
HOW TO BE FAIR

Stephen Brookes

Carnegie Mellon University
School of Computer Science

1



FOCUS

• parallel programming

∗ shared-variable programs

∗ communicating processes

• reasoning about programs

∗ safety and liveness

∗ fairness assumptions

THEME

Dispelling myths about fairness

2



SHARED-VARIABLE PROGRAMS

• processes share a global state

• also have private local state

• communicate by reading and writing
to shared variables

• synchronize with conditional atomic
action await B then A

• busy-wait interpretation

COMMUNICATING PROCESSES

• processes have disjoint local states

• communicate by synchronized
input and output along channels

• local actions are autonomous

3



PROGRAM PROPERTIES

Want to reason about:

• safety
“something bad never happens”

– mutual exclusion

– absence of deadlock

• liveness
“something good eventually happens”

– critical code will get executed

– no starvation

SEMANTIC CRITERIA

• Need to model the interaction or
interference between parallel processes

• Properties of sequences of states, not
state transformers

4



WHAT IS FAIRNESS?

• an assumption

∗ no process is ignored forever

• an abstraction

∗ every reasonable scheduler is fair

WHY FAIRNESS?

• abstracts away from unknown or
unknowable scheduling details

• robustness of program analysis

• computational analogue of

– justice

– impartiality

– political correctness

5



MUTUAL EXCLUSION

local s:=true in

cobegin

while true do

(n1; await s then s:=false;
c1; s:=true)

‖ while true do

(n2; await s then s:=false;
c2; s:=true)

coend

PROPERTIES

• s is a binary semaphore

• c1 and c2 never concurrent

• fairness does not prevent starvation

Fairness is not a panacea

6



A GCD PROGRAM

Px‖Py‖Pz
where

Px :: while x 6= y ∨ x 6= z do
do

(x > y → x:=x− y)
2 (x > z → x:=x− z)
od

Py and Pz similar

PROPERTIES

• x, y, z are shared variables

• Only Px changes x

7



A BAD GCD PROGRAM

Qx‖Qy‖Qz
where

Qx :: while x 6= y ∨ x 6= z do
do

(x > y → x:=x− y)
2 (y > x → y:=y − x)
od

Qy and Qz similar

PROPERTIES

• x, y, z are shared variables

• Qx and Qz change x

8



PROPERTIES

Assuming that initially

x = a > 0 ∧ y = b > 0 ∧ x = c > 0

the program Px‖Py‖Pz
• preserves x > 0 ∧ y > 0 ∧ z > 0

• preserves gcd(x, y, z)=gcd(a, b, c)

• always terminates with x = y = z

provided the scheduler is fair.

The program has unfair executions in
which Pz never makes a step

• irrelevant, unrealistic

Fairness is a reasonable abstraction

9



PROPERTIES

Assuming that initially

x = a > 0 ∧ y = b > 0 ∧ x = c > 0

the program Qx‖Qy‖Qz
• may violate positivity of x, y, or z

• may fail to preserve gcd(x, y, z)

• may loop forever

even if the scheduler is fair.

REASON

If x = y + z then Qx and Qz might
each decide to change x, leaving x = 0.

It’s hard to write correct programs,
let alone deal with fairness!

10



A GCD NETWORK

channels h12, . . . , h31
in Rx‖Ry‖Rz

where

Rx :: local y, z in
h12!x‖h13!x‖h21?y‖h31?z;
while x 6= y ∨ x 6= z do

(do
(x > y → x:=x− y)

2 (x > z → x:=x− z)
od;
h12!x‖h13!x‖h21?y‖h31?z)

Ry and Rz similar

Distributed snapshot

11



PROPERTIES

Assuming that initially

x = a > 0 ∧ y = b > 0 ∧ x = c > 0

the program Rx‖Ry‖Rz
• preserves x > 0 ∧ y > 0 ∧ z > 0

• preserves gcd(x, y, z)=gcd(a, b, c)

• always terminates with x = y = z

• is free of deadlock

provided the scheduler is fair.

12



WHAT’S FAIR?

•weak fairness

∗ every continuously enabled
process is eventually scheduled

• strong fairness

∗ every continually enabled
process is eventually scheduled

PROPERTIES

• A strongly fair scheduler is also
weakly fair.

• Easy to build weakly fair schedulers
using roundrobin strategy.

• No implied bound on service time.

13



REALITY CHECK

• shared-variable programs

∗ enabledness is locally checkable

∗ real schedulers are weakly fair

∗ busy wait implies weak=strong

• communicating processes

∗ enabledness not local

∗ real schedulers are strongly fair

∗ weakly fair schedulers less useful

WAIVER

Other forms of fairness may also be
considered, e.g.

• channel

• communication

• unconditional-Γ-extreme

14



SEMANTIC STYLES

• denotational

∗ semantic domains

∗ semantic functions defined by
structural induction

∗ abstract

∗ compositional

• operational

∗ abstract machine

∗ transition relation defined by
inference rules

∗ detailed

∗ not compositional

15



MYTHS

• Denotational semantics cannot
incorporate fairness

∗ inherently non-continuous

∗ unbounded non-determinism

∗ problems with powerdomains

• Operational semantics can handle
fairness easily

∗ Francez-style treatment

SPIN

• Operational treatments are awkward

∗ too sensitive to nuances of presentation

∗ don’t handle nested parallelism

• Denotational semantics can
incorporate fairness

∗ monotonicity is enough

∗ don’t need powerdomains

16



TRADITION

• operational semantics

〈c0, s〉 → 〈c′0, s′〉
〈c0‖c1, s〉 → 〈c′0‖c1, s′〉
〈c1, s〉 → 〈c′1, s′〉

〈c0‖c1, s〉 → 〈c0‖c′1, s′〉
∗ based on single steps

∗ unfair sequences must be removed

∗ no nested parallelism

• resumption semantics

R = S → ℘(S + (R× S))

– based on single steps

– recursive domain equation

– powerdomain ℘

– cannot extract fair sequences

17



TRACE SEMANTICS

• Programs denote trace sets

semantic domain is ℘(Σ∞),
where Σ = S × S, ℘ is powerset

• A trace (s0, s
′
0)(s1, s

′
1) . . . (sn, s

′
n) . . .

represents a fair interactive
computation

• “Interference-free” traces represent
fair computations

• Semantic function defined structurally

– traces of c0; c1 by concatenation

– traces of c0‖c1 by fair interleaving

– traces of a loop by iteration

• All operations on trace sets are
monotone w.r.t. inclusion

18



SEMANTIC PROPERTIES

• Trace sets are closed under stutters

αβ ∈ c & s ∈ S ⇒ α(s, s)β ∈ c
and closed under mumbles

α(s, s′)(s′, s′′)β ∈ c ⇒ α(s, s′′)β ∈ c

• Steps (si, s
′
i) represent finite sequences

of atomic actions

• Only includes fair traces

• Fully abstract

Semantics only distinguishes terms
if they exhibit different safety or
liveness behavior in some context

19



FAIRMERGE

Let Σ∞ = Σ∗ ∪ Σω.

(α, β, γ) ∈ fairmerge⇔ γ merges α and β

Characteristic properties:

• For all α ∈ Σ∞,

(α, ε, α), (ε, α, α) ∈ fairmerge;

• For all α, β ∈ Σ+, (α′, β′, γ′) ∈ fairmerge,

(αα′, ββ′, αβγ′) ∈ fairmerge, and
(αα′, ββ′, βαγ′) ∈ fairmerge.

FIXED POINT PROPERTY

fairmerge is the greatest fixed point of
the above definition

20



MORALS

• Infinite behaviors and fair merges come
from greatest fixed points

• Fairness is easy, denotationally

– handles nested parallelism

– adapts to communicating processes

• Powerdomains are a red herring

– seem to preclude fairness

– wrong computational intuition

• It pays to re-examine “tradition”

– “folk theorems” may be myths

It’s not hard to be fair. . .

21


