The essence of Parallel Algol

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

LICS '96

ESSENTIALS

- Parallel Algol = shared-variable parallel programs + call-by-name λ-calculus
- simply typed

$$
\begin{array}{lll}
\theta::=\exp [\tau]|\operatorname{var}[\tau]| \mathbf{c o m m} & \\
& \left|\left(\theta \rightarrow \theta^{\prime}\right)\right| \theta \times \theta^{\prime} & \text { phrase types } \\
\tau::=\mathbf{i n t} \mid \text { bool } & \text { data types }
\end{array}
$$

- recursion and conditional at each type
cf. Reynolds: The essence of ALGOL

RATIONALE

- Can write parallel programs that cooperate by reading and writing shared memory
- Procedures can encapsulate parallel idioms (e.g. mutual exclusion, readers-writers)
- Local variable declarations can be used to limit the scope of interference

INTUITION

Procedures and parallelism are orthogonal:

- should combine smoothly
- semantics should be "modular"
- should obtain a conservative extension

MUTUAL EXCLUSION

procedure mutex $\left(n_{1}, c_{1}, n_{2}, c_{2}\right)$;
boolean s;
begin
$s:=$ true;
while true do
$\left(n_{1}\right.$; await s then $s:=$ false; $c_{1} ; s:=$ true)
while true do
$\left(n_{2} ;\right.$ await s then $s:=$ false;
$c_{2} ; s:=$ true)
end

- Encapsulates common use of a semaphore
- Correctness relies on locality of s
- Independent of n_{i} and c_{i}

OUTLINE of SEMANTICS

- Traditional "global state" models fail to validate natural equivalences, e.g.

$$
\operatorname{new}[\tau] \iota \text { in } P=P
$$

when ι does not occur free in P.

- We adapt "possible worlds" model of sequential Algol to the parallel setting...
- . . . and simultaneously extend our "transition trace" semantics (LICS'93) to include procedures and recursion.
- We adapt a "relationally parametric" model of sequential Algol to the parallel setting...
- ... and introduce a form of parametric reasoning for shared-variable programs.

cf. Reynolds, Oles
cf. O'Hearn, Tennent

CATEGORY of WORLDS

- Objects are countable sets (of "allowed states")
- Morphisms are "expansions":

$$
h=(f, Q): W \rightarrow X
$$

where

- f is a function from X to W
$-Q$ is an equivalence relation on X
- f puts each Q-class in bijection with W

INTUITION

- X is a set of "large" states extending the "small" states of W
- f extracts the "small" part of a state
- Q identifies states with the same extra parts
cf. Frank Oles' Ph.D. thesis

EXPANSIONS

- For each pair of objects W and V there is a canonical expansion morphism

$$
-\times V: W \rightarrow W \times V
$$

given by

$$
-\times V=(\mathrm{fst}: W \times V \rightarrow W, Q)
$$

where

$$
\left(\left(w_{0}, v_{0}\right),\left(w_{1}, v_{1}\right)\right) \in Q \Longleftrightarrow v_{0}=v_{1}
$$

- Every morphism is such an expansion composed with an isomorphism.

INTUITION

An expansion $-\times V_{\tau}$ models the introduction of a local variable of datatype τ.

SEMANTICS

- Types denote functors from worlds to domains:

$$
\llbracket \theta \rrbracket: \mathbf{W} \rightarrow \mathbf{D}
$$

- Phrases denote natural transformations:

$$
\llbracket P \rrbracket: \llbracket \pi \rrbracket \dot{\rightarrow} \llbracket \theta \rrbracket
$$

i.e. when $h: W \rightarrow X$,

commutes.

When h is an expansion naturality enforces locality.

CARTESIAN CLOSURE

- The functor category $\mathbf{D} \mathbf{W}$ is cartesian closed.
- Can use ccc structure to interpret arrow types.

Procedures of type $\theta \rightarrow \theta^{\prime}$ denote, at world W, natural families of functions $p(-)$:

- When $h: W \rightarrow X$ and $h^{\prime}: X \rightarrow Y$,

$$
\begin{array}{cc}
\llbracket \theta \rrbracket X \xrightarrow{p(h)} \\
\llbracket \theta \rrbracket h^{\prime} \mid \\
\llbracket \theta \rrbracket Y \xrightarrow{p\left(h ; h^{\prime}\right)} \cdot \llbracket \theta^{\prime} \rrbracket Y
\end{array}
$$

commutes.

INTUITION

Procedures can be called at expanded worlds, but naturality enforces locality constraints.

COMMANDS

- Commands denote sets of traces:

$$
\llbracket \mathbf{c o m m} \rrbracket W=\wp^{\dagger}\left((W \times W)^{\infty}\right)
$$

- Trace sets are closed, e.g.
$-\alpha \beta \in c \& w \in W \Rightarrow \alpha(w, w) \beta \in c$
$-\alpha\left(w, w^{\prime}\right)\left(w^{\prime}, w^{\prime \prime}\right) \beta \in c \Rightarrow \alpha\left(w, w^{\prime \prime}\right) \beta \in c$
- When $h: W \rightarrow X, \llbracket$ comm $\rrbracket h$ converts a trace set over W to a trace set over X :
$\llbracket \mathbf{c o m m} \rrbracket(f, Q) c=$
$\{\beta \mid \operatorname{map}(f \times f) \beta \in c \& \operatorname{map}(Q) \beta\}$

INTUITION

- A trace $\left(w_{0}, w_{0}^{\prime}\right)\left(w_{1}, w_{1}^{\prime}\right) \ldots\left(w_{n}, w_{n}^{\prime}\right)$ represents a fair interactive computation.
- Each step $\left(w_{i}, w_{i}^{\prime}\right)$ represents a finite sequence of atomic actions.
- $\llbracket \mathbf{c o m m} \rrbracket h c$ behaves like c on the W-component of state and has no effect elsewhere.

EXPRESSIONS

Expressions denote trace sets:

$$
\begin{aligned}
& \llbracket \exp [\tau] \rrbracket W=\wp^{\dagger}\left(W^{+} \times V_{\tau} \cup W^{\omega}\right) \\
& \llbracket \exp [\tau] \rrbracket(f, Q) e=\left\{\left(\rho^{\prime}, v\right) \mid\left(\operatorname{map} f \rho^{\prime}, v\right) \in e\right\} \\
& \\
& \cup\left\{\rho^{\prime} \mid \operatorname{map} f \rho^{\prime} \in e \cap W^{\omega}\right\}
\end{aligned}
$$

VARIABLES

"Object-oriented" interpretation à la Reynolds: variable $=$ acceptor + expression

$$
\llbracket \operatorname{var}[\tau] \rrbracket W=\left(V_{\tau} \rightarrow \llbracket \mathbf{c o m m} \rrbracket W\right) \times \llbracket \exp [\tau] \rrbracket W
$$

RECURSION

Requires a careful use of greatest fixed points:

- Embed $\llbracket \theta \rrbracket W$ in a complete lattice $[\theta] W$ (like $\llbracket \theta \rrbracket W$ but without closure and naturality)
- Generalize semantic definitions to $[P] W$.
- Introduce natural transformations

$$
\operatorname{stut}_{\theta}:[\theta] \dot{\rightarrow}[\theta] \quad \operatorname{clos}_{\theta}:[\theta] \dot{\rightarrow} \llbracket \theta \rrbracket
$$

- Can then define \llbracket rec $\iota . P \rrbracket W u$ to be

$$
\operatorname{clos}_{\theta} W\left(\nu x \cdot \operatorname{stut}_{\theta} W([P] W(u \mid \iota: x))\right)
$$

EXAMPLE

- Divergence $=$ infinite stuttering:

$$
\begin{aligned}
\llbracket \mathbf{r e c} \iota . \iota \rrbracket W u & =(\nu c .\{(w, w) \alpha \mid \alpha \in c\})^{\dagger} \\
& =\{(w, w) \mid w \in W\}^{\omega}
\end{aligned}
$$

LAWS

- This semantics validates:

$$
\begin{aligned}
& \text { new }[\tau] \iota \text { in } P^{\prime}=P^{\prime} \\
& \text { new }[\tau] \iota \text { in }\left(P \| P^{\prime}\right)=(\text { new }[\tau] \iota \text { in } P) \| P^{\prime} \\
& \text { new }[\tau] \iota \text { in }\left(P ; P^{\prime}\right)=(\text { new }[\tau] \iota \text { in } P) ; P^{\prime}
\end{aligned}
$$ when ι does not occur free in P^{\prime}.

- Also (still) validates:

$$
\begin{aligned}
& (\lambda \iota: \theta . P)(Q)=P[Q / \iota] \\
& \text { rec } \iota . P=P[\text { rec } \iota . P / \iota]
\end{aligned}
$$

- Orthogonal combination of laws of shared-variable programming with laws of λ-calculus.

PROBLEM

Semantics fails to validate

$$
\text { new }[\text { int }] \iota \text { in }(\iota:=0 ; P(\iota:=\iota+1))=P(\text { skip }),
$$

where P is a free identifier of type comm \rightarrow comm.

REASON

- Equivalence proof relies on relational reasoning.
- Naturality does not enforce enough constraints on procedure meanings.

SOLUTION

- Same problem arose in sequential setting.
- Develop a relationally parametric semantics...
cf. O'Hearn and Tennent

PARAMETRIC MODEL

- Category of relations $R: W_{0} \leftrightarrow W_{1}$
- A morphism from R to S is a pair $\left(h_{0}, h_{1}\right)$ of morphisms in \mathbf{W} such that

$$
\begin{aligned}
& W_{0} \xrightarrow{h_{0}} X_{0} \\
& R \left\lvert\, \begin{array}{l}
\dot{h_{1}} \\
\dot{W}_{1}
\end{array} \dot{X}_{1}\right.
\end{aligned}
$$

- Types denote parametric functors, e.g.
- if $R: W_{0} \leftrightarrow W_{1}, \llbracket \theta \rrbracket R: \llbracket \theta \rrbracket W_{0} \leftrightarrow \llbracket \theta \rrbracket W_{1}$
$-\left(d_{0}, d_{1}\right) \in \llbracket \theta \rrbracket R \Rightarrow\left(\llbracket \theta \rrbracket h_{0} d_{0}, \llbracket \theta \rrbracket h_{1} d_{1}\right) \in \llbracket \theta \rrbracket S$
- Phrases denote parametric natural transformations:

$$
\left(u_{0}, u_{1}\right) \in \llbracket \pi \rrbracket R \Rightarrow\left(\llbracket P \rrbracket W_{0} u_{0}, \llbracket P \rrbracket W_{1} u_{1}\right) \in \llbracket \theta \rrbracket R
$$

- The parametric functor category is cartesian closed.

COMMANDS

When $R: W_{0} \leftrightarrow W_{1}$ define:

$$
\begin{aligned}
& \left(c_{0}, c_{1}\right) \in \llbracket \operatorname{comm} \rrbracket R \Longleftrightarrow \\
& \forall\left(\rho_{0}, \rho_{1}\right) \in \operatorname{map}(R) . \\
& \quad\left[\forall \alpha_{0} \in c_{0} . \text { map fit } \alpha_{0}=\rho_{0} \Rightarrow\right. \\
& \quad \exists \alpha_{1} \in c_{1} . \text { map fit } \alpha_{1}=\rho_{1} \& \\
& \left.\quad\left(\text { map sud } \alpha_{0}, \text { map sid } \alpha_{1}\right) \in \operatorname{map}(R)\right]
\end{aligned}
$$

$$
\&
$$

$$
\begin{aligned}
& {\left[\forall \alpha_{1} \in c_{1} \text {. map fit } \alpha_{1}=\rho_{1} \Rightarrow\right.} \\
& \exists \alpha_{0} \in c_{0} . \text { map fst } \alpha_{0}=\rho_{0} \& \\
& \left.\quad\left(\text { map nd } \alpha_{0}, \text { map sid } \alpha_{1}\right) \in \operatorname{map}(R)\right] .
\end{aligned}
$$

This is parametric!

INTUITION

When related commands are started and interrupted in related states their responses are related.

LAWS

- As before,

$$
\begin{aligned}
& \text { new }[\tau] \iota \text { in } P^{\prime}=P^{\prime} \\
& \text { new }[\tau] \iota \text { in }\left(P \| P^{\prime}\right)=(\text { new }[\tau] \iota \text { in } P) \| P^{\prime} \\
& \text { new }[\tau] \iota \text { in }\left(P ; P^{\prime}\right)=(\operatorname{new}[\tau] \iota \text { in } P) ; P^{\prime}
\end{aligned}
$$

when ι does not occur free in P^{\prime}.

- As before,

$$
\begin{aligned}
& (\lambda \iota: \theta . P) Q=[Q / \iota] P \\
& \text { rec } \iota . P=[\operatorname{rec} \iota . P / \iota] P
\end{aligned}
$$

- In addition,

$$
\left.\begin{array}{l}
\text { new }[\text { int }] ~ \iota \text { in }(\iota:=1 ; P(\iota))=P(1) \\
\text { new }[\text { int }] ~ \\
\text { in }(~ \\
\text { l }
\end{array}=0 ; P(\iota:=\iota+1)\right)=P(\text { skip }), ~ l
$$

relying crucially on parametricity.

EXAMPLE

new [int] x in

$$
(x:=0 ; P(x:=x+1 ; x:=x+1) ;
$$

if $\operatorname{even}(x)$ then diverge else skip)
and
new $[$ int $] x$ in

$$
(x:=0 ; P(x:=x+2) ;
$$

if $\operatorname{even}(x)$ then diverge else skip)
are equivalent in sequential Algol
but not equivalent in Parallel Algol.

The relation

$$
\left(w,\left(w^{\prime}, z\right)\right) \in R \Longleftrightarrow w=w^{\prime} \& \operatorname{even}(z)
$$

works for sequential model but not for parallel.

CONCLUSIONS

- Can combine parallelism and procedures smoothly:
- faithful to the essence of ALGOL
- allows formalization of parallel idioms
- retains laws of component languages
- Semantics by "modular" combination:
- traces + possible worlds
- traces + relational parametricity
- Advantages:
- full abstraction at ground types
- supports common reasoning principles:
- representation independence
- global invariants
- assumption-commitment
- Limitations:
- does not build in irreversibility of state change

SEMANTICS of skip

Finite stuttering:

$$
\begin{aligned}
\llbracket \mathbf{s k i p} \rrbracket W u & =\{(w, w) \mid w \in W\}^{\dagger} \\
& =\{(w, w) \mid w \in W\}^{+}
\end{aligned}
$$

ASSIGNMENT

Non-atomic; source expression evaluated first:

$$
\begin{aligned}
& \llbracket I:= E \rrbracket W u= \\
&\left\{\left(\operatorname{map} \Delta_{W} \rho\right) \beta \mid(\rho, v) \in \llbracket E \rrbracket W u\right. \\
&\& \beta \in \operatorname{fst}(\llbracket I \rrbracket W u) v\}^{\dagger} \\
& \cup\left\{\operatorname{map} \Delta_{W} \rho \mid \rho \in \llbracket E \rrbracket W u \cap W^{\omega}\right\}^{\dagger} .
\end{aligned}
$$

PARALLEL COMPOSITION

$$
\begin{array}{r}
\llbracket P_{1} \| P_{2} \rrbracket W u=\left\{\alpha \mid \exists \alpha_{1} \in \llbracket P_{1} \rrbracket W u, \alpha_{2} \in \llbracket P_{2} \rrbracket W u .\right. \\
\left.\left(\alpha_{1}, \alpha_{2}, \alpha\right) \in \text { fairmerge }_{W \times W}\right\}^{\dagger}
\end{array}
$$

where

$$
\begin{aligned}
& \text { fairmerge }_{A}=\text { both }_{A}^{*} \cdot \text { one }_{A} \cup \text { both }_{A}^{\omega} \\
& \text { both }_{A}=\left\{(\alpha, \beta, \alpha \beta),(\alpha, \beta, \beta \alpha) \mid \alpha, \beta \in A^{+}\right\} \\
& \text {one }_{A}=\left\{(\alpha, \epsilon, \alpha),(\epsilon, \alpha, \alpha) \mid \alpha \in A^{\infty}\right\}
\end{aligned}
$$

LOCAL VARIABLES

\llbracket new $[\tau] \iota$ in $P \rrbracket W u=\{\operatorname{map}(\mathrm{fst} \times \mathrm{fst}) \alpha \mid$ $\operatorname{map}(\operatorname{snd} \times \operatorname{snd}) \alpha$ interference-free \&

$$
\left.\alpha \in \llbracket P \rrbracket\left(W \times V_{\tau}\right)\left(\llbracket \pi \rrbracket\left(-\times V_{\tau}\right) u \mid \iota:(a, e)\right)\right\}
$$

- No external changes to local variable
- $(a, e) \in \llbracket \operatorname{var}[\tau] \rrbracket\left(W \times V_{\tau}\right)$ is a "fresh variable" corresponding to the V_{τ} component of the state

AWAIT

\llbracket await B then $P \rrbracket W u=$

$$
\begin{aligned}
&\left\{\left(w, w^{\prime}\right) \in \llbracket P \rrbracket W u \mid(w, \mathrm{tt}) \in \llbracket B \rrbracket W u\right\}^{\dagger} \\
& \cup\{(w, w) \mid(w, \mathrm{ff}) \in \llbracket B \rrbracket W u\}^{\omega} \\
& \cup\left\{\operatorname{map} \Delta_{W} \rho \mid \rho \in \llbracket B \rrbracket W u \cap W^{\omega}\right\}^{\dagger} .
\end{aligned}
$$

- P is atomic, enabled only when B true.
- Busy wait when B false.

λ-CALCULUS

$$
\begin{aligned}
& \llbracket \iota \rrbracket W u=u \iota \\
& \llbracket \lambda \iota: \theta \cdot P \rrbracket W u h a=\llbracket P \rrbracket W^{\prime}(\llbracket \pi \rrbracket h u \mid \iota: a) \\
& \llbracket P(Q) \rrbracket W u=\llbracket P \rrbracket W u\left(\mathrm{id}_{W}\right)(\llbracket Q \rrbracket W u),
\end{aligned}
$$

- This is the standard interpretation, based on the ccc structure of the functor category.

