynchronous communication

The syntax of our language of asynchronously executing, asynchronously
communicating processes will again be based on the original CSP design.
However, in the asynchronous setting input and output cannot be treated
symmetrically: output actions can occur asynchronously, without requiring
the participation of another process; a process wishing to perform an input

12

action must wait if necessary until the relevant channel is non-empty. For
similar reasons it makes no sense to allow a process to perform a choice
guarded by output. We will therefore only include a form of external choice
that involves input-guarded processes. We will also permit recursive pro-
cesses, using the notation rec p.P . For example, the recursive process

rec p. a?v.b!v.p

will behave like a one-place buffer that transmits data from channel a to
channel b.

Instead of CCS restriction P\a, which prevents all activity on channel
a except for synchronizations, or CSP hiding P/a, which renders all actions
on channel a “uncontrollable”, we need a form of channel localization that
properly meshes with asynchronous communication and recognizes that the
actions of a process may depend on the contents of “hidden” or “local”
channels. At any stage during process execution the contents of a channel
will be a finite (possibly empty) sequence of data. Thus we introduce the
notation local a = ρ in P , where ρ ∈ V ∗, to represent process P executing
with a as a local channel, initially containing the data sequence ρ.

In summary, we will use the following abstract grammar for processes
(ranged over by P) and input-guarded processes, (ranged over by G), in which
p ranges over a set of process identifiers:

P ::= nil | inaction
a!v.P | output
a?v.P input
G1 2 G2 external choice
P1 u P2 | internal choice
(P1|P2) | parallel
local a = ρ in P localization
p process identifier
rec p.P recursion

G ::= a?v.P | G1 2 G2

We can give a straightforward semantic account of the effects of input and
output by modelling each channel as an updateable finite queue, and regard-
ing the state of a system as the (current) contents of each channel. An input
action a?v is enabled if (the queue corresponding to) channel a is non-empty

13

and v is the first item in the queue; when this action occurs it causes a “side-
effect” on the system state, dequeueing v from a. A process attempting input
on channel a must wait if a is empty. An output action a!v is always enabled,
and causes the enqueueing of value v on a.

Since actions now depend on and affect the state, we need to consider
transitions of form

〈P, s〉 λ−→ 〈P ′, s′〉
with the interpretation that process P , in state s, can perform action λ,
changing the state to s′, and then behave like Q. In order to model waiting
we introduce a new form of action label: δX (where X is a set of channels)
represents waiting on (a subset of the) channels in X; the special case when X
is empty amounts to an “unconditional” idle step. Thus we use the following
grammar for labels:

λ ::= a?v | a!v | δX

The transition rule for the localization construct shows that local actions
are “invisible” (since they become labelled by δ), and that only local output
is “uncontrollable”. In particular, note that

local a = ε in (a?v.P)

has only idling δ-transitions, whereas

local a = [v] in (a?v.P)

can perform the local input action “invisibly” and become local a = ε in P .
Our use of busy-waiting to model frustrated input actions means that

deadlock manifests itself as the ability to perform only infinite sequences of
δ actions. Hence the transition rule for nil. It follows from this that we
are, effectively, equating deadlock with “livelock” or “divergence”; unlike the
failures model we do not view divergence as catastrophic, and indeed there
would be little point in doing things this way if we were planning to do
so. Our approach is, in this respect, closer in spirit to the so-called “chaos-
free failures divergences” model of CSP [40], although that model assumes
handshake communication and does not deal with fair parallelism.

5.1 Trace semantics

A major consequence of our treatment of deadlock is that we are able to
work with a simpler semantic structure than before: traces suffice. It is

14

〈nil , s〉 δX−−−→ 〈nil , s〉
enq(a)(s) = s′

〈a!v.P, s〉 a!v−−−→ 〈P, s′〉

〈P uQ, s〉 δX−−−→ 〈P, s〉 〈P uQ, s〉 δX−−−→ 〈Q, s〉
deq(a)(s) = (v, s′)

〈a?v.P, s〉 a?v−−−→ 〈P, s′〉
null(a)(s) a ∈ X

〈a?v.P, s〉 δX−−−→ 〈a?v.P, s〉

〈G1, s〉 a?v−−−→ 〈P ′, s′〉
〈G12G2, s〉 a?v−−−→ 〈P ′, s〉

〈G2, s〉 a?v−−−→ 〈Q′, s′〉
〈G12G2, s〉 a?v−−−→ 〈Q′, s′〉

〈G1, s〉 δX−−−→ 〈G1, s〉 〈G2, s〉 δX−−−→ 〈G2, s〉
〈G12G2, s〉 δX−−−→ 〈G12G2, s〉

〈P, s〉 λ−→ 〈P ′, s′〉
〈P |Q, s〉 λ−→ 〈P ′|Q, s′〉

〈Q, s〉 λ−→ 〈Q′, s′〉
〈P |Q, s〉 λ−→ 〈P |Q′, s′〉

〈P, (s, a : ρ)〉 λ−→ 〈P ′, (s′, a : ρ′)〉 µ ∈ λ/a

〈local a = ρ in P, s〉 µ−→ 〈local a = ρ′ in P ′, s′〉
where

δX/a = {δY | X − {a} ⊆ Y }
a?v/a = a!v/a = {δX | X ⊆ Ch}

λ/a = {λ} otherwise

〈rec p.P, s〉 δX−−−→ 〈[rec p .P/p]P, s〉

Figure 3: Transition rules for asynchronous processes

15

important to notice, however, that we work with traces that record complete
computations of a process, rather than the partial traces used in the failures
semantics. This decision is crucial in enabling us to account properly for fair
execution. In fact there are two alternative ways to present a trace-theoretic
semantics for our language. The first, using what we will call communication
traces, abstracts away from state and focusses on action labels. The second,
using transition traces, abstracts away from labels and keeps track of state.

Definition 5 The set of communication traces ct(P) of a process P is char-
acterized operationally by:

ct(P) = {α ∈ Λω | P α
==⇒ fair},

where Λ = {a?v, a!v | a ∈ Ch, v ∈ V } ∪ {δX | X ⊆ Ch} and we write

P
λ

==⇒ P ′iff ∃s, s′. 〈P, s〉 λ
==⇒ 〈P ′, s′〉.

For a communication trace α = λ0λ1 . . . λn . . . we write P
α

==⇒ fair to indicate
that P has a fair execution of form

P
λ0

===⇒ P0
λ1

===⇒ P1
λ2

===⇒ P2 · · ·

When P is a parallel composition such an execution is fair if and only if it
projects down onto a (complete, infinite) fair execution of each component
process. This definition is simple in appearance yet deceptively subtle: since
we abstract away from the state, such “executions” actually permit state
changes between successive steps. Thus a communication trace should more
accurately be viewed as representing the “visible” record of a fair interactive
computation of the process P with other processes running concurrently and
communicating via channels with P .

To illustrate the communication trace semantics note that a?v.P 2 b?v.Q
has communication traces a?v α, where α ranges over the communication
traces of P ; also b?v β, where β ranges over the communication traces of Q;
and δω

ab. Also note that (δaδb)
ω is not a trace of this process. In contrast,

a?v.P u b?v.Q has all of these traces, as well as δω
a and δω

b .

Definition 6 The transition traces tt(P) of a process P are given by

tt(P) = {β ∈ (S × S)ω | P β
==⇒ fair},

where

P
(s,s′)

=====⇒ P ′ iff ∃λ.〈P, s〉 λ
==⇒ 〈P ′, s′〉.

16

Again we characterize fair executions as those built by interleaving (fair)
executions of all component processes.

It is easy to show from the above definitions that the communication
traces of a process are closed under certain natural operations.

Theorem 1 ct(P) is closed under:

• stuttering
αβ ∈ ct(P) ⇒ αδXβ ∈ ct(P)

• muttering
αδφβ ∈ ct(P) ⇒ αβ ∈ ct(P)

αδXδY β ∈ ct(P) ⇒ αδX∪Y β ∈ ct(P)

Similarly, it is easy to show that the transition traces of a process are
closed under analogous operations, for which we will use the same names.
Although the analogy is not as exact as the names might imply, taken to-
gether these two operations achieve the same effect as their namesakes above.

Theorem 2 tt(P) is closed under:

• stuttering
αβ ∈ tt(P) ⇒ α(s, s)β ∈ tt(P)

• muttering

α(s, s)(s, s′)β ∈ tt(P) ⇒ α(s, s′)β ∈ tt(P)
α(s, s′)(s′, s′)β ∈ tt(P) ⇒ α(s, s′)β ∈ tt(P)

The astute reader may have noticed that this transition trace semantics in-
volves slightly different closure conditions from those employed in the au-
thor’s earlier transition trace semantics of shared-variable parallel programs,
which were referred to as stuttering and mumbling [3]. (We have, correspond-
ingly, chosen slightly different but suggestively similar names.) Stuttering is
exactly the same here, but the muttering condition amounts to mumbling
limited to idle steps. The effect is that here each step in a trace corresponds

to an operational transition of form P
λ

==⇒ Q, i.e. to a single atomic action,
possibly with additional idle steps. In contrast in the shared-variable model
each trace step corresponds to an arbitrary finite sequence of atomic actions.

17

The difference in emphasis corresponds with our assumption here that we
can observe each and every atomic step modulo idling.

The two alternative forms of trace semantics were deliberately presented
in such a way as to emphasize their close connections, differing only in their
respective focus: one abstracts away from state, the other abstracts away
from labels. The following result establishes formally the fact that the two
semantics are equivalent: they induce exactly the same notions of semantic
approximation and (hence) semantic equivalence.

Theorem 3 The two alternative forms of trace semantics are equivalent, in
that for all processes P and Q,

ct(P) ⊆ ct(Q) iff tt(P) ⊆ tt(Q).

Proof
This can be shown as follows. Let [[−]] : Λ → P(S × S) be given by:

[[a?v]] = {(s, s′) | (v, s′) = deq(a)(s)}
[[a!v]] = {(s, s′) | s′ = enq(a, v)(s)}
[[δX]] = {(s, s) | ∀a ∈ X. null(a)(s)}

This function extends to [[−]] : Λω → P((S × S)ω) in the obvious way. It is
then easy to prove that

• tt(P) =
⋃
{[[α]] | α ∈ ct(P)}

• ct(P) = {α | [[α]] ⊆ tt(P)}
Hence,

ct(P) ⊆ ct(Q) ⇐⇒ ∀α. ([[α]] ⊆ tt(P) ⇒ [[α]] ⊆ tt(Q))
⇐⇒ tt(P) ⊆ tt(Q).

•
In view of the isomorphism of the two kinds of trace semantics we no

longer need to keep working separately with definitions and results pertaining
to communication traces and definitions and results couched in terms of
transition traces. Nevertheless we will continue to do so, in order to facilitate
some of the definitions.

All CSP constructs are monotone with respect to trace inclusion:

Theorem 4 For all programs contexts C[−],

ct(P) ⊆ ct(Q) ⇒ ct(C[P]) ⊆ ct(C[Q])
tt(P) ⊆ tt(Q) ⇒ tt(C[P]) ⊆ tt(C[Q])

18

5.2 Denotational semantics

The trace semantics ct and tt may also be defined denotationally, by struc-
tural induction, so that one can reason about traces in a compositional man-
ner. Our denotational account of the behavior of recursive processes relies
on Tarski’s fixed point theorem. The collection of trace sets (either com-
munication traces, or transition traces) forms a complete lattice under set
inclusion. (The closed sets of traces form a complete sub-lattice.) When P is
a process containing free occurrences of the process variable p, we can view
the function

λt.ct(P)[p 7→ t]

as a monotone function on the complete lattice of trace sets. The (closure of
the) greatest fixed point of this function coincides with the set of communica-
tion traces that would be obtained for rec p.P according to the operational
recipe. A similar approach works for transition traces.

We give the denotational semantic equations below (in Figure 4) for the
communication trace semantics. Some of the notation used in the semantic
clauses warrants explanation. Let ∆a = {δω

Y | a ∈ Y } and ∆ = {δω
Y | Y ⊆

Ch}. We write νt.T for the greatest fixed point of the function λt.T , and
we let T † be the smallest closed set of traces containing T . We say that a
communication trace α is int-free for a from ρ if, assuming that the initial
contents of channel a is ρ, and assuming that no other process is permitted
to interfere with the contents of a, all actions involving this channel along
α are enabled. For example, the trace a?0 (a!0 a?0)ω is int-free for a from 0
but not from ε. We write α/a for the obvious extension of the corresponding
operator λ/a on actions, as given earlier with the transition rules.

Theorem 5 The communication trace semantic function determined by the
clauses in Figure 4 coincides with the function characterized operationally in
Definition 5.

5.3 Recovering failures

Since outputs are always executable whenever enabled, it no longer makes
sense to include output actions in refusal sets; moreover a deadlock can only
occur when a system is stable, in that no output action can occur. Thus
we may characterize the asynchronous failures of a process operationally as
follows.

19

ct(nil) = ∆†

ct(a!v.P) = {a!v α | α ∈ ct(P)}†
ct(a?v.P) = ∆†

a ∪ {a?v α | α ∈ ct(P)}†
ct(P uQ) = ct(P) ∪ ct(Q)
ct(P2Q) = ((ct(P) ∩ ct(Q)) ∩∆)† ∪ ((ct(P) ∪ ct(Q))−∆)†

ct(P |Q) = {γ | ∃α ∈ ct(P), β ∈ ct(Q). (α, β, γ) ∈ fairmerge}
ct(local a = ρ in P) = {γ | ∃α ∈ ct(P). γ ∈ α/a &

α int-free for a from ρ}
ct(rec p.P) = (νt.ct(P)[p 7→ t])†

Figure 4: Denotational description of trace semantics

Definition 7 The asynchronous failures af (P) of a process P are given by:

af (P) = {(α, X) | P
α

==⇒ P ′ & P ′ ref X},

where
P ref X iff P stable & ∀a ∈ X.¬(P

a?−−→)

and P is stable if for all output actions λ, ¬(P λ−→).

A process attempting input on one or more channels is stable, according
to this definition, and its refusals provide information about its deadlock
potential. Note also that a process capable of performing an infinite sequence
of “hidden” actions may have an empty failure set. It is also possible to define
a modified notion of failure that treats the potential for such divergence as
catastrophic, along the lines of the failures-divergences model of CSP.

As an example, note that

af (a?v.P 2 b?v.Q) = {(ε, X) | a ∈ X & b ∈ X}
∪ {(a?v α, X) | (α, X) ∈ af (P)}
∪ {(b?v β, X) | (β, X) ∈ af (Q)}

af (a?v.P u b?v.Q) = {(ε, X) | a ∈ X ∨ b ∈ X}
∪ {(a?v α, X) | (α, X) ∈ af (P)}
∪ {(b?v β, X) | (β, X) ∈ af (Q)}

Trace semantics is sufficient to determine the failures of a process, as
shown by the following elementary result:

20

Theorem 6 The asynchronous failures of a process can be recovered from
its communication traces:

af (P) = {(α, X) | αδω
X ∈ ct(P)}.

Hence, trace equivalence implies failure equivalence. The converse obviously
fails, since failures take no account of infinite non-deadlocking behaviors. In
fact we regard traces as the natural generalization of asynchronous failures to
incorporate fair infinite behaviors. Looking back over the history of the devel-
opment of CSP semantic models this might seem perverse, since the original
failures model arose as an attempt to generalize Hoare’s finite (communica-
tion) trace model of CSP, and it is well known that Hoare-style traces are
insufficient to distinguish between processes with different deadlocking po-
tential. However, once we assume asynchronous communication and choose
to interpret deadlock as infinite idling it becomes possible to use (finite and
infinite) traces in a deadlock-sensitive manner, and to build fairness directly
in.

5.4 Full abstraction

Trace semantics is at exactly the right level of abstraction to support rea-
soning about the deadlock, safety and liveness properties of processes. In
fact, trace semantics is fully abstract with respect to two equivalent notions
of observable behavior, as we will now demonstrate.

We assume that a program is a network of processes, possibly with free
channel names, and we assume that we can observe the actions performed by
the system. Initially all channels are empty, and the system evolves without
interference from outside, the process in the network communicating with
each other via the channels. There are two obvious choices of observable.

Definition 8 (Observing communication labels)
For a process P we define c(P) to be the set of label sequences observable
along fair, interference-free computations of P :

c(P) = {α ∈ Λω | P α
==⇒ fair , int-free}.

Definition 9 (Observing state change)
For a process P we define t(P) to be the set of state sequences observable
along fair, interference-free computations of P :

t(P) = {β ∈ (S × S)ω | P β
==⇒ fair , int-free}.

21

Just as we have already seen that the two forms of trace semantics are
equivalent, observers watching state can make exactly the same distinctions
between processes as can observers watching labels: in this sense c and t are
equivalent as notions of observable. This is shown formally by (either of) the
following full abstraction results.

Theorem 7

• ct is fully abstract for c

ct(P) ⊆ ct(Q) iff ∀C. c(C[P]) ⊆ c(C[Q])

• tt is fully abstract for t

tt(P) ⊆ tt(Q) iff ∀C. t(C[P]) ⊆ t(C[Q])

Proof
We focus on communication traces, noting that the result for transition traces
will then follow automatically.

The forward implication is obvious, by compositionality and monotonicity
of trace semantics.

For the reverse direction, suppose ct(P) 6⊆ ct(Q). Let A be a finite set of
channels containing all of the channels used by P and Q. Choose a “fresh”
channel z 6∈ A. Define a testing process:

RUNA = 2a∈A,v∈V (a?v.z!0.RUNA) u
2a∈A,v∈V (a!v.z!1.RUNA) u
2X⊆AfillXemptyXRUNA

where for each subset X = {a1, . . . , ak} we write

fillX = a1!0. . . . ak!0.z!1, emptyX = a1?0. . . . ak?0.z!0

Let
â!v = a!v a?v z!0

â?v = a!v a?v z!1

δ̂X = fillA−XδXemptyA−X

For each action λ, λ̂ is a finite interference-free trace. Extend this operator
to traces in the obvious way, so that when α = λ0λ1 . . ., we obtain another
trace α̂ = λ̂0 λ̂1 Note that α̂ is always an interference-free trace.

22

We then show that a process P has trace α if and only if P |RUNA has
the interference-free trace α̂. Thus we can use the context [−] |RUNA to
distinguish between P and Q, since by assumption there exists a trace α of
P that does not belong to the trace set of Q. •

In view of the equivalence of the two forms of trace semantics we may
paraphrase these results by saying that {ct , tt} is fully abstract for {c, t}.
These results justify our claim that trace equivalence is the coarsest reason-
able congruence for fair asynchronous CSP.

It is perhaps worth examining an example at this point, to help con-
firm that this full abstraction result is valid. The processes a?v|b?v and
(a?v.b?v)2(b?v.a?v) have almost exactly the same trace sets: the only dif-
ference (modulo the closure conditions) is that a?v|b?v has the trace (δaδb)

ω,
which is not possible for the other process. Intuitively this corresponds to
the fact that we can find a parallel context in which channels a and b are
alternately filled and emptied (by the context), so that if a?v|b?v is placed
into this context there will be a fair execution in which every time the left-
hand process is running only channel b is non-empty, and every time the
right-hand process is running only channel a is non-empty. Thus there will
be a fair execution in which a?v|b?v idles forever. If instead we were to place
(a?v.b?v)2(b?v.a?v) into this context we would find that this process only
idles when both channels a and b are empty, so that no such execution will
exist.

5.5 Fair bisimilarity

The above full abstraction result, based as it is on observing the sequence of
actions that occur during program execution, shows that trace semantics is
well suited to reasoning about linear-time temporal properties of programs.
If we want to reason about branching-time properties, which require analysis
of the alternative behaviors that might have been possible during execution,
we would need a finer notion of semantic equivalence that takes account of
branching. For example, nil u (a?x.P2b?x.Q) and nil u a?x.P u b?x.Q have
identical trace sets and satisfy the same sets of linear-time formulas. But
only the second of these processes satisfies a (branching-time) formula to the
effect that “there is a computation in which it is possible to do a?x and not
do b?x”. If we wish to make distinctions based on branching-time properties
we would need a more refined notion of semantic equivalence. To this end,
we now introduce a notion of fair (weak) bisimilarity.

23

Definition 10 P ≈fair Q if and only if

• ct(P) = ct(Q)

• ∀λ, P ′. P
λ

==⇒ P ′ implies

∃Q′. Q
λ

==⇒ Q′ & P ′ ≈fair Q′

• ∀λ, Q′. Q
λ

==⇒ Q′ implies

∃P ′. P
λ

==⇒ P ′ & P ′ ≈fair Q′

This definition is reminiscent of Parrow’s notion of weak ω-bisimulation[36],
which can be obtained from ours by replacing ct(P), ct(Q) by the correspond-
ing sets of infinite (not necessarily fair) traces. (To be more rigorous here
we should really regard the above “definition” of ≈fair as a greatest fixed-
point property characterizing the relation: we define ≈fair to be the greatest
relation on processes satisfying this property.)

It is easy to see that

P ≈fair Q ⇒ P ≈ Q ⇒ ct(P) = ct(Q) ⇒ P ≈1 Q

and each implication is proper. Moreover, ≈fair is a congruence for asyn-
chronous CSP, just as ≈ was a congruence for the synchronous language.
Although we have not made this notion precise and the very interpretation
of this property depends on how we characterize “reasonableness”, we believe
that fair bisimilarity is the finest reasonable congruence for fair asynchronous
CSP. Indeed we conjecture that P ≈fair Q if and only if P and Q induce the
same branching-time properties in all fair asynchronous contexts, so that fair
bisimilarity gives rise to a semantics that is fully abstract for branching-time
properties.

Again, given the isomorphism between communication traces and tran-
sition traces, we can equally well characterize fair bisimilarity in terms of
transition traces:

Theorem 8 P ≈fair Q if and only if

• tt(P) = tt(Q)

• ∀s, s′, P ′. P
(s,s′)

=====⇒ P ′ implies

∃Q′. Q
(s,s′)

=====⇒ Q′ & P ′ ≈fair Q′

24

• ∀s, s′, Q′. Q
(s,s′)

=====⇒ Q′ implies

∃P ′. P
(s,s′)

=====⇒ P ′ & P ′ ≈fair Q′

Note that fair bisimilarity does distinguish between the example processes
mentioned above:

nil u (a?x.P 2 b?x.Q) 6≈fair nil u a?x.P u b?x.Q

6 Calculus for Asynchronous Communication

Returning again to trace semantics, with trace equivalence as the relevant
notion of “equality”, we obtain a calculus for reasoning about processes.
Trace semantics validates a number of useful laws of process equivalence,
including:

• static laws, such as
P |Q = Q|P
P |(Q|R) = (P |Q)|R
P uQ ⊇ P2Q

• dynamic laws, such as:

(a?x.P 2 a?x.Q) = a?x.(P uQ)
nil u (a?x.P 2 b?x.Q) = nil u a?x.P u b?x.Q

• expansion laws, such as:

(a?x.P)|(b?y.Q) ⊇ a?x.(P |(b?y.Q)) 2 b?y.((a?x.P)|Q)

• recursion
rec p.P = P [rec p.P/p]

Note in particular that the expansion law given here is an inequation; we
have already seen the reason for this. The left-hand process has trace (δaδb)

ω,
whereas the right-hand process does not.

In marked contrast to CCS and the failures semantics of CSP, a guarded
recursion may have more than one fixed point. This is a consequence of our
incorporation of fairness. For example, let p and q be defined recursively by:

p = a!0.p q = b!1.q

25

Then p|q is guaranteed, because of fair execution, to perform infinitely many
a!0 actions and infinitely many b!1 actions. The process r defined recursively
by

r = a!0.r 2 b!1.r

also performs an infinite sequence of outputs, but is capable of forever out-
putting on a and avoiding b (or vice versa). Nevertheless p|q satisfies the
defining equation for r:

p|q = a!0.(p|q) 2 b!1.(p|q)

Since ct(p|q) 6= ct(r) this shows that more than one solution exists for this
recursion equation.

The uniqueness property for guarded recursion plays a fundamental and
prominent role in Milner’s book on CCS and in Hoare’s book on CSP. By
embracing fairness we are forced to abandon this technique and look instead
for laws that reflect fair parallel composition. For example, much as in our
earlier work on shared-variable programs and on Idealized CSP, trace se-
mantics validates a number of “expansion laws” which fail to hold in unfair
models. Of particular importance is a family of fairness laws, such as:

local a=ε in (a?x.P)|(Q1; Q2)
= Q1; local a=ε in (a?x.P)|Q2

if a 6∈ ch(Q1).
It is also possible to perform algebraic reasoning about processes by ma-

nipulating a generalized form of expansion [7]. If Ai (for i = 1, . . . , n) are
expressions denoting sets of (non-empty) finite traces we say that a formula
of form

P =
n∑

i=1

Ai.Pi

is valid if ct(P) =
⋃n

i=1{αβ | α ∈ Ai & β ∈ ct(Pi)}†. This notation recalls Mil-
ner’s use of what we will call “atomic” expansions, of form P =

∑n
i=1 λi.Pi,

but is markedly different from Milner-style expansion in that the terms de-
scribe finite prefixes of process behaviors rather than just the initial atomic
steps.

We say that such an expansion is fair if, for every trace γ ∈ ct(P), and
every finite prefix α of γ, there exists a trace β and index i such that γ =
αβ and α ∈ Ai and β ∈ ct(Pi). Intuitively this means that the Ai are

26

“deep” enough to describe the sequences of actions possible when P is run
for an arbitrary finite amount of time. Every finite-state process has such
an expansion, and each of the Ai may be represented as a regular expression
over an alphabet of atomic actions.

We can then show soundness of the following fair parallel expansion law:
if P =

∑
i Ai.Pi and Q =

∑
j Bj.Qj are fair expansions, then

P |Q =
∑
i,j

(Ai‖Bj).(Pi|Qj)

is a valid expansion. Here A‖B denotes the shuffle of the (languages denoted
by) A and B.

Further details on the interactions between fair parallelism, local channel
declarations, and recursion, are provided in [7].

7 What about +?

Our asynchronous language did not include a CCS-style sum. It is worth ex-
amining what goes wrong if we attempt to work with the CCS sum operator.
Recall the operational rules for CCS sum, adapted (trivially) to the state-ful
setting:

〈P, s〉 λ−→ 〈P ′, s′〉

〈P + Q, s〉 λ−→ 〈P, s′〉

〈Q, s〉 λ−→ 〈Q′, s′〉

〈P + Q, s〉 λ−→ 〈Q′, s′〉
It follows immediately from the operational characterization of ct that

ct(P + Q) = ct(P) ∪ ct(Q),

so that, despite the difference in transition rules for + and u, if we only care
about traces these differences are masked. If this were the whole story one
might be tempted to argue that there is no need to introduce +, since P+Q =
P u Q, and it would seem that u usurps the role intended for +. Yet this
analysis fails to take into account the combinational role of the summation
operator. Clearly a?x.P + b?x.Q should (according to the transition rules
and the operational characterization of ct) behave like a?x.P 2 b?x.Q and
not like a?x.P u b?x.Q. Thus it can be argued that the CCS operational rule
for + ceases to reflect the intended behavior of a choice operator once we
move to the asynchronous setting; instead, the CSP-style choice operators
seem more natural in this setting and the “external choice” operator 2 plays
the combinational role intended for Milner-style summation.

27

8 Related work

Much of the foundational research on the semantics of process algebras has as-
sumed handshake communication. Milner [31] explored both “synchronous”
and “asynchronous” versions of CCS, differing primarily in the nature of the
parallel composition operator but still based on handshake communication.
Milner’s dichotomy between synchrony and asynchrony refers to the nature
of parallel composition, not to the mechanism behind input and output. The
asynchronous form of CCS is essentially as described above, with a paral-
lel composition operator that permits steps by each component process and
also allows synchronized input and output, which becomes a τ -step. The
synchronous form of CCS (known as SCCS) uses a form of parallel compo-
sition in which every step is taken by all component processes together, and
labels are combined by a form of “multiplication” with the property that
λ× λ̄ = τ .

As already mentioned, none of the early models of CCS or CSP included a
fair parallel composition operator. It is by no means straightforward to gen-
eralize these models to incorporate fairness. Milner[30] explored the semantic
consequences of adding a finite delay operator to synchronous CCS, but con-
tinued to employ the standard parallel operator. Since this synchronous
parallel operator executes processes in lock-step it enforces a rather strong
kind of fair execution. Costa and Stirling[13, 14] proposed an alternative
semantics for a fair version of CCS.

Parrow[36] augmented CCS with infinitary restriction operators of form
P 〈〈φ〉〉, where φ is a temporal logic formula expressing constraints on the
set of “allowed” infinite executions of P . Again this was done on top of a
language based on unfair parallel composition. Parrow’s semantics involves
infinitary charts and an (unfair) notion of weak ω-bisimulation which our
notion of fair bisimilarity resembles modulo our explicit inclusion of fairness.

Hennessy[19] described a CCS-like process calculus in which divergence
is regarded as catastrophic and a rather strong form of fairness is assumed
(much stronger than the weak process fairness built into our model). Hen-
nessy’s semantics involves acceptance trees augmented by a set of fair paths.
This model fails to validate certain natural laws of process equivalence, since
(for example)

λω|nil 6= λω.

Considerable work has also been done on the foundations of process al-

28

gebras based on asynchronous communication, beginning with Kahn’s early
model of deterministic dataflow networks, continuing with asynchronous vari-
ants of CSP[25] and ACP[1], and culminating more recently with concurrent
logic programming languages and concurrent constraint programming. How-
ever, apart from the implict role played by fairness in Kahn’s model, these
investigations have typically ignored fairness. For example, de Boer, Klop,
Palamidessi, and Rutten [16] introduced a model for concurrent constraint
programs, using (finite) transition traces – subsets of P((S×S)∗) – and sim-
ilar closure properties to our notions of stuttering and muttering this model
does not deal with infinite behaviors or fair parallel composition. Later de
Boer, Klop, and Palamidessi [15] described an asynchronous process calculus
and a semantics that distinguishes between intended and complete actions,
with a model based on “queue failure sets”. Fairness was not addressed in
this work, and infinite behaviors were ignored.

The most prominent early foundational work on the semantics of fair
parallelism was performed by David Park [34]. He showed how to model
shared-variable parallel programs running under a weakly fair scheduling as-
sumption, with a semantics based on transition traces. Park’s model did not
include any closure conditions on trace sets, and each step in a Park-style
trace represents the occurrence of exactly one atomic action; consequently
Park’s semantics made too many distinctions between programs, distinguish-
ing for example between skip; P and P ; skip. Park formulated the fairmerge
relation on traces using a nested combination of greatest- and least fixed point
operators.

Building on Park’s foundations, we later showed how to achieve full ab-
straction for shared-variable programs, by imposing closure conditions known
as stuttering and mumbling [3]. We generalized this approach still further
to obtain transition trace models for a language (Parallel Algol) combin-
ing procedures with shared-variable parallelism [4], and for Idealized CSP,
a language combining procedures with asynchronous CSP [5]. We also ap-
plied these ideas to derive a trace-theoretic model of non-deterministic Kahn
networks [6].

9 Conclusions

We have gone back to the origins of the process calculi CCS and CSP and
re-examined the rationale behind their design, summarizing the main ideas

29

involved in setting up their semantic foundations. Both Milner and Hoare
were aware of the dichotomy between handshake communication and asyn-
chronous communication, and both chose to assume handshake communi-
cation as primitive. Indeed, Hoare explicitly argued that each assumption
would be equally tenable as the basis for the development of a theory and
calculus of parallel processes, but felt that the handshake assumption would
lead to a simpler theory.

We have examined the semantic consequences of assuming asynchronous
communication and (weakly) fair parallel composition as primitive. In con-
trast to the handshake case, we no longer need to deal with (more or less
complicated variants of) synchronization trees or failure sets, and fairness
is easy to incorporate: traces suffice. We show that a very simple trace-
theoretic semantics is fully abstract with respect to a notion of behavior
that subsumes safety and liveness properties. We present two equivalent
but ostensibly different forms of trace semantics: communication traces and
transition traces. The equivalence of these two forms of trace models enables
us to bring out the essential underlying similarities between two paradigms
of concurrency which traditionally have been provided with mathematically
incompatible semantic models: shared variable programs, and asynchronous
communicating processes, including non-deterministic Kahn-style networks.
The advantages of our approach are explored in [3, 4, 5, 6, 7, 8]. Both
paradigms can be interpreted in the same semantic framework – transition
traces – and this unification of paradigms makes it easier to show how to
augment parallel programming with features such as a procedure mechanism
or an object-oriented style.

References

[1] J. A. Bergstra, J.W. Klop, and J. V. Tucker, Process algebra with
asynchronous communication, Proc. Seminar on Concurrency, Springer
LNCS 197, pp. 76-95 (1985).

[2] S. Brookes, A model for communicating sequential processes, D. Phil.
thesis, Oxford University (1983).

[3] S. Brookes, Full abstraction for a shared-variable parallel language, Infor-
mation and Computation, vol 127, No. 2, Academic Press (June 1996).

30

[4] S. Brookes, The essence of Parallel Algol, Proc. 11th IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press (1996)
164–173. To appear in Information and Computation.

[5] S. Brookes, Idealized CSP: Combining Procedures with Communicat-
ing Processes, 13th Conference on Mathematical Foundations of Pro-
gramming Semantics (MFPS’97), Pittsburgh, March 1997. Electronic
Notes in Theoretical Computer Science 6, Elsevier Science (1997). URL:
http://www.elsevier.nl/locate/entcs/volume6.html.

[6] S. Brookes, On the Kahn Principle and Fair Networks, 14th Conference
on Mathematical Foundations of Programming Semantics, Queen Mary
Westfield College, University of London, May 1998.

[7] S. Brookes, Reasoning about Recursive Processes: Expansion is not al-
ways fair, Proc. 15th Conference on Mathematical Foundations of Pro-
gramming Semantics, Tulane University, New Orleans, April 1999, Elec-
tronic Notes in Theoretical Computer Science 20, Elsevier (1999),
URL: http://www.elsevier.nl/locate/entcs/volume20.html.

[8] S. Brookes, Communicating Parallel Processes, Symposium in Celebra-
tion of the work of C.A.R.Hoare, Oxford University, September 1999.
To appear, MacMillan Publishers (2000).

[9] S. Brookes and S. Older, Full abstraction for strongly fair com-
municating processes, 11th Conference on Mathematical Foundations
of Programming Semantics, New Orleans, March 1995. Electronic
Notes in Theoretical Computer Science 1, Elsevier Science. URL:
http://www.elsevier.nl/locate/entcs/volume1.html

[10] S. Brookes, C. A. R. Hoare, and A. W. Roscoe, A Theory of Communi-
cating Sequential Processes, JACM (July 1984).

[11] S. Brookes, and A. W. Roscoe, An improved failures model for CSP,
Seminar on concurrency, Springer-Verlag, LNCS 197, 1984.

[12] R. Cleaveland, J. Parrow, and B. Steffen, The Concurrency Workbench:
A Semantics-based tool for the Verification of Concurrent Systems, ACM
TOPLAS, vol. 15, no. 1, pp. 36-72 (1993).

31

[13] G. Costa and C. Stirling, A fair calculus of communicating systems,
ACTA Informatica 21:417-441 (1984).

[14] G. Costa and C. Stirling, Weak and strong fairness in CCS, Technical
Report CSR-16-85, University of Edinburgh, January 1985.

[15] F. de Boer, J.W. Klop, and C. Palamidessi, Asynchronous Communica-
tion in Process Algebra, Proc. LICS’92, IEEE Computer Society Press
(1992).

[16] F. de Boer, J.W. Klop, C. Palamidessi, and J. Rutten, The failure of
failures: Towards a paradigm for asynchronous communication, Proc.
CONCUR’91, Springer LNCS 527, pp. 111-126 (1991).

[17] Formal Systems (Europe), Ltd., Failures-Divergence Refinement: FDR2
Manual, 1997.

[18] N. Francez, Fairness, Springer-Verlag (1986).

[19] M. Hennessy, An algebraic theory of fair asynchronous communicating
processes, Theoretical Computer Science, 49:121-143 (1987).

[20] M. Hennessy and G. Plotkin, Full Abstraction for a Simple Parallel Lan-
guage, Proceedings of Mathematical Foundations of Computer Science,
Springer-Verlag, LNCS vol. 74, 1979.

[21] M. Hennessy and G. Plotkin, A term model for CCS, Springer LNCS
vol. 88 (1980).

[22] C. A. R. Hoare, Communicating Sequential Processes, Comm. ACM,
21(8):666–677 (1978).

[23] C. A. R. Hoare, Communicating Sequential Processes, Prentice-
Hall International (1985).

[24] M. Josephs, C. A. R. Hoare, and He Jifeng, A theory of asynchronous
processes, Technical Report, Oxford University Computaing Laboratory
(1990).

[25] M. Josephs, Receptive Process Theory, Acta Informatica, vol. 29, no. 1,
pp. 17-31, Springer-Verlag (1992).

32

[26] G. Kahn and D. MacQueen, Coroutines and Networks of Parallel Pro-
cesses, Information Processing ’77, North Holland, 1977.

[27] R. Milner, Fully abstract models of typed λ-calculi, Theoretical Computer
Science, vol. 4, pp 1–22 (1977).

[28] R. Milner, A Calculus of Communicating Systems, Springer LNCS
vol. 92 (1980).

[29] R. Milner, Communication and Concurrency, Springer-Verlag
(1989).

[30] R. Milner, A finite delay operator in CCS, Technical Report CSR-116-
82, University of Edinburgh (1982).

[31] R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Com-
puter Science, vol. 25, pp. 267-310 (1983).

[32] S. Older, A Denotational Framework for Fair Communicating Processes,
Ph.D. thesis, Carnegie Mellon University (December 1996). Technical
report CMU-CS-96-204.

[33] S. Older, A Framework for Fair Communicating Processes, Proc. 13th
Conference on Mathematical Foundations of Programming Semantics,
Electronic Notes in Computer Science 6, Elsevier Science (1997). URL:
http://www.elsevier.nl/locate/entcs/volume6.html

[34] D. Park, On the semantics of fair parallelism. In D. Bjørner, editor, Ab-
stract Software Specifications, Springer-Verlag LNCS vol. 86 (1979),
504–526.

[35] D. Park, Concurrency and automata on infinite sequences, Springer
LNCS vol.l 104 (1981).

[36] J. Parrow, Fairness Properties in Process Algebras, Ph. D. thesis, Uni-
versity of Uppsala (1985).

[37] A. W. Roscoe, A mathematical theory of communicating processes, D.
Phil. thesis, Oxford University (1982).

[38] A. W. Roscoe, The Theory and Practice of Concurrency, Prentice-
Hall, 1998.

33

[39] A. Stoughton, Fully Abstract Models of Programming Languages, Re-
search Notes in Theoretical Computer Science, Pitman (1988).

[40] A. Valmari and A. Tienari, Compositional Failure-Based Semantics for
Basic LOTOS, Formal Aspects of Computing, 7:440-468 (1995).

[41] D. Walker, Bisimulations and divergence, Proc. LICS’88, IEEE Com-
puter Society Press, pp. 186-192 (1988).

34

