
TOWARDS A THEORY OF
INTENSIONAL SEMANTICS

Stephen Brookes
Shai Geva

Carnegie Mellon University
School of Computer Science

Pittsburgh
Pa 15213

1

EXTENSIONAL SEMANTICS

EXAMPLES

• state transformation semantics for while-programs

• Scott model of simply typed λ-calculus

FEATURES

• ignores computation details

• models only input-output behavior

• supports reasoning about familiar extensional
properties

– Hoare logic for partial correctness

– LCF

• can use to show correctness-preservation for
program transformations

• cannot distinguish between programs with
same input-output behavior

• cannot reason about intensional properties

2

INTENSIONAL SEMANTICS

EXAMPLES

• Berry-Curien sequential algorithms
on concrete data structures

• Brookes-Geva parallel algorithms
on generalized concrete data structures

FEATURES

• models computation strategy

• reasoning about intensional properties

– order of evaluation

– degree of parallelism

• can use to show efficiency-improvement of
program transformations

• can recover extensional from intensional

• algorithm = function + computation strategy

• intensional models tend to be more concrete

3

RESEARCH AIMS

Develop a theory of intensional semantics:

• allow semantics at differing levels of abstraction

• show relationships between different models
of the same programming language

• show relationship to existing intensional and
extensional models

• use intensional semantics to reason about
efficiency

THESIS

Category theory provides a general framework:

• extensional semantics in a category C
• datatypes as objects of C
• extensional meanings as morphisms in C
• notion of computation as a comonad T

• intensional semantics in Kleisli category CT
• intensional meanings as morphisms in CT

4

COMONADS

DEFINITION

A comonad over a category C is a (co-)triple
(T, ε, δ) where

• T : C → C is a functor

• ε : T .→ IC is a natural transformation

• δ : T .→ T 2 is a natural transformation

and for every objectA the following associativity
and identity laws hold:

T (δA) ◦ δA = δTA ◦ δA
εTA ◦ δA = T (εA) ◦ δA = idTA.

INTUITION

• TA is a datatype of computations over A.

• εt is the value computed by t.

• δt is a computation over TA that computes t.

5

KLEISLI CATEGORIES

DEFINITION

Given a comonad (T, ε, δ) over C, the Kleisli
category CT is defined by:

• The objects of CT are the objects of C.

• The morphisms from A to B in CT are the
morphisms from TA to B in C.

• The identity morphism îdA on A in CT is
εA : TA→C A.

• The composition in CT of a : A→CT B and
a′ : B →CT C is

a′ ◦̄ a = a′ ◦ Ta ◦ δA.

TERMINOLOGY

A morphism in CT is an algorithm.

6

INTUITION

• The intensional meaning of a program is a
function from input computations to output
values.

• Programs operate in demand-driven,
coroutine-like manner (Kahn-MacQueen)

– program responds to a request for output
by performing input computation until
it has enough information to determine
what output value to produce

• The identity algorithm from A to A simply
evaluates its input.

• a′◦̄a behaves like a′ using a to generate input.

• A similar, but sequential, operational model
is used by Berry and Curien.

7

COMONAD DIAGRAMS

TA TB

A B

TA TB

T 2A T 2B

-
Tf

-

f

?

εA

?

εB

-
Tf

-

T 2f

?

δA

?

δB

Naturality

TA

TA TAT 2A�
εTA -

TεA
6

δA

@
@

@
@
@

@
@

@
@
@@I

idTA

�
�
�
�
�
�
�
�
�
���

idTA

TA T 2A

T 2A T 3A

-
δA

-

TδA

?

δA

?

δTA

Identity and associativity laws

8

COMPUTATIONAL COMONADS

DEFINITION

A computational comonad over a category C
is a quadruple (T, ε, δ, γ) such that

• (T, ε, δ) is a comonad over C
• γ : IC

.→ T is a natural transformation such
that, for every object A,

– εA ◦ γA = idA
– δA ◦ γA = γTA ◦ γA.

INTUITION

γx is a degenerate computation that computes x.

TA

A A-idA
A
A
A
A
A
A
A
AU

γA

�
�
�
�
�
�
�
��

εA

TA T 2A

A TA

-
γTA

?

γA
?

δA

-
γA A B

TA TB

-
f

?

γA

?

γB

-

Tf

9

RELATING ALGORITHMS AND
FUNCTIONS

Let (T, ε, δ, γ) be a computational comonad.

DEFINITION

The functors alg and fun between C and CT are
given by:

• alg : C → CT is the identity on objects;

• alg(f) = f ◦ εA, for every f : A→C B;

• fun : CT → C is the identity on objects;

• fun(a) = a ◦ γA, for all a : A→CT B.

TERMINOLOGY

• fun(a) is the input-output function of a.

• alg(f) is a (canonical) algorithm computing f .

10

INPUT-OUTPUT EQUIVALENCE

• fun induces an input-output equivalence
relation =io on CT :

a1 =io a2 ⇐⇒ fun(a1) = fun(a2).

• This relation is a congruence:

a1 =io a2 & a′1 =io a′2 ⇒ a′1◦̄a1 =io a′2◦̄a2.

• The quotient category of CT by =io is
isomorphic to C.

• For all f : A→C B, fun(alg f) = f .

• For all a : A→CT B, alg(fun a) =io a.

11

PROPERTIES of KLEISLI CATEGORIES

PROPOSITION

If C has distinguished finite products and
projections πi, then CT has distinguished finite
products, with projections

π̂i : A1 × A2 →CT Ai

π̂i = εAi ◦ T πi
= πi ◦εA1×A2.

PROPOSITION

If C is cartesian closed and T preserves finite
products, then CT is cartesian closed.

[Under more general assumptions the Kleisli
category of T is weakly cartesian closed.]

12

ALGORITHMS ON DOMAINS

• Let CONT be the category of
Scott domains and continuous functions.

•We define a computational comonad

(T, val, pre, path)

over CONT.

• Let ALG be the Kleisli category of T .

• Morphisms in ALG can be viewed as
parallel algorithms.

• CONT and ALG are cartesian closed.

•We give an extensional and an intensional
interpretation for simply typed λ-calculus
and prove a Correspondence Theorem.

• CONT and ALG are ordered categories.

•We use ≤i for the pointwise order on
algorithms.

• ̂curry and âpp denote currying and
application on algorithms.

13

COMPUTATION ON DOMAINS

• Let TD be the set of non-decreasing
sequences over D, ordered componentwise.

• For f : D → D′, let Tf : TD → TD′ be
the function that applies f componentwise:

(Tf)〈dn〉∞n=0 = 〈fdn〉∞n=0.

• For t ∈ TD let valD t be the least upper
bound of t.

• For t = 〈dn〉∞n=0 let preD t be the sequence
of prefixes of t: for all k ≥ 0,

(pre t)k = d0 . . . dkd
ω
k .

• For d ∈ D let path d = dω.

14

INTUITION

• A computation in TD records a sequence
of incremental steps towards a value in D.
Idle steps are permitted.

• Every computation is the limit of its prefixes.

• A degenerate computation consists entirely
of idle steps.

15

PARALLEL-OR

• The most eager algorithm:

epPOR(〈⊥, T 〉ω) = T
epPOR(〈T,⊥〉ω) = T
epPOR(〈F, F 〉ω) = F

• The laziest algorithm:

lpPOR(〈⊥,⊥〉n 〈⊥, T 〉ω) = T
lpPOR(〈⊥,⊥〉n 〈T,⊥〉ω) = T
lpPOR(〈⊥,⊥〉n 〈F, F 〉ω) = F

for all n ≥ 0.

• epPOR≤i lpPOR.

16

LEFT-STRICT-OR

• The most eager sequential algorithm:

esLOR(〈T,⊥〉ω) = T
esLOR(〈F,⊥〉 〈F, T 〉ω) = T
esLOR(〈F,⊥〉 〈F, F 〉ω) = F.

• The most eager parallel algorithm:

epLOR(〈T,⊥〉ω) = T
epLOR(〈F, T 〉ω) = T
epLOR(〈F, F 〉ω) = F.

• The laziest parallel algorithm:

lpLOR(〈⊥,⊥〉n 〈T,⊥〉ω) = T
lpLOR(〈⊥,⊥〉n 〈F,⊥〉m 〈F, T 〉ω) = T
lpLOR(〈⊥,⊥〉n 〈F,⊥〉m 〈F, F 〉ω) = F

for all m,n ≥ 0.

• epLOR≤i esLOR≤i lpLOR.

• epLOR≤i epPOR.

• lpLOR≤i lpPOR.

17

DOUBLY-STRICT-OR

• The most eager parallel algorithm:

epSOR(〈T, T 〉ω) = T
epSOR(〈T, F 〉ω) = T
epSOR(〈F, T 〉ω) = T
epSOR(〈F, F 〉ω) = F.

• The laziest parallel algorithm:

lpSOR(〈⊥,⊥〉m 〈T,⊥〉n 〈T, T 〉ω) = T
lpSOR(〈⊥,⊥〉m 〈⊥, T 〉n 〈T, T 〉ω) = T
lpSOR(〈⊥,⊥〉m 〈T,⊥〉n 〈T, F 〉ω) = T
lpSOR(〈⊥,⊥〉m 〈⊥, F 〉n 〈T, F 〉ω) = T
lpSOR(〈⊥,⊥〉m 〈F,⊥〉n 〈F, T 〉ω) = T
lpSOR(〈⊥,⊥〉m 〈⊥, T 〉n 〈F, T 〉ω) = T
lpSOR(〈⊥,⊥〉m 〈T,⊥〉n 〈T, T 〉ω) = T
lpSOR(〈⊥,⊥〉m 〈⊥, T 〉n 〈T, T 〉ω) = T

for all m,n ≥ 0.

18

DOUBLY-STRICT-OR

• The most eager sequential left-right
algorithm:

elrSOR(〈T,⊥〉 〈T, T 〉ω) = T
elrSOR(〈T,⊥〉 〈T, F 〉ω) = T
elrSOR(〈F,⊥〉 〈F, T 〉ω) = T
elrSOR(〈F,⊥〉 〈F, F 〉ω) = F.

• The most eager sequential right-left
algorithm:

erlSOR(〈⊥, T 〉 〈T, T 〉ω) = T
erlSOR(〈⊥, T 〉 〈F, T 〉ω) = T
erlSOR(〈⊥, F 〉 〈T, F 〉ω) = T
erlSOR(〈⊥, F 〉 〈F, F 〉ω) = F.

• epSOR≤i elrSOR≤i lpSOR
• epSOR≤i erlSOR≤i lpSOR
• elrSOR and erlSOR are incomparable.

19

COMPOSITION

esLOR : Bool2 → Bool
lpPOR : Bool×Bool→ Bool

̂curry(lpPOR) : Bool→ Bool→ Bool
̂curry(lpPOR) ◦̄ esLOR : Bool2 → Bool→ Bool

This composite algorithm is characterized by:

a(〈⊥,⊥〉ω)(⊥nT ω) = T
a(〈T,⊥〉ω)(⊥ω) = T
a(〈F,⊥〉 〈F, T 〉ω)(⊥ω) = T
a(〈F,⊥〉 〈F, F 〉ω)(⊥nF ω) = F

for all n ≥ 0.

Note the composite computation strategy:
eager sequential in the first argument, lazy in
the second.

20

DE MORGAN ALGORITHMS

• Let lNEG and eNEG be the most lazy and
most eager algorithms for boolean negation:

lNEG(⊥nT ω) = F (n ≥ 0)
lNEG(⊥nF ω) = T (n ≥ 0)
eNEG(T ω) = F, eNEG(F ω) = T

• Let dual be the function

λa . lNEG ◦̄ a ◦̄ (lNEG× lNEG).

This transforms an algorithm a for a binary
truth function f into an algorithm for the
dual of f , and interchanges the roles of T
and F in the computation strategy.

• For example, dual(esLOR) = esLAND.

• Let DUAL be the canonical algorithm for dual.

• lNEG ◦̄ lNEG is the identity algorithm, and
so is DUAL ◦̄ DUAL.

• Using eNEG instead of lNEG can alter the
computation strategy:

eNEG ◦̄ lpPOR ◦̄ (eNEG× eNEG) = epAND.

21

SIMPLY TYPED LAMBDA
CALCULUS

• Let ρ range over a set of atomic types.

• The set Type of simple types is defined by:

τ ::= ρ | τ1 × τ2 | τ → τ ′.

• Let c range over a set Con of constants and
X range over a set Ide of identifiers. Each
constant c has a given type τc.

• The set of raw terms is defined by:

M ::= c | X | M1M2 | λX :τ.M |
(M1,M2) | fst M | snd M.

• A type environment is a finite partial func-
tion w from Ide to Type.

• A type judgement has form w `M : τ .

22

TYPE JUDGEMENTS

w ` c : τc

when X ∈ dom(w)
w ` X : w[[X]]

w `M1 : (τ → τ ′) w `M2 : τ

w `M1M2 : τ ′

w[τ/X] `M ′ : τ ′

w ` (λX :τ.M ′) : τ → τ ′

w `M1 : τ1 w `M2 : τ2
w ` (M1,M2) : τ1 × τ2

w `M : τ1 × τ2
w ` fst M : τ1

w `M : τ1 × τ2
w ` snd M : τ2

23

TYPE INTERPRETATIONS

• Assume given a domain Aρ for each atomic
type ρ.

• The extensional and intensional type inter-
pretations

E = (Eτ | τ ∈ Type)
I = (Iτ | τ ∈ Type)

are defined by:

Eρ = Aρ

Eτ1×τ2 = Eτ1 × Eτ2

Eτ→τ ′ = Eτ → Eτ ′

Iρ = Aρ

Iτ1×τ2 = Iτ1 × Iτ2
Iτ→τ ′ = Iτ →i Iτ ′.

• Products and exponentiations are taken in
CONT and ALG, respectively.

• Iτ →i Iτ ′ = TIτ → Iτ ′.

24

ENVIRONMENTS

Let w be a type environment.

• An extensional w-environment maps each
identifier in scope to an extensional value
of appropriate type:

EnvEw = ΠX∈dom(w)Ew[[X]].

•When w ` M : τ the extensional meaning
of M is a function from EnvEw to Eτ .

• An intensional w-environment maps each
identifier in scope to an intensional value of
appropriate type:

EnvIw = ΠX∈dom(w)Iw[[X]].

•When w `M : τ the intensional meaning of
M is an algorithm from EnvIw to Iτ .

• Since T preserves finite products,

T (EnvIw) = ΠX∈dom(w)TIw[[X]],

so identifiers get bound to computations in
the intensional semantics.

25

EXTENSIONAL SEMANTICS

• Assume given an extensional interpretation

[[c]]E ∈ Eτc

for each constant c.

• The extensional semantics is the family of
semantic functions

Ew,τ : Termw,τ → (EnvEw → Eτ)

defined by:

E [[c]]ε = [[c]]E
E [[X]]ε = ε[[X]]

E [[M1M2]]ε = (app ◦ 〈E [[M1]], E [[M2]]〉)ε
= (E [[M1]]ε)(E [[M2]]ε)

E [[λX :τ.M]]ε = curry(E [[M]])ε
= λe ∈ Eτ .E [[M]](ε[e/X])

E [[(M1,M2)]]ε = (E [[M1]]ε, E [[M2]]ε)
E [[fst M]]ε = π1(E [[M]]ε)
E [[snd M]]ε = π2(E [[M]]ε).

26

INTENSIONAL SEMANTICS

• Assume given an intensional interpretation

[[c]]I ∈ Iτc

for each constant c.

• The intensional semantics is the family of
semantic functions

Iw,τ : Termw,τ → (TEnvIw → Iτ)

defined by:

I[[c]]ι = [[c]]I
I[[X]]ι = val(ι[[X]])

I[[M1M2]]ι = (âpp ◦̄ 〈I[[M1]], I[[M2]]〉)ι
= (I[[M1]]ι)(T (I[[M2]])(pre ι))

I[[λX :τ.M]]ι = ̂curry(I[[M]])ι
= λt ∈ TIτ .I[[M]](ι[t/X])

I[[(M1,M2)]]ι = (I[[M1]]ι, I[[M2]]ι)
I[[fst M]]ι = π1(I[[M]]ι)
I[[snd M]]ι = π2(I[[M]]ι).

27

RELATING TYPE
INTERPRETATIONS

Define a type-indexed family of relations

∼τ ⊆ Iτ × Eτ

by:

∼ρ = idAρ
∼τ1×τ2 = {((i1, i2), (e1, e2)) | i1 ∼τ1 e1 & i2 ∼τ2 e2}
∼τ→τ ′ = {(a, f) | ∀(i, e) ∈ Iτ × Eτ .

i ∼τ e ⇒ fun(a)i ∼τ ′ f (e)}

PROPERTIES

• Algorithm compositions relate to function
compositions:

a ∼τ→τ ′ f & a′ ∼τ ′→τ ′′ f ′ ⇒ (a′◦̄a) ∼τ→τ ′′ (f ′◦f).

• Currying of algorithms relates to currying of
functions:

a ∼τ1×τ2→τ ′ f ⇒ ̂curry(a) ∼τ1→(τ2→τ ′) curry(f).

28

RELATING ENVIRONMENTS

Let w be a type environment, ι ∈ TEnvIw,
ε ∈ EnvEw.

DEFINITION

ι ∼ ε iff for all X : τ ∈ w, there is a pair (i, e) ∈
Iτ × Eτ such that ι[[X]] = path i, ε[[X]] = e,
and i ∼τ e.

So ι relates to ε iff for all relevant identifiers
X , ι[[X]] is a degenerate computation of an
intensional value that relates to the extensional
value ε[[X]].

This is similar to a logical relation, but not
identical because of the use of fun.

29

RELATING SEMANTICS

INTUITION

Whenever ι ∼ ε, the intensional meaning of a
well-typed term in ι relates to its extensional
meaning in ε.

PROPOSITION

• Assume that for each constant c,
[[c]]I ∼τc [[c]]E.

• Then for all M ∈ Termw,τ ,
all ι ∈ TEnvIw, and all ε ∈ EnvEw,

ι ∼ ε ⇒ I[[M]]ι ∼τ E [[M]]ε.

PROOF:
by induction on the proof of w `M : τ .

30

EXT and INT

DEFINITION

Define two type-indexed families of functions

extτ : Iτ → Eτ intτ : Eτ → Iτ

by induction on τ :

• For ρ ∈ Atomic, extρ and intρ are the
identity function.

• For product types:

extτ1×τ2 = extτ1× extτ2 intτ1×τ2 = intτ1× intτ2 .

• For an exponentiation τ → τ ′ let:

extτ→τ ′ = λa . extτ ′ ◦ fun(a) ◦ intτ
intτ→τ ′ = λf . alg(intτ ′ ◦f ◦ extτ).

TERMINOLOGY

• extτ(a) is the extension of a.

• intτ(e) is the intension of e.

31

PROPERTIES of EXT and INT

• Atomic types have no (extra) intensional
content.

•When τ is a product of atomic types extτ→τ ′
is fun, and intτ→τ ′ is alg.

• For each τ , Eτ is a retract of Iτ :
for all e ∈ Eτ and all a ∈ Iτ ,

e = extτ(intτ e),
a≤i intτ(extτ a).

Thus every extensional value is the extension
of some intensional value.

32

EXTENSIONAL EQUIVALENCE

DEFINITION

• a1 is extensionally below a2, written a1 ≤e
a2, iff extτ a1 ≤ extτ a2.

• a1 and a2 are extensionally equivalent, writ-
ten a1 =e a2, iff they have the same exten-
sion.

PROPOSITION

• For all a1, a2 ∈ Iτ , a1≤i a2 implies a1≤e a2.

• Hence, the quotient of Iτ by extensional equiv-
alence is isomorphic to Eτ , with extτ and
intτ inducing the isomorphism:

(Iτ ,≤i)/=e ∼= (Eτ ,≤).

• For all a1, a2 ∈ Iτ→τ ′, a1 ≤io a2 implies
a1 ≤e a2.

33

CORRESPONDENCE THEOREM

PROPOSITION

For all τ , and all i ∈ Iτ and e ∈ Eτ ,

• i ∼τ e ⇒ e = extτ i.

• intτ e ∼τ e.

COROLLARY

Assume that for all c ∈ Con, [[c]]I ∼τc [[c]]E.
Then for all M ∈ Termw,τ and all ι ∈ TEnvIw,
ε ∈ EnvEw, ι ∼ ε ⇒ extτ(I[[M]]ι) = E [[M]]ε.

INTUITION

• For a well-typed term M and all suitably
related intensional and extensional environ-
ments, the extensional meaning of M is the
extension of its intensional meaning.

• The extensional semantics is faithfully
embedded in the intensional semantics.

34

INTENSIONAL MODELS of PCF

• Choose an intensional interpretation for each
PCF constant: e.g.

– a particular sequential algorithm

– a most eager parallel algorithm

– a most lazy parallel algorithm

for the corresponding function.

• The corresponding intensional model of PCF
will relate sensibly to the standard exten-
sional model.

• For any well-typed closed PCF term, the
extension of its intensional meaning is the
same as its extensional meaning.

• This holds even for terms using the Y -operator,
relating the meaning of recursively defined
algorithms and functions.

35

GENERALITY of APPROACH

• Berry-Curien sequential algorithms can be
embedded in the parallel algorithms model.

• Can vary the extensional category, e.g.

– effectively given domains and computable
functions

– concrete domains and sequential functions

– dI-domains and stable functions

• Can vary the comonad, e.g.

– non-decreasing sequences

– increasing sequences

– finite and infinite sequences

– timed data

36

REFERENCES

• Computational Comonads and Intensional Seman-

tics, by S. Brookes and S. Geva. In: Applications of

Categories in Computer Science, LMS Lecture Notes

vol. 177, Cambridge University Press, 1992.

• Continuous Functions and Parallel Algorithms on

Generalized Concrete Data Structures, by S. Brookes

and S. Geva. In: Mathematical Foundations of Pro-

gramming Semantics (MFPS’91), Springer-Verlag LNCS

vol. 598, 1992.

• A Cartesian Closed Category of Parallel Algo-

rithms on Scott Domains, by S. Brookes and S.

Geva. In: Semantics of Programming Languages and

Model Theory, Gordon and Breach Science Publish-

ers, 1992.

• Towards a Theory of Parallel Algorithms on Con-

crete Data Structures, by S. Brookes and S. Geva.

In Semantics for Concurrency (Leicester 1990), Springer-

Verlag, 1991. Extended version in Theoretical Com-

puter Science, 1992.

37

