TRACE SEMANTICS: TOWARDS A UNIFICATION OF PARALLEL PARADIGMS

Stephen Brookes

Department of Computer Science Carnegie Mellon University

 $\rm MFCSIT\ 2002$

PARALLEL PARADIGMS State-based

• Shared-memory

- -global state
- concurrent read and write

• Concurrent constraint

- -global state
- concurrent ask and tell

Focus on state change

PARALLEL PARADIGMS Communication-based

• Asynchronous

- output always enabled
- input waits until data is available
- channels behave like queues

• Synchronous

- output waits until matching input
- input waits until matching output
- synchronized handshake

Focus on communications

SEMANTIC MODELS

• State-based

- sequences of state changes

 $(s_0, s'_0)(s_1, s'_1) \dots (s_n, s'_n) \dots$

- "transition traces"

• Communication-based

- communication traces + book-keeping $(\lambda_1 \lambda_2 \dots \lambda_n \dots, X)$

- "failures"

PROGRAM BEHAVIOR

Partial correctness
{pre} P {post}
Total correctness
[pre] P [post]
Safety properties
pre ⇒ □¬bad
Liveness properties

$$pre \Rightarrow \Diamond good$$

Need to assume fair execution

FAIRNESS

For shared-memory or asynchronous i/o

 $P \| Q \xrightarrow{\lambda} \quad \text{if} \quad P \xrightarrow{\lambda} \quad \text{or} \ Q \xrightarrow{\lambda}$

• Reasonable to assume that

no process is ignored

- Weak (process) fairness
- Ensures that

stop:=true || while $\neg stop \ do \ go$

always terminates

- Satisfied by round-robin scheduler
- Can be modelled using transition traces

FAIRNESS

For synchronous i/o

$$P \| Q \xrightarrow{\lambda} \quad \text{if} \quad P \xrightarrow{\lambda} \text{ or } Q \xrightarrow{\lambda} \\ P \| Q \xrightarrow{\delta} \quad \text{if} \quad P \xrightarrow{h!v} \& Q \xrightarrow{h?v} \end{cases}$$

• Reasonable to assume that

- no process is ignored
- no synchronization is ignored
- Weak (synchronizing) fairness local h in (h!0; P) || (h?x; Q)=local h in x:=0; (P||Q)
- Satisfied by variant of round-robin
- Not modelled by failures...

PROBLEMS

- Different models for different paradigms
 - no cross-platform analysis
 - hides underlying similarities
 - replication of effort
- Lack of uniformity
 - some models fair, some not
 - some models use state, some don't
- Lack of robustness
 - Failures aren't fair
 - Communication traces ignore state

Need a unifying framework

THIS TALK Action traces

• A fair semantics for CSP

- synchronous communication
- avoids complex book-keeping
- state handled implicitly
- generalization of failures
- fully abstract

• Adaptability

- asynchronous communication
- shared memory

• A unifying framework

- state-based
- communication-based

\mathbf{CSP}

• Processes

$$P ::= \mathbf{skip} \mid x := e \mid P_1; P_2$$
$$h?x \mid h!e \mid$$
$$P_1 \parallel P_2 \mid$$
$$\mathbf{if} \ G \ \mathbf{fi} \mid \mathbf{do} \ G \ \mathbf{od} \mid$$
$$\mathbf{local} \ x, h \ \mathbf{in} \ P$$

• Guarded commands

$$G ::= (g \to P) \mid G_1 \square G_2$$

• Guards

$$g ::= b \mid b \land h?x \mid b \land h!e$$

ACTIONS

$\lambda ::= x = v$	read
$\mid x := v$	write
$\mid h?v$	input
$\mid h!v$	output
$\mid \delta_X$	wait

where $X \subseteq \{h?, h! \mid h \in \mathbf{Chan}\}$

TRACES

Finite or infinite sequences of actions $\alpha \in \Lambda^{\infty} = \Lambda^{+} \cup \Lambda^{\omega}$ $\delta \lambda = \lambda \delta = \lambda$

STATES

Characterized implicitly by enabling relation $s \xrightarrow{\lambda} s'$

NOTATION

- Λ is the set of actions
- **Dir** is the set of directions $\mathbf{Dir} = \{h?, h! \mid h \in \mathbf{Chan}\}$
- Δ is the set of waiting actions $\Delta = \{ \delta_X \mid X \subseteq_{\text{fin}} \mathbf{Dir} \}$
- δ abbreviates $\delta_{\{\}}$
- δ_{λ} abbreviates $\delta_{\{\lambda\}}$
- $match(\lambda_1, \lambda_2)$ iff $\{\lambda_1, \lambda_2\} = \{h?v, h!v\}$

ENABLING

$s \xrightarrow{x=v} s$	iff	s(x) = v
$s \xrightarrow{x:=v} s'$	iff	$s' = [s \mid x : v]$
$s \xrightarrow{h!v} s'$	iff	$s(h) = \epsilon \& s' = [s \mid h : v]$
$s \xrightarrow{h?v} s'$	iff	$s(h) = v \& s' = [s \mid h : \epsilon]$
$s \xrightarrow{\delta_X} s$	iff	$ \begin{array}{l} \forall h? \in X. \; s(h) = \epsilon \; \& \\ \forall h! \in X. \; s(h) \neq \epsilon \end{array} \end{array} $

OPERATIONAL SEMANTICS

State is implicit

• Transitions

 $P \xrightarrow{\lambda} P'$ $G \xrightarrow{\lambda} G'$

• Termination

P term

• Fair execution

 $P \xrightarrow{\alpha}$

TRANSITION RULES FOR GUARDED COMMANDS

$$(h?x \to P) \xrightarrow{h?v} x:=v; P$$

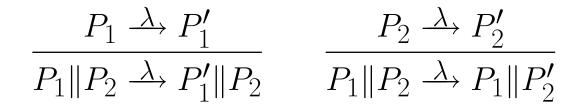
$$(h?x \to P) \xrightarrow{\delta_{h?}} (h?x \to P)$$

$$\frac{G_1 \xrightarrow{\lambda} P_1}{G_1 \square G_2 \xrightarrow{\lambda} P_1} \quad \lambda \not\in \Delta$$

$$\frac{G_2 \xrightarrow{\lambda} P_2}{G_1 \square G_2 \xrightarrow{\lambda} P_2} \quad \lambda \not\in \Delta$$

$$\frac{G_1 \xrightarrow{\delta_X} G_1 \quad G_2 \xrightarrow{\delta_Y} G_2}{G_1 \square G_2 \xrightarrow{\delta_X \sqcup Y} G_1 \square G_2}$$

TRANSITION RULES FOR PROCESSES



$$\frac{P_1 \xrightarrow{\lambda_1} P'_1 \quad P_2 \xrightarrow{\lambda_2} P'_2}{P_1 \| P_2 \xrightarrow{\delta} P'_1 \| P'_2} \\
\text{if } match(\lambda_1, \lambda_2)$$

TERMINATION

 $\frac{P_1 \text{ term } P_2 \text{ term}}{P_1 \| P_2 \text{ term}}$

FAIR EXECUTIONS

Parallel composition

- $merges(\alpha, \beta)$ allows synchronization
- $blocks(\alpha)$ is set of directions occurring infinitely often in Δ steps of α

Local channels

local h in $P \xrightarrow{\alpha}$ iff $P \xrightarrow{\alpha} \& h \not\in chans(\alpha)$

• forces synchronization on h

DENOTATIONAL SEMANTICS

• Define trace sets

 $\mathcal{T}(P) \subseteq \Lambda^{\infty}$

with

$$\mathcal{T}(e) \subseteq \Lambda^* \times V_{int}$$
$$\mathcal{T}(g) \subseteq \Lambda^* \times V_{bool}$$
$$\mathcal{T}(G) \subseteq \Lambda^{\infty}$$

by structural induction

- Designed to match operational semantics
- $\mathcal{T}(P)$ only includes fair traces

SEMANTIC DEFINITIONS

 $\mathcal{T}(\mathbf{skip}) = \{\delta\}$

 $\mathcal{T}(h?x) = \delta_{h?}^* \{h?v \, x := v \mid v \in V\} \cup \{\delta_{h?}^\omega\}$

 $\mathcal{T}(h!e) = \{ \alpha \, \delta_{h!}^* \, h!v, \ \alpha \delta_{h!}^{\omega} \mid (\alpha, v) \in \mathcal{T}(e) \}$

$$\mathcal{T}(P_1 || P_2) = \{ \alpha \in merges(\alpha_1, \alpha_2) \mid \\ \alpha_1 \in \mathcal{T}(P_1) \& \alpha_2 \in \mathcal{T}(P_2) \& \\ \neg match(blocks(\alpha_1), blocks(\alpha_2)) \}$$

 $\begin{aligned} \mathcal{T}(\mathbf{local}\ h\ \mathbf{in}\ P) = \\ \{ \alpha \backslash h \mid \alpha \in \mathcal{T}(P) \ \& \ h \not\in chans(\alpha) \} \end{aligned}$

$$\mathcal{T}(G_1 \square G_2) = \{ \alpha \in \mathcal{T}(G_1) \cup \mathcal{T}(G_2) \mid \alpha \not\in \Delta^{\omega} \} \cup \\ \{ \delta_{X \cup Y}^{\omega} \mid \delta_X^{\omega} \in \mathcal{T}(G_1) \& \delta_Y^{\omega} \in \mathcal{T}(G_2) \}$$

RESULTS

• Denotational matches operational $\mathcal{T}(P) = \{ \alpha \mid P \xrightarrow{\alpha} \}$ • Traces are sensitive to deadlock if $(a?x \rightarrow P) \Box(b?y \rightarrow Q)$ fi has $\delta_{\{a?,b?\}}^{\omega}$

if (true $\rightarrow a?x; P)\Box$ (true $\rightarrow b?y; Q$) fi has $\delta_{a?}{}^{\omega}$ and $\delta_{b?}{}^{\omega}$

• Full abstraction $\mathcal{T}(P) = \mathcal{T}(Q) \Leftrightarrow \forall C.\mathcal{B}(C[P]) = \mathcal{B}(C[Q])$ where \mathcal{B} observes sequence of states

SEMANTIC LAWS synchronous

Fairness properties

 $\begin{aligned} \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| (h!v;Q) \| R \\ &= \mathbf{local} \ h \ \mathbf{in} \ (x:=v;(P \| Q)) \| R \\ & \text{if} \ h \not\in \mathbf{chans}(R) \end{aligned}$

 $\begin{aligned} \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| (Q_1;Q_2) \\ &= Q_1; \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| Q_2 \\ & \text{if} \ h \not\in \mathtt{chans}(Q_1) \end{aligned}$

 $\begin{aligned} \mathbf{local} \ h \ \mathbf{in} \ (h!v;P) \| (Q_1;Q_2) \\ &= Q_1; \mathbf{local} \ h \ \mathbf{in} \ (h!v;P) \| Q_2 \\ & \text{if} \ h \not\in \mathtt{chans}(Q_1) \end{aligned}$

Not valid in unfair semantics

RELATED WORK

• Traditional CSP models

- used finite traces and prefix-closure
- cannot model fairness
- treat divergence as catastrophic
- Traces subsume (stable) failures $(\alpha, R) \in \mathcal{F}(P) \iff \alpha(\delta_X)^{\omega} \in \mathcal{T}(P)$ for some X such that $\neg match(X, R)$

• Older's models

- -traces + book-keeping
- different fairness notions
- introduced fairness mod X
- $-\alpha$ is fair mod X if $blocks(\alpha) \subseteq X$

ADAPTABILITY

Can handle other parallel paradigms by making minor changes

- \bullet Choose appropriate set of actions Λ
- Adjust relevant semantic definitions
 - parallel composition
 - input/output
 - local channels

In each case:

- Processes denote trace sets
- Full abstraction for safety and liveness

ASYNCHRONOUS COMMUNICATION

 $\lambda ::= x = v \mid x := v \mid h?v \mid h!v \mid \delta_X$ where $X \subseteq \{h? \mid h \in \mathbf{Chan}\}$

 $\mathcal{T}(h!e) = \{ \alpha \, h!v \mid (\alpha, v) \in \mathcal{T}(e) \}$

 $\mathcal{T}(P_1 || P_2) = \{ \alpha \in merges(\alpha_1, \alpha_2) \mid \\ \alpha_1 \in \mathcal{T}(P_1) \& \alpha_2 \in \mathcal{T}(P_2) \}$

 $\mathcal{T}(\mathbf{local}\ h\ \mathbf{in}\ P) = \\ \{\alpha \setminus h \mid \alpha \in \mathcal{T}(P) \& \alpha \lceil h \text{ is FIFO} \}$

- $merges(\alpha, \beta)$ without synchronization
- α [h is FIFO if every input is justified by earlier output

SEMANTIC LAWS asynchronous

Fairness properties

 $\begin{aligned} & \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| (h!v;Q) \| R \\ &= \mathbf{local} \ h \ \mathbf{in} \ (x{:=}v;P) \| Q \| R \\ & \text{if} \ h \not\in \mathbf{chans}(R) \end{aligned}$

 $\begin{aligned} & \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| (Q_1;Q_2) \\ &= Q_1; \mathbf{local} \ h \ \mathbf{in} \ (h?x;P) \| Q_2 \\ & \text{if} \ h \not\in \mathtt{chans}(Q_1) \end{aligned}$

Not valid in unfair semantics

SHARED MEMORY

 $\lambda ::= x = v \mid x := v \mid \langle \alpha \rangle \quad (\alpha \text{ finite, sequential})$ $\mathcal{T}(P_1 \parallel P_2) = \{ \alpha \in merges(\alpha_1, \alpha_2) \mid \\ \alpha_1 \in \mathcal{T}(P_1) \& \alpha_2 \in \mathcal{T}(P_2) \}$

$$\mathcal{T}(\mathbf{local} \ x \ \mathbf{in} \ P) = \\ \{\alpha \backslash x \mid \alpha \in \mathcal{T}(P) \ \& \ \alpha \lceil x \text{ sequential} \}$$

 $\mathcal{T}(\mathbf{await} \ b \ \mathbf{then} \ a) = wait^* go \ \cup \ wait^{\omega}$ $wait = \{ \langle \alpha \rangle \mid (\alpha, \mathbf{false}) \in \mathcal{A}(b) \}$ $go = \{ \langle \alpha \beta \rangle \mid (\alpha, \mathbf{true}) \in \mathcal{A}(b) \ \& \ \beta \in \mathcal{A}(a) \}$

• $\alpha \lceil x \text{ sequential iff every (non-initial)}$ read is *justified* by previous writes

COMMON THEME

- Programs denote sets of traces built from action set Λ
- Fully abstract for safety and liveness
- Can extract traditional semantics
- Trace sets form complete lattice
- Program constructs denote monotone functions on trace sets

 $T_1 \subseteq T_2 \Rightarrow F(T_1) \subseteq F(T_2)$

- Recursive constructs denote fixed points
 - least fixed point = finite traces
 - -greatest fixed point = countable traces

UNIFICATION

- Action traces can be used to model
- shared-memory
- asynchronous communication
- synchronous communication
- Can extract traditional semantics
- transition traces
- failures

FUTURE RESEARCH

• Other fairness notions

 $-\operatorname{strong},$ weak / process, channel

• Partial order semantics

- "truly fair" concurrency
- Low-level traces

– pointers, stores, heaps

• Procedures

- possible worlds, parametricity
- Intensional traces
 - abstract runtime

• Probabilistic traces

- "fairly true" correctness

REFERENCES

- Full abstraction for a shared-variable parallel language, S. Brookes, LICS'93
- On the Kahn Principle and Fair Networks, S. Brookes, MFPS 14 (1998)
- Communicating Sequential Processes, C. A. R. Hoare, CACM (1978)
- A Framework for Fair Communicating Processes, S. Older, MFPS 13 (1997)
- On the semantics of fair parallelism, D. Park, Springer LNCS 86 (1979)
- The Theory and Practice of Concurrency, A. W. Roscoe, Prentice-Hall (1998)

PARTIAL ORDER SEMANTICS

- Process denotes set $\mathcal{P}(P)$ of pomsets
- Pomset (T, <)
 - multiset T of actions
 - partial order < on T
- A pomset determines a trace set $\mathcal{L}(T, <)$ - traces built from T consistent with <
- Recovering traces:

 $\mathcal{T}(P) = \bigcup \{ \mathcal{L}(T, <) \mid (T, <) \in \mathcal{P}(P) \}$

• Transfer Principle:

 $\mathcal{P}(P_1) = \mathcal{P}(P_2) \Rightarrow \mathcal{T}(P_1) = \mathcal{T}(P_2)$

BUFFER PROCESSES

buff₁(in, out) =_{def}
while true do (in?x; out!x)

• $buff_*(in, out) =_{def}$ local mid in $buff_1(l, mid) \| buff_1(mid, r)$

buff₂(in, out) =_{def}
local mid, ack in
while true do (in?x; mid!x; ack?_)
|| while true do (mid?y; ack!_; out!y)

BUFFER BEHAVIOR

- Safety: FIFO order
- Liveness: Every input is output

CAPACITY

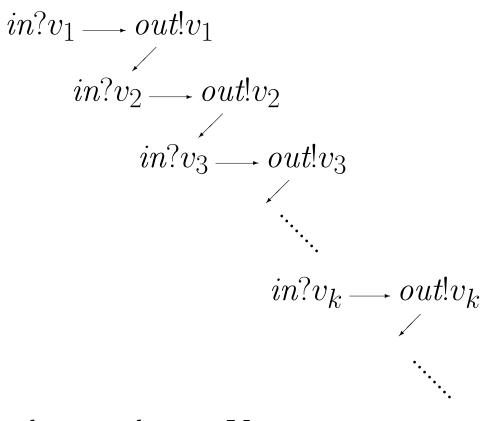
• $buff_1$

-synchronous: 1-place

- asynchronous: 1-place
- $buff_*$
 - -synchronous: 2-place
 - asynchronous: unbounded
- $buff_2$
 - synchronous: 2-place
 - asynchronous: 2-place

Asynchronous traces of $buff_1$

Typical unblocked case:



where each $v_i \in V$

$$(in?v \ out!v \mid v \in V)^{\omega}$$

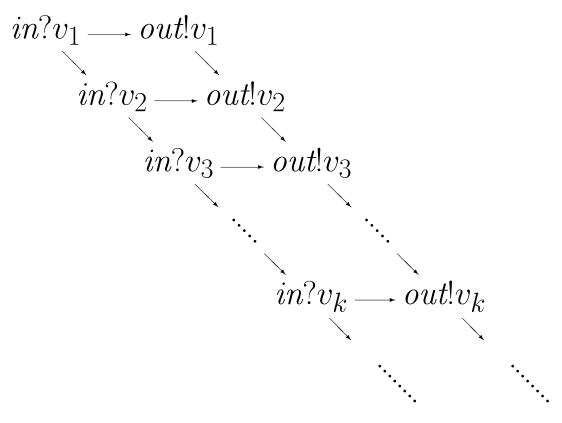
Asynchronous traces of $buff_1$

Typical blocked case: $\begin{array}{c} \longrightarrow Out.v_{1} \\ \swarrow & \swarrow \\ in?v_{2} \longrightarrow out!v_{2} \\ \swarrow & \swarrow \\ in?v_{3} \longrightarrow out!v_{3} \\ \swarrow & \swarrow \\ \ddots \\ \ddots \\ \ddots \end{array}$ $in?v_1 \longrightarrow out!v_1$ $\begin{array}{c} in?v_k \longrightarrow out!v_k \\ & \swarrow \\ \delta_{in?} \\ & \delta_{in?} \\ & \ddots \end{array}$ where $k \geq 0$ and each $v_i \in V$

 $(in?v \ out?v \mid v \in V)^* \delta_{in?}^{\omega}$

Asynchronous traces of $buff_*$

Typical unblocked case:

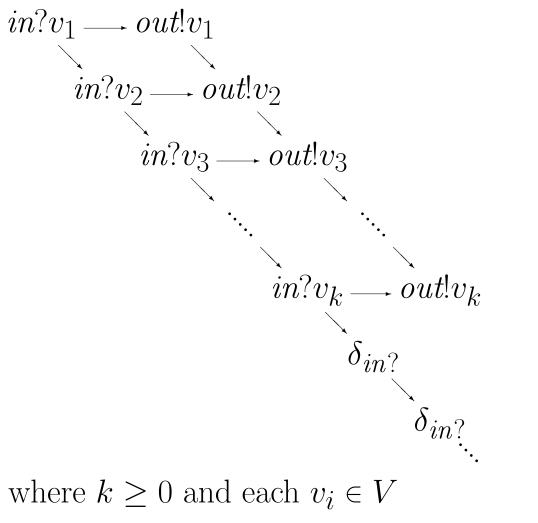


where each $v_i \in V$

any trace consistent with this

Asynchronous traces of $buff_*$

Typical blocked case:

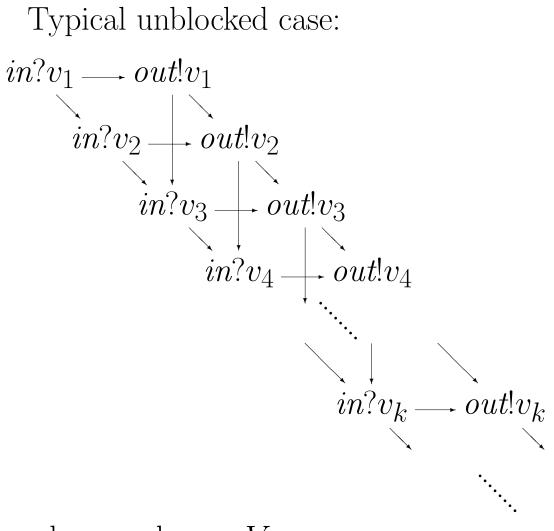


where $k \geq 0$ and each $v_i \in V$

any interleaving consistent with this

Asynchronous traces of $buff_2$

Typical unblocked case:

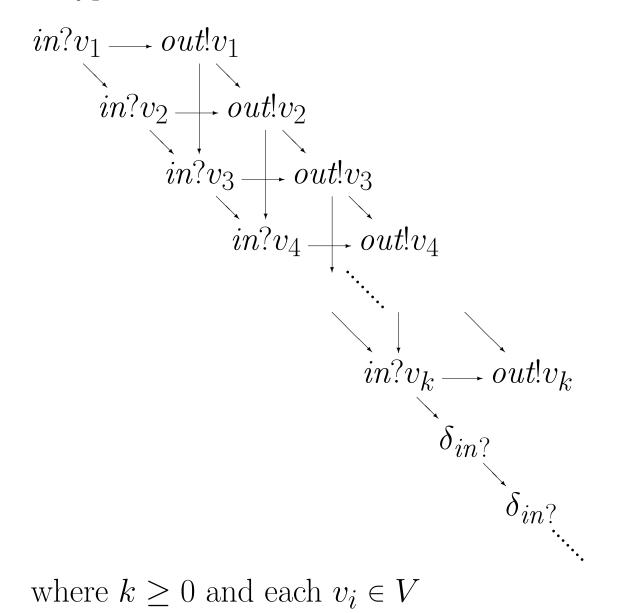


where each $v_i \in V$

any trace consistent with this

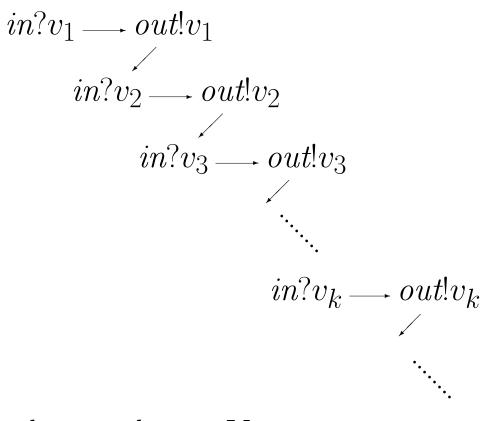
Asynchronous traces of $buff_2$

Typical blocked case:



Synchronous traces of $buff_1$

Typical unblocked case:

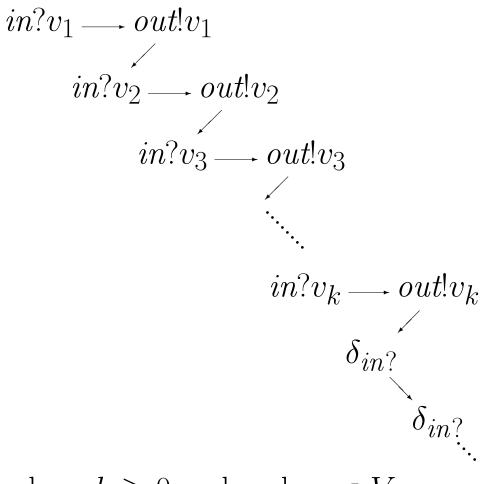


where each $v_i \in V$

$$(in?v \ out!v \mid v \in V)^{\omega}$$

Synchronous traces of $buff_1$

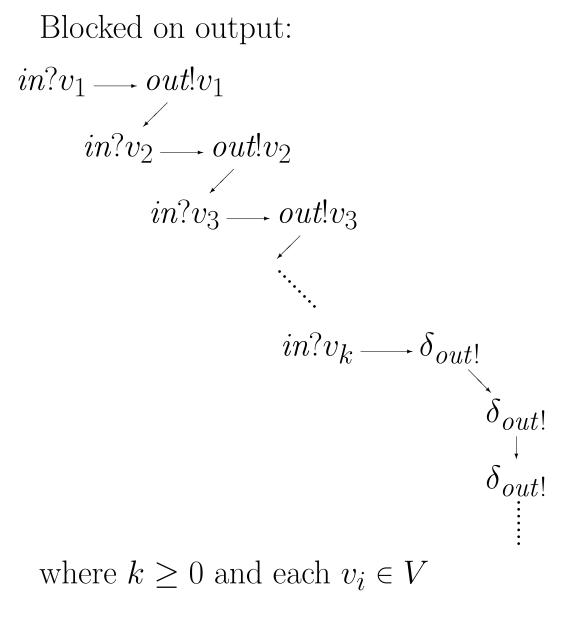
Blocked on input:



where $k \ge 0$ and each $v_i \in V$

$$(in?v \ out?v \mid v \in V)^* \delta_{in?}^{\omega}$$

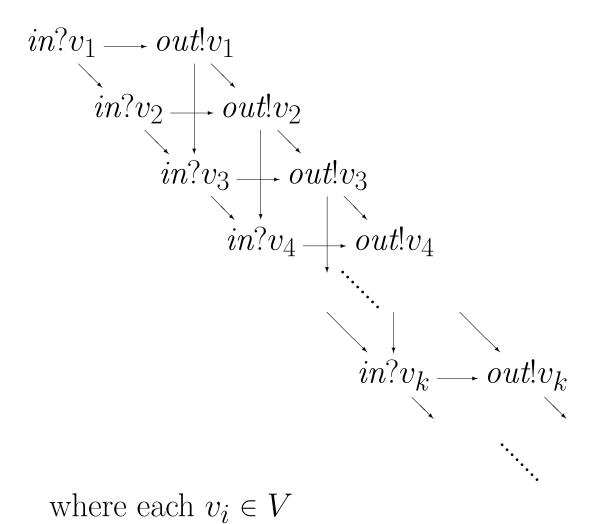
Synchronous traces of $buff_1$



 $(in?v \ out?v \mid v \in V)^* (in?v \mid v \in V) \delta_{out!}^{\omega}$

Synchronous traces of $buff_*$

Typical unblocked case:



behaves like a 2-place buffer