Parallel Algol:
 Combining Procedures with Concurrency

Stephen Brookes

Department of Computer Science Carnegie Mellon University

ESSENTIALS

- Parallel Algol =

$$
\begin{aligned}
& \text { shared-variable parallel programs } \\
& + \text { call-by-name } \lambda \text {-calculus }
\end{aligned}
$$

- simply typed

$$
\begin{gathered}
\theta::=\exp [\tau]|\operatorname{var}[\tau]| \text { comm } \\
\left|\left(\theta \rightarrow \theta^{\prime}\right)\right| \theta \times \theta^{\prime} \\
\\
\quad \text { phrase types }
\end{gathered}
$$

$$
\tau::=\text { int } \mid \text { bool }
$$

data types

- recursion and conditional at each type cf. Reynolds: The essence of Algol

RATIONALE

- Programs can cooperate by reading and writing shared memory
- Procedures can encapsulate parallel idioms (e.g. mutual exclusion)
- Local variable declarations can be used to limit the scope of interference

INTUITION

Procedures and parallelism should be orthogonal:

- combine smoothly
- "modular" semantics
- conservative extension

MUTUAL EXCLUSION

procedure mutex $\left(n_{1}, c_{1}, n_{2}, c_{2}\right)$;
boolean s;
begin
$s:=$ true
while true do
$\left(n_{1}\right.$; await s then $s:=$ false; $c_{1} ; s:=$ true)
while true do
$\left(n_{2} ;\right.$ await s then $s:=$ false; $c_{2} ; s:=$ true)
end

- Encapsulates common use of a semaphore
- Correctness relies on locality of s
- Independent of n_{i} and c_{i}

OUTLINE of SEMANTICS

- Traditional "global state" models fail to validate natural equivalences, e.g.
new $[\tau] \iota$ in $P=P$
when ι does not occur free in P.
- Need to distinguish between global and local entities
- We adapt "possible worlds" model of Algol to the parallel setting. . .
- ... and extend our "transition trace" semantics (LICS'93) to include procedures and recursion.
- We adapt a "parametric" model of Algol to the parallel setting...
- ... and introduce a form of relational reasoning for shared-variable programs.

POSSIBLE WORLDS

- The shape of the state changes as program runs
- A "possible world" Wrepresents the set of currently allowed states
- For sequential Algol, a command denotes a suitable state transformer

$$
\llbracket \operatorname{comm} \rrbracket W=W \rightarrow W_{\perp}
$$

- The meaning of c varies "uniformly" across worlds

$$
\llbracket c_{0} ; c_{1} \rrbracket W u=\llbracket c_{1} \rrbracket W u \circ \llbracket c_{0} \rrbracket W u
$$

Reynolds, Oles

CATEGORY of WORLDS

- Objects are countable sets
- Morphisms are "expansions":

$$
h=(f, Q): W \rightarrow X
$$

$-f$ is a function from X to W

- Q is an equivalence relation on X
- f puts each Q-class in bijection with W

INTUITION

- X is a set of "large" states extending the "small" states of W
- f extracts the "small" part of a state
- Q equates states with the same extra parts

EXPANSIONS

- For each pair of objects W and V there is a canonical expansion

$$
-\times V: W \rightarrow W \times V
$$

given by

$$
-\times V=(\mathrm{fst}: W \times V \rightarrow W, Q)
$$

where
$\left(\left(w_{0}, v_{0}\right),\left(w_{1}, v_{1}\right)\right) \in Q \Longleftrightarrow v_{0}=v_{1}$

- Up to isomorphism, every morphism is like this.

INTUITION

$-\times V_{\tau}$ models the introduction of a local variable of datatype τ.

SEMANTICS

- Types denote functors from worlds to domains, $\llbracket \theta \rrbracket: \mathbf{W} \rightarrow \mathbf{D}$
- Type environments denote functors
- Phrases denote natural transformations

$$
\llbracket P \rrbracket: \llbracket \pi \rrbracket \rightarrow \llbracket \theta \rrbracket
$$

i.e. when $h: W \rightarrow X$,

$$
\begin{array}{rr}
\llbracket \pi \rrbracket W & \llbracket P \rrbracket W \\
\llbracket \pi \rrbracket h & \llbracket \theta \rrbracket W \\
\llbracket \pi \rrbracket X & \llbracket P \rrbracket X \\
& \llbracket \theta \rrbracket X
\end{array}
$$

commutes.
Naturality enforces locality

CARTESIAN CLOSURE

- The functor category $\mathbf{D}^{\mathbf{W}}$ is cartesian closed.
- Use ccc structure to interpret arrow and product types

$$
\begin{aligned}
& \llbracket \theta \times \theta^{\prime} \rrbracket=\llbracket \theta \rrbracket \times \llbracket \theta^{\prime} \rrbracket \\
& \llbracket \theta \rightarrow \theta^{\prime} \rrbracket=\llbracket \theta \rrbracket \Rightarrow \llbracket \theta^{\prime} \rrbracket
\end{aligned}
$$

- Thus, procedures will be natural and respect locality.

PROCEDURES

Procedures of type $\theta \rightarrow \theta^{\prime}$ denote, at
world W, natural families of functions
$p(-):$ if $h: W \rightarrow X$ and $h^{\prime}: X \rightarrow Y$,
commutes.

Procedures can be called at expanded worlds, and naturality enforces locality constraints.

COMMANDS

- Commands denote closed sets of traces:

$$
\llbracket \operatorname{comm} \rrbracket W=\wp^{\dagger}\left((W \times W)^{\infty}\right)
$$

- Trace sets are closed under stutters

$$
\alpha \beta \in c \& w \in W \Rightarrow \alpha(w, w) \beta \in c
$$

and closed under mumbles
$\alpha\left(w, w^{\prime}\right)\left(w^{\prime}, w^{\prime \prime}\right) \beta \in c \Rightarrow \alpha\left(w, w^{\prime \prime}\right) \beta \in c$

- $\llbracket \mathbf{c o m m} \rrbracket h$ converts a trace set over W to a trace set over X :
$\llbracket \mathrm{comm} \rrbracket(f, Q) c=$
$\{\beta \mid \operatorname{map}(f \times f) \beta \in c \& \operatorname{map}(Q) \beta\}$

INTUITION

- A trace

$$
\left(w_{0}, w_{0}^{\prime}\right)\left(w_{1}, w_{1}^{\prime}\right) \ldots\left(w_{n}, w_{n}^{\prime}\right) \ldots
$$

represents a fair interactive computation.

- Each step $\left(w_{i}, w_{i}^{\prime}\right)$ represents a finite sequence of atomic actions.
- $\llbracket \mathbf{c o m m} \rrbracket h c$ behaves like c on the W-component of state, has no effect elsewhere.

EXPRESSIONS

Expressions denote trace sets:

$$
\begin{gathered}
\llbracket \exp [\tau] \rrbracket W=\gamma^{\dagger}\left(W^{+} \times V_{\tau} \cup W^{\omega}\right) \\
\llbracket \exp [\tau] \rrbracket(f, Q) e=\left\{\left(\rho^{\prime}, v\right) \mid\left(\operatorname{map} f \rho^{\prime}, v\right) \in e\right\} \\
\cup\left\{\rho^{\prime} \mid \operatorname{map} f \rho^{\prime} \in e \cap W^{\omega}\right\} \\
\text { VARIABLES } \\
\text { "Object-oriented" interpretation: } \\
\text { variable }=\text { acceptor }+\operatorname{expression} \\
\llbracket \operatorname{var}[\tau] \rrbracket W=\left(V_{\tau} \rightarrow \llbracket \operatorname{comm} \rrbracket W\right) \times \llbracket \exp [\tau] \rrbracket W
\end{gathered}
$$

skip

Finite stuttering:

$$
\begin{gathered}
\llbracket \mathbf{s k i p} \rrbracket W u=\{(w, w) \mid w \in W\}^{\dagger} \\
=\{(w, w) \mid w \in W\}^{+} \\
\text {Never changes the state } \\
\text { always terminates }
\end{gathered}
$$

ASSIGNMENT

Non-atomic; source evaluated first:

$$
\begin{aligned}
& \llbracket I:= E \rrbracket W u= \\
&\left\{\left(\operatorname{map} \Delta_{W} \rho\right) \beta \mid(\rho, v) \in \llbracket E \rrbracket W u\right. \\
&\& \beta \in \operatorname{fst}(\llbracket I \rrbracket W u) v\}^{\dagger} \\
& \cup\left\{\operatorname{map} \Delta_{W} \rho \mid \rho \in \llbracket E \rrbracket W u \cap W^{\omega}\right\}^{\dagger} .
\end{aligned}
$$

PARALLEL COMPOSITION

Fair merging of traces:

$$
\begin{aligned}
& \llbracket P_{1} \| P_{2} \rrbracket W u= \\
& \quad\left\{\alpha \mid \exists \alpha_{1} \in \llbracket P_{1} \rrbracket W u, \alpha_{2} \in \llbracket P_{2} \rrbracket W u .\right. \\
& \left.\quad\left(\alpha_{1}, \alpha_{2}, \alpha\right) \in \text { fairmerge }_{W \times W}\right\}^{\dagger} \\
& \text { where } \\
& \text { fairmerge }_{A}=\text { both }_{A}^{*} \cdot \text { one }_{A} \cup \text { both }_{A}^{\omega} \\
& \text { both }_{A}=\left\{(\alpha, \beta, \alpha \beta),(\alpha, \beta, \beta \alpha) \mid \alpha, \beta \in A^{+}\right\} \\
& \text {one }_{A}=\left\{(\alpha, \epsilon, \alpha),(\epsilon, \alpha, \alpha) \mid \alpha \in A^{\infty}\right\}
\end{aligned}
$$

This is natural!

LOCAL VARIABLES

$$
\begin{aligned}
& \llbracket \text { new }[\tau] \iota \text { in } P \rrbracket W u=\{\operatorname{map}(\text { fst } \times \text { fst }) \alpha \mid \\
& \quad \operatorname{map}(\text { snd } \times \text { snd }) \alpha \text { interference-free \& } \\
& \left.\quad \alpha \in \llbracket P \rrbracket\left(W \times V_{\tau}\right)\left(\llbracket \pi \rrbracket\left(-\times V_{\tau}\right) u \mid \iota:(a, e)\right)\right\}
\end{aligned}
$$

- No external changes to local variable
- $(a, e) \in \llbracket \operatorname{var}[\tau] \rrbracket\left(W \times V_{\tau}\right)$ is a "fresh variable" representing the V_{τ} part of the state

AWAIT

【await B then $P \rrbracket W u=$

$$
\begin{aligned}
&\left\{\left(w, w^{\prime}\right) \in \llbracket P \rrbracket W u \mid(w, \mathrm{tt}) \in \llbracket B \rrbracket W u\right\}^{\dagger} \\
& \cup\{(w, w) \mid(w, \mathrm{ff}) \in \llbracket B \rrbracket W u\}^{\omega} \\
& \cup\left\{\operatorname{map} \Delta_{W} \rho \mid \rho \in \llbracket B \rrbracket W u \cap W^{\omega}\right\}^{\dagger} .
\end{aligned}
$$

- P is atomic, enabled when B is true.
- Busy wait when B is false.

λ-CALCULUS

$$
\begin{aligned}
& \llbracket \iota \rrbracket W u=u \iota \\
& \llbracket \lambda \iota: \theta \cdot P \rrbracket W u h a=\llbracket P \rrbracket W^{\prime}(\llbracket \pi \rrbracket h u \mid \iota: a) \\
& \llbracket P(Q) \rrbracket W u=\llbracket P \rrbracket W u\left(\mathrm{id}_{W}\right)(\llbracket Q \rrbracket W u)
\end{aligned}
$$

- This is the standard interpretation, based on the ccc structure.

RECURSION

Requires a careful use of greatest fixed points:

- Embed $\llbracket \theta \rrbracket W$ in a complete lattice $[\theta] W$ (like $\llbracket \theta \rrbracket W$ but without closure and naturality)
- Generalize semantic definitions to $[P] W$.
- Introduce natural transformations $\operatorname{stut}_{\theta}:[\theta] \dot{\rightarrow}[\theta] \quad \operatorname{clos}_{\theta}:[\theta] \dot{\rightarrow} \llbracket \theta \rrbracket$
- Can then define $\llbracket \mathbf{r e c} \iota . P \rrbracket W u$ to be $\operatorname{clos}_{\theta} W\left(\nu x \cdot \operatorname{stut}_{\theta} W([P] W(u \mid \iota: x))\right)$

EXAMPLE

- Divergence = infinite stuttering:

$$
\begin{aligned}
\llbracket \operatorname{rec} \iota . \iota \rrbracket W u & =(\nu c .\{(w, w) \alpha \mid \alpha \in c\})^{\dagger} \\
& =\{(w, w) \mid w \in W\}^{\omega}
\end{aligned}
$$

LAWS

- This semantics validates:
new $[\tau] \iota$ in $P^{\prime}=P^{\prime}$
new $[\tau] \iota$ in $\left(P \| P^{\prime}\right)=($ new $[\tau] \iota$ in $P) \| P^{\prime}$
new $[\tau] \iota$ in $\left(P ; P^{\prime}\right)=($ new $[\tau] \iota$ in $P) ; P^{\prime}$ when ι does not occur free in P^{\prime}
- Also (still) validates:

$$
\begin{aligned}
& (\lambda \iota: \theta . P)(Q)=P[Q / \iota] \\
& \text { rec } \iota . P=P[\operatorname{rec} \iota . P / \iota]
\end{aligned}
$$

Orthogonal combination of laws of shared-variable programming with laws of λ-calculus

PROBLEM

Semantics fails to validate
new $[$ int $] ~ \iota:=0$ in $P(\iota:=\iota+1)=P($ skip $)$
where P is a free identifier of suitable type

REASON

- Equivalence proof relies on relational reasoning.
- Naturality does not enforce enough constraints on procedure meanings.

SOLUTION

- Develop a parametric semantics...
O'Hearn and Tennent

RELATIONS

- Category of relations $R: W_{0} \leftrightarrow W_{1}$
- A morphism from R to S is a pair $\left(h_{0}, h_{1}\right)$ of morphisms in \mathbf{W} such that

i.e. $\left(h_{0}, h_{1}\right)$ respects R and S.

PARAMETRICITY

- Types denote parametric functors

$$
\begin{aligned}
& -\llbracket \theta \rrbracket R: \llbracket \theta \rrbracket W_{0} \leftrightarrow \llbracket \theta \rrbracket W_{1} \\
& -\llbracket \theta \rrbracket \Delta_{W}=\Delta_{\llbracket \theta \rrbracket W} \\
& -\forall\left(d_{0}, d_{1}\right) \in \llbracket \theta \rrbracket R . \\
& \quad \quad\left(\llbracket \theta \rrbracket h_{0} d_{0}, \llbracket \theta \rrbracket h_{1} d_{1}\right) \in \llbracket \theta \rrbracket S
\end{aligned}
$$

- Phrases denote parametric natural transformations:

$$
\begin{aligned}
& -\forall\left(u_{0}, u_{1}\right) \in \llbracket \pi \rrbracket R . \\
& \quad\left(\llbracket P \rrbracket W_{0} u_{0}, \llbracket P \rrbracket W_{1} u_{1}\right) \in \llbracket \theta \rrbracket R
\end{aligned}
$$

- The parametric functor category is cartesian closed.

COMMANDS

$$
\begin{aligned}
& \text { When } R: W_{0} \leftrightarrow W_{1} \text { define } \\
& \begin{array}{l}
\left(c_{0}, c_{1}\right) \in \llbracket \operatorname{comm} \rrbracket R \Longleftrightarrow \\
\forall\left(\rho_{0}, \rho_{1}\right) \in \operatorname{map}(R) . \\
\quad\left[\forall \alpha_{0} \in c_{0} . \text { map fst } \alpha_{0}=\rho_{0} \Rightarrow\right. \\
\quad \exists \alpha_{1} \in c_{1} . \text { map fst } \alpha_{1}=\rho_{1} \& \\
\left.\quad\left(\text { map snd } \alpha_{0}, \text { map snd } \alpha_{1}\right) \in \operatorname{map}(R)\right]
\end{array} \\
& \quad \& \quad
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\forall \alpha_{1} \in c_{1} . \text { map fst } \alpha_{1}=\rho_{1} \Rightarrow\right.} \\
& \exists \alpha_{0} \in c_{0} . \text { map fst } \alpha_{0}=\rho_{0} \& \\
& \left.\left(\operatorname{map} \text { snd } \alpha_{0}, \text { map snd } \alpha_{1}\right) \in \operatorname{map}(R)\right] .
\end{aligned}
$$

This is parametric!

INTUITION

When related commands are started and interrupted in related states their responses are related.

LAWS

- As before,
new $[\tau] \iota$ in $P^{\prime}=P^{\prime}$
new $[\tau] \iota$ in $\left(P \| P^{\prime}\right)=($ new $[\tau] \iota$ in $P) \| P^{\prime}$
new $[\tau] \iota$ in $\left(P ; P^{\prime}\right)=($ new $[\tau] \iota$ in $P) ; P^{\prime}$
when ι does not occur free in P^{\prime}.
- As before,

$$
\begin{aligned}
& (\lambda \iota: \theta . P) Q=[Q / \iota] P \\
& \text { rec } \iota . P=[\operatorname{rec} \iota . P / \iota] P
\end{aligned}
$$

- In addition,

$$
\begin{aligned}
& \text { new }[\text { int }] ~ \\
& \text { new }[\text { int }] ~ \\
& \text { n } \\
& \text { in } P(\iota) \text { in } P(\iota:=\iota+1)=P(\text { skip }), \\
& \text { relying crucially on parametricity. }
\end{aligned}
$$

EXAMPLE

The programs
new [int] $x:=0$ in
$(P(x:=x+1 ; x:=x+1)$;
if $\operatorname{even}(x)$ then diverge else skip)
and
new $[$ int $] x:=0$ in
$(P(x:=x+2)$;
if $\operatorname{even}(x)$ then diverge else skip)
are equivalent in sequential Algol but not in Parallel Algol.

The relation
$\left(w,\left(w^{\prime}, z\right)\right) \in R \Longleftrightarrow w=w^{\prime} \& \operatorname{even}(z)$
works for sequential model but not for parallel.

BOUNDED SEMAPHORES

The phrases
new [int] $x:=0$ in
P (await $x<n$ then $x:=x+1$,

$$
x:=x-1)
$$

and
new[int] $x:=0$ in
$P($ await $x>-n$ then $x:=x-1$,

$$
x:=x+1)
$$

are equivalent in sequential Algol and in Parallel Algol.

COUNTERS

The phrases

$$
\begin{aligned}
& \text { new }[\text { int }] x:=0 \text { in } \\
& P(x:=x+1, \text { return }(x))
\end{aligned}
$$

and

$$
\begin{aligned}
& \qquad \text { new }[\mathbf{i n t}] x:=0 \text { in } \\
& P(x:=x-1, \text { return }(-x)) \\
& \text { are equivalent in PARALLEL ALGOL. }
\end{aligned}
$$

MORE COUNTERS

The phrases

$$
\begin{aligned}
& \text { new }[\text { int }] x:=0 \text { in } \\
& P(x:=x+2, \\
& \quad \text { return }(x / 2))
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { new }[\text { int }] x:=0 \text { in } \\
& P(x:=x+1 ; x:=x+1, \\
& \quad \text { return }(x / 2))
\end{aligned}
$$

are not equivalent.

COUNTEREXAMPLE

$$
P=\lambda(i n c, \text { val }) \cdot(i n c \| i n c ; \text { val })
$$

CONCLUSIONS

- Can blend parallelism and procedures smoothly:
* faithful to the essence of ALgol * formalizes parallel idioms * retains laws of component languages * supports relational reasoning, e.g. representation independence
- Semantics by "modular" combination: * traces + possible worlds * traces + relational parametricity

PRO and CON

- Advantages
* full abstraction at ground types:
- validates natural equivalences * supports common methodology:
- object-oriented style
- global invariants
- assumption-commitment
- Limitations
* doesn't model irreversibility of state change
* not fully abstract at higher types
...to be continued?

