HOW TO BE FAIR

Stephen Brookes

Carnegie Mellon University School of Computer Science

FOCUS

• parallel programming

* shared-variable programs

* communicating processes

• reasoning about programs

- * safety and liveness
- * fairness assumptions

THEME

Dispelling myths about fairness

SHARED-VARIABLE PROGRAMS

- processes share a global state
- also have private local state
- communicate by reading and writing to shared variables
- synchronize with conditional atomic action await B then A
- busy-wait interpretation

COMMUNICATING PROCESSES

- processes have disjoint local states
- communicate by synchronized input and output along channels
- local actions are autonomous

PROGRAM PROPERTIES

Want to reason about:

• safety

"something bad never happens"

– mutual exclusion

– absence of deadlock

• liveness

"something good eventually happens"

- $-\operatorname{critical}$ code will get executed
- no starvation

SEMANTIC CRITERIA

- Need to model the interaction or interference between parallel processes
- Properties of sequences of states, not state transformers

WHAT IS FAIRNESS?

• an assumption

* no process is ignored forever

• an abstraction

* every reasonable scheduler is fair

WHY FAIRNESS?

- abstracts away from unknown or unknowable scheduling details
- robustness of program analysis
- computational analogue of
 - -justice
 - impartiality
 - political correctness

MUTUAL EXCLUSION

```
local s:=true in
cobegin
while true do
(n_1; \text{ await } s \text{ then } s:=false;
c_1; s:=true)
\parallel while true do
(n_2; \text{ await } s \text{ then } s:=false;
c_2; s:=true)
```

coend

- s is a binary semaphore
- c_1 and c_2 never concurrent
- fairness does not prevent starvation

```
Fairness is not a panacea
```

A GCD PROGRAM

$P_x \| P_y \| P_z$

where

$$\begin{array}{c} P_x :: \text{ while } x \neq y \lor x \neq z \text{ do} \\ \text{ do } \\ (x > y \ \rightarrow \ x := x - y) \\ \Box \ (x > z \ \rightarrow \ x := x - z) \\ \text{ od } \end{array}$$

 P_y and P_z similar

- x, y, z are shared variables
- Only P_x changes x

A BAD GCD PROGRAM $Q_x \|Q_y\|Q_z$

where

$$Q_x$$
 :: while $x \neq y \lor x \neq z$ do
do
 $(x > y \rightarrow x := x - y)$
 $\Box (y > x \rightarrow y := y - x)$
od

 Q_y and Q_z similar

- x, y, z are shared variables
- Q_x and Q_z change x

PROPERTIES

Assuming that initially $x = a > 0 \land y = b > 0 \land x = c > 0$ the program $P_x ||P_y||P_z$

• preserves $x > 0 \land y > 0 \land z > 0$

• preserves gcd(x, y, z) = gcd(a, b, c)

• always terminates with x = y = zprovided the scheduler is fair.

The program has unfair executions in which P_z never makes a step

 \bullet irrelevant, unrealistic

Fairness is a reasonable abstraction

PROPERTIES

Assuming that initially $x = a > 0 \land y = b > 0 \land x = c > 0$ the program $Q_x ||Q_y||Q_z$ • may violate positivity of x, y, or z• may fail to preserve gcd(x, y, z)• may loop forever

even if the scheduler is fair.

REASON

If x = y + z then Q_x and Q_z might each decide to change x, leaving x = 0.

It's hard to write correct programs, let alone deal with fairness!

A GCD NETWORK

channels h_{12},\ldots,h_{31} in $R_x\|R_y\|R_z$

where

$$egin{aligned} R_x :: \ & ext{local } y,z ext{ in } \ & h_{12}!x\|h_{13}!x\|h_{21}?y\|h_{31}?z; \ & ext{while } x
eq y \lor x
eq z ext{ do } \ & (ext{do } \ & (ext{do } \ & (x > y \
ightarrow x
eq z ext{ do } \ & (ext{do } \ & (x > y \
ightarrow x
eq z ext{ do } \ & (ext{do } \ & (ext{do } \ & (x > y \
ightarrow x
eq z ext{ do } \ & (ext{do } \ &$$

 R_y and R_z similar

$Distributed \ snapshot$

PROPERTIES

Assuming that initially $x = a > 0 \land y = b > 0 \land x = c > 0$

the program $R_x ||R_y||R_z$

- preserves $x > 0 \land y > 0 \land z > 0$
- preserves gcd(x, y, z) = gcd(a, b, c)
- always terminates with x = y = z
- is free of deadlock

provided the scheduler is fair.

WHAT'S FAIR?

• weak fairness

* every continuously enabled process is eventually scheduled

• strong fairness

* every continually enabled process is eventually scheduled

- A strongly fair scheduler is also weakly fair.
- Easy to build weakly fair schedulers using roundrobin strategy.
- No implied bound on service time.

REALITY CHECKshared-variable programs

* enabledness is locally checkable* real schedulers are weakly fair* busy wait implies weak=strong

• communicating processes

* enabledness not local* real schedulers are strongly fair* weakly fair schedulers less useful

WAIVER

Other forms of fairness may also be considered, e.g.

- channel
- communication
- \bullet unconditional- Γ -extreme

SEMANTIC STYLES

• denotational

- * semantic domains
- * semantic functions defined by structural induction
- * abstract
- * compositional

• operational

- * abstract machine
- * transition relation defined by inference rules
- * detailed
- * not compositional

MYTHS

- Denotational semantics cannot incorporate fairness
 - * inherently non-continuous
 - * unbounded non-determinism
 - \ast problems with power domains
- Operational semantics can handle fairness easily
 - * Francez-style treatment

SPIN

- Operational treatments are awkward
 - * too sensitive to nuances of presentation* don't handle nested parallelism
- Denotational semantics *can* incorporate fairness
 - * monotonicity is enough
 - * don't need powerdomains

TRADITION

• operational semantics

$$\frac{\langle c_0, s \rangle \to \langle c'_0, s' \rangle}{\langle c_0 \| c_1, s \rangle \to \langle c'_0 \| c_1, s' \rangle} \\
\frac{\langle c_1, s \rangle \to \langle c'_1, s' \rangle}{\langle c_0 \| c_1, s \rangle \to \langle c_0 \| c'_1, s' \rangle}$$

* based on single steps* unfair sequences must be removed* no nested parallelism

• resumption semantics

 $R=S \to \wp(S+(R\times S))$

- based on single steps
- recursive domain equation
- powerdomain \wp
- cannot extract fair sequences

TRACE SEMANTICS

- Programs denote trace sets semantic domain is $\wp(\Sigma^{\infty})$, where $\Sigma = S \times S$, \wp is powerset
- A trace $(s_0, s'_0)(s_1, s'_1) \dots (s_n, s'_n) \dots$ represents a fair interactive computation
- "Interference-free" traces represent fair computations
- Semantic function defined structurally
 - traces of $c_0; c_1$ by concatenation
 - traces of $c_0 || c_1$ by fair interleaving
 - traces of a loop by iteration
- All operations on trace sets are monotone w.r.t. inclusion

SEMANTIC PROPERTIES

- Trace sets are closed under stutters $\alpha\beta \in c \& s \in S \Rightarrow \alpha(s,s)\beta \in c$ and closed under mumbles $\alpha(s,s')(s',s'')\beta \in c \Rightarrow \alpha(s,s'')\beta \in c$
- Steps (s_i, s'_i) represent finite sequences of atomic actions
- Only includes fair traces
- Fully abstract

Semantics only distinguishes terms if they exhibit different safety or liveness behavior in some context

FAIRMERGE

Let $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$.

 $(\alpha, \beta, \gamma) \in \text{fairmerge} \Leftrightarrow \gamma \text{ merges } \alpha \text{ and } \beta$

Characteristic properties:

• For all $\alpha \in \Sigma^{\infty}$,

 $(\alpha, \epsilon, \alpha), (\epsilon, \alpha, \alpha) \in fairmerge;$

• For all $\alpha, \beta \in \Sigma^+$, $(\alpha', \beta', \gamma') \in$ fairmerge, $(\alpha \alpha', \beta \beta', \alpha \beta \gamma') \in$ fairmerge, and $(\alpha \alpha', \beta \beta', \beta \alpha \gamma') \in$ fairmerge.

FIXED POINT PROPERTY

fairmerge is the greatest fixed point of the above definition

MORALS

- Infinite behaviors and fair merges come from greatest fixed points
- Fairness is easy, denotationally
 - handles nested parallelism
 - adapts to communicating processes
- Powerdomains are a red herring
 - seem to preclude fairness
 - wrong computational intuition
- It pays to re-examine "tradition"
 - "folk theorems" may be myths

It's not hard to be fair...