TOWARDS A THEORY OF INTENSIONAL SEMANTICS

Stephen Brookes Shai Geva

Carnegie Mellon University School of Computer Science Pittsburgh Pa 15213

EXTENSIONAL SEMANTICS

EXAMPLES

- state transformation semantics for while-programs
- Scott model of simply typed λ -calculus

FEATURES

- ignores computation details
- models only input-output behavior
- supports reasoning about familiar *extensional* properties
 - Hoare logic for partial correctness
 - -LCF
- can use to show correctness-preservation for program transformations
- cannot distinguish between programs with same input-output behavior
- cannot reason about *intensional* properties

INTENSIONAL SEMANTICS

EXAMPLES

- Berry-Curien sequential algorithms on concrete data structures
- Brookes-Geva parallel algorithms on generalized concrete data structures

FEATURES

- models computation strategy
- reasoning about intensional properties
 - order of evaluation
 - degree of parallelism
- can use to show efficiency-improvement of program transformations
- can recover extensional from intensional
- algorithm = function + computation strategy
- intensional models tend to be more concrete

RESEARCH AIMS

Develop a theory of intensional semantics:

- allow semantics at differing levels of abstraction
- show relationships between different models of the same programming language
- show relationship to existing intensional and extensional models
- use intensional semantics to reason about efficiency

THESIS

Category theory provides a general framework:

- \bullet extensional semantics in a category ${\cal C}$
- \bullet data types as objects of ${\cal C}$
- \bullet extensional meanings as morphisms in ${\cal C}$
- \bullet notion of computation as a comonad T
- intensional semantics in Kleisli category \mathcal{C}_T
- intensional meanings as morphisms in \mathcal{C}_T

COMONADS

DEFINITION

A comonad over a category \mathcal{C} is a (co-)triple (T, ϵ, δ) where

- $T: \mathcal{C} \to \mathcal{C}$ is a functor
- $\epsilon: T \rightarrow I_{\mathcal{C}}$ is a natural transformation
- $\delta: T \xrightarrow{\cdot} T^2$ is a natural transformation

and for every object A the following associativity and identity laws hold:

$$T(\delta_A) \circ \delta_A = \delta_{TA} \circ \delta_A$$

$$\epsilon_{TA} \circ \delta_A = T(\epsilon_A) \circ \delta_A = \operatorname{id}_{TA}.$$

INTUITION

- TA is a datatype of computations over A.
- ϵt is the value computed by t.
- δt is a computation over TA that computes t.

KLEISLI CATEGORIES

DEFINITION

Given a comonad (T, ϵ, δ) over C, the *Kleisli* category C_T is defined by:

- The objects of \mathcal{C}_T are the objects of \mathcal{C} .
- The morphisms from A to B in C_T are the morphisms from TA to B in C.
- The identity morphism $\widehat{\mathsf{id}}_A$ on A in \mathcal{C}_T is $\epsilon_A : TA \to^{\mathcal{C}} A$.
- The composition in \mathcal{C}_T of $a : A \to^{\mathcal{C}_T} B$ and $a' : B \to^{\mathcal{C}_T} C$ is

$$a' \,\overline{\circ}\, a = a' \circ T a \circ \delta_A.$$

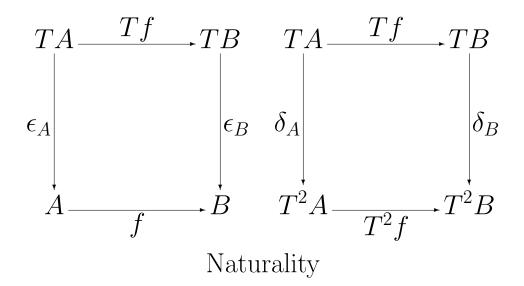
TERMINOLOGY

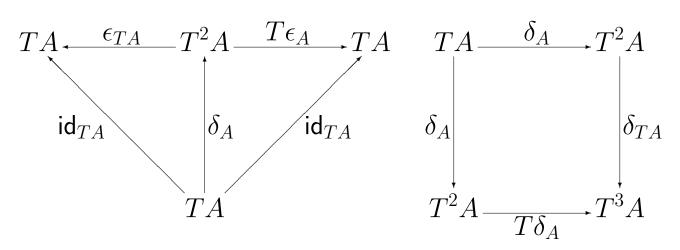
A morphism in \mathcal{C}_T is an *algorithm*.

INTUITION

- The intensional meaning of a program is a function from input computations to output values.
- Programs operate in demand-driven, coroutine-like manner (Kahn-MacQueen)
 - program responds to a request for output by performing input computation until it has enough information to determine what output value to produce
- The identity algorithm from A to A simply evaluates its input.
- $a' \bar{\circ} a$ behaves like a' using a to generate input.
- A similar, but sequential, operational model is used by Berry and Curien.

COMONAD DIAGRAMS





Identity and associativity laws

COMPUTATIONAL COMONADS

DEFINITION

A computational comonad over a category C is a quadruple $(T, \epsilon, \delta, \gamma)$ such that

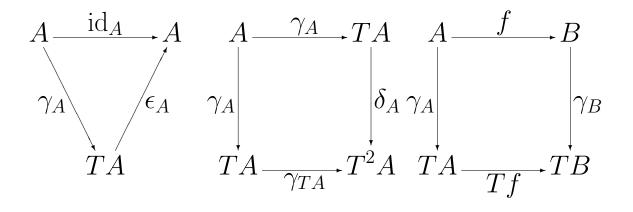
- (T, ϵ, δ) is a comonad over \mathcal{C}
- $\gamma: I_{\mathcal{C}} \to T$ is a natural transformation such that, for every object A,

$$-\epsilon_A \circ \gamma_A = \mathsf{id}_A$$

$$-\delta_A \circ \gamma_A = \gamma_{TA} \circ \gamma_A.$$

INTUITION

 γx is a degenerate computation that computes x.



RELATING ALGORITHMS AND FUNCTIONS

Let $(T, \epsilon, \delta, \gamma)$ be a computational comonad.

DEFINITION

The functors alg and fun between C and C_T are given by:

- alg : $\mathcal{C} \to \mathcal{C}_T$ is the identity on objects;
- $\operatorname{alg}(f) = f \circ \epsilon_A$, for every $f : A \to^{\mathcal{C}} B$;
- fun : $\mathcal{C}_T \to \mathcal{C}$ is the identity on objects;
- $\operatorname{fun}(a) = a \circ \gamma_A$, for all $a : A \to^{\mathcal{C}_T} B$.

TERMINOLOGY

- fun(a) is the input-output function of a.
- alg(f) is a (canonical) algorithm computing f.

INPUT-OUTPUT EQUIVALENCE

• fun induces an *input-output equivalence* relation $=^{io}$ on C_T :

$$a_1 \stackrel{io}{=} a_2 \iff \operatorname{fun}(a_1) = \operatorname{fun}(a_2).$$

- This relation is a congruence: $a_1 = {}^{io} a_2 \& a'_1 = {}^{io} a'_2 \implies a'_1 \bar{\circ} a_1 = {}^{io} a'_2 \bar{\circ} a_2.$
- The quotient category of C_T by $=^{io}$ is isomorphic to C.
- For all $f : A \to^{\mathcal{C}} B$, $\mathsf{fun}(\mathsf{alg } f) = f$.
- For all $a : A \to^{\mathcal{C}_T} B$, $alg(fun a) =^{io} a$.

PROPERTIES of KLEISLI CATEGORIES

PROPOSITION

If C has distinguished finite products and projections π_i , then C_T has distinguished finite products, with projections

$$\widehat{\pi}_{i} : A_{1} \times A_{2} \to^{\mathcal{C}_{T}} A_{i}
\widehat{\pi}_{i} = \epsilon_{A_{i}} \circ T \pi_{i}
= \pi_{i} \circ \epsilon_{A_{1} \times A_{2}}.$$

PROPOSITION

If C is cartesian closed and T preserves finite products, then C_T is cartesian closed.

[Under more general assumptions the Kleisli category of T is weakly cartesian closed.]

ALGORITHMS ON DOMAINS

- Let **CONT** be the category of Scott domains and continuous functions.
- We define a computational comonad

```
(T, \texttt{val}, \texttt{pre}, \texttt{path})
```

over **CONT**.

- Let **ALG** be the Kleisli category of T.
- Morphisms in **ALG** can be viewed as *parallel algorithms*.
- CONT and ALG are cartesian closed.
- We give an extensional and an intensional interpretation for simply typed λ -calculus and prove a Correspondence Theorem.
- **CONT** and **ALG** are ordered categories.
- We use \leq^i for the pointwise order on algorithms.
- curry and app denote currying and application on algorithms.

COMPUTATION ON DOMAINS

- Let TD be the set of non-decreasing sequences over D, ordered componentwise.
- For $f: D \to D'$, let $Tf: TD \to TD'$ be the function that applies f componentwise:

$$(Tf)\langle d_n\rangle_{n=0}^{\infty} = \langle fd_n\rangle_{n=0}^{\infty}.$$

- For $t \in TD$ let $\operatorname{val}_D t$ be the least upper bound of t.
- For $t = \langle d_n \rangle_{n=0}^{\infty}$ let $\operatorname{pre}_D t$ be the sequence of prefixes of t: for all $k \ge 0$,

$$(\mathtt{pre}\,t)_k=d_0\ldots d_k d_k^\omega.$$

• For $d \in D$ let $\operatorname{path} d = d^{\omega}$.

INTUITION

- A computation in *TD* records a sequence of incremental steps towards a value in *D*. Idle steps are permitted.
- Every computation is the limit of its prefixes.
- A degenerate computation consists entirely of idle steps.

PARALLEL-OR

• The most eager algorithm:

$$\begin{aligned} & \operatorname{epPOR}(\langle \bot, T \rangle^{\omega}) = T \\ & \operatorname{epPOR}(\langle T, \bot \rangle^{\omega}) = T \\ & \operatorname{epPOR}(\langle F, F \rangle^{\omega}) = F \end{aligned}$$

• The laziest algorithm:

$$\begin{aligned} & \operatorname{lpPOR}(\langle \bot, \bot \rangle^n \langle \bot, T \rangle^\omega) = T \\ & \operatorname{lpPOR}(\langle \bot, \bot \rangle^n \langle T, \bot \rangle^\omega) = T \\ & \operatorname{lpPOR}(\langle \bot, \bot \rangle^n \langle F, F \rangle^\omega) = F \end{aligned}$$

for all $n \ge 0$.

•
$$epPOR \leq^{i} lpPOR.$$

LEFT-STRICT-OR

• The most eager sequential algorithm:

$$\begin{split} & \texttt{esLOR}(\langle T, \bot \rangle^{\omega}) \ = \ T \\ & \texttt{esLOR}(\langle F, \bot \rangle \langle F, T \rangle^{\omega}) \ = \ T \\ & \texttt{esLOR}(\langle F, \bot \rangle \langle F, F \rangle^{\omega}) \ = \ F. \end{split}$$

• The most eager parallel algorithm:

$\texttt{epLOR}(\langle T, \bot \rangle^\omega)$	=	T
$\texttt{epLOR}(\langle F,T\rangle^\omega)$	=	T
$\texttt{epLOR}(\langle F,F\rangle^\omega)$	=	F.

• The laziest parallel algorithm:

$$\begin{split} & \operatorname{lpLOR}(\langle \bot, \bot \rangle^n \, \langle T, \bot \rangle^{\omega}) = T \\ & \operatorname{lpLOR}(\langle \bot, \bot \rangle^n \, \langle F, \bot \rangle^m \, \langle F, T \rangle^{\omega}) = T \\ & \operatorname{lpLOR}(\langle \bot, \bot \rangle^n \, \langle F, \bot \rangle^m \, \langle F, F \rangle^{\omega}) = F \end{split}$$
for all $m, n \ge 0.$

$$ullet$$
 epLOR \leq^i esLOR \leq^i 1pLOR.

• epLOR \leq^i epPOR.

•
$$1pLOR \leq^{i} 1pPOR$$
.

DOUBLY-STRICT-OR

• The most eager parallel algorithm:

$$\begin{aligned} & \texttt{epSOR}(\langle T, T \rangle^{\omega}) &= T \\ & \texttt{epSOR}(\langle T, F \rangle^{\omega}) &= T \\ & \texttt{epSOR}(\langle F, T \rangle^{\omega}) &= T \\ & \texttt{epSOR}(\langle F, F \rangle^{\omega}) &= F. \end{aligned}$$

• The laziest parallel algorithm:

$$\begin{split} & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle T, \bot \rangle^n \langle T, T \rangle^{\omega}) = T \\ & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle \bot, T \rangle^n \langle T, T \rangle^{\omega}) = T \\ & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle T, \bot \rangle^n \langle T, F \rangle^{\omega}) = T \\ & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle \bot, F \rangle^n \langle T, F \rangle^{\omega}) = T \\ & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle F, \bot \rangle^n \langle F, T \rangle^{\omega}) = T \\ & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle \bot, T \rangle^n \langle F, T \rangle^{\omega}) = T \\ & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle T, \bot \rangle^n \langle T, T \rangle^{\omega}) = T \\ & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle \bot, T \rangle^n \langle T, T \rangle^{\omega}) = T \\ & \operatorname{lpSOR}(\langle \bot, \bot \rangle^m \langle \bot, T \rangle^n \langle T, T \rangle^{\omega}) = T \end{split}$$

for all $m, n \ge 0$.

DOUBLY-STRICT-OR

• The most eager sequential left-right algorithm:

$$\begin{aligned} &\operatorname{elrSOR}(\langle T, \bot \rangle \langle T, T \rangle^{\omega}) = T \\ &\operatorname{elrSOR}(\langle T, \bot \rangle \langle T, F \rangle^{\omega}) = T \\ &\operatorname{elrSOR}(\langle F, \bot \rangle \langle F, T \rangle^{\omega}) = T \\ &\operatorname{elrSOR}(\langle F, \bot \rangle \langle F, F \rangle^{\omega}) = F. \end{aligned}$$

• The most eager sequential right-left algorithm:

 $\begin{aligned} &\texttt{erlSOR}(\langle \bot, T \rangle \langle T, T \rangle^{\omega}) = T \\ &\texttt{erlSOR}(\langle \bot, T \rangle \langle F, T \rangle^{\omega}) = T \\ &\texttt{erlSOR}(\langle \bot, F \rangle \langle T, F \rangle^{\omega}) = T \\ &\texttt{erlSOR}(\langle \bot, F \rangle \langle F, F \rangle^{\omega}) = F. \end{aligned}$

ullet epSOR \leq^i elrSOR \leq^i lpSOR

- ullet epSOR \leq^i erlSOR \leq^i lpSOR
- **elrSOR** and **erlSOR** are incomparable.

COMPOSITION

$$\begin{array}{l} \texttt{esLOR} \ : \mathbf{Bool}^2 \to \mathbf{Bool} \\ \texttt{lpPOR} \ : \mathbf{Bool} \times \mathbf{Bool} \to \mathbf{Bool} \\ \texttt{curry}(\texttt{lpPOR}) \ : \mathbf{Bool} \to \mathbf{Bool} \to \mathbf{Bool} \\ \texttt{curry}(\texttt{lpPOR}) \ \bar{\texttt{o}} \ \texttt{esLOR} \ : \mathbf{Bool}^2 \to \mathbf{Bool} \to \mathbf{Bool} \end{array}$$

This composite algorithm is characterized by:

$$a(\langle \bot, \bot \rangle^{\omega})(\bot^{n}T^{\omega}) = T$$

$$a(\langle T, \bot \rangle^{\omega})(\bot^{\omega}) = T$$

$$a(\langle F, \bot \rangle \langle F, T \rangle^{\omega})(\bot^{\omega}) = T$$

$$a(\langle F, \bot \rangle \langle F, F \rangle^{\omega})(\bot^{n}F^{\omega}) = F$$

for all $n \ge 0$.

Note the composite computation strategy: eager sequential in the first argument, lazy in the second.

DE MORGAN ALGORITHMS

• Let **INEG** and **eNEG** be the most lazy and most eager algorithms for boolean negation:

$$\begin{split} & \operatorname{lneg}(\bot^n T^\omega) \ = \ F \quad (n \ge 0) \\ & \operatorname{lneg}(\bot^n F^\omega) \ = \ T \quad (n \ge 0) \\ & \operatorname{eneg}(T^\omega) \ = \ F, \ \operatorname{eneg}(F^\omega) \ = \ T \end{split}$$

• Let **dual** be the function

 λa . INEG $\overline{\circ} a \overline{\circ} ($ INEG \times INEG).

This transforms an algorithm a for a binary truth function f into an algorithm for the dual of f, and interchanges the roles of Tand F in the computation strategy.

- For example, dual(esLOR) = esLAND.
- Let **DUAL** be the canonical algorithm for **dual**.
- **INEG** $\overline{\circ}$ **INEG** is the identity algorithm, and so is **DUAL** $\overline{\circ}$ **DUAL**.
- Using eNEG instead of 1NEG can alter the computation strategy:
 eNEG \overline 1pPOR \overline (eNEG \times eNEG) = epAND.

SIMPLY TYPED LAMBDA CALCULUS

- Let ρ range over a set of *atomic types*.
- The set **Type** of simple *types* is defined by: $\tau ::= \rho \mid \tau_1 \times \tau_2 \mid \tau \to \tau'.$
- Let c range over a set **Con** of constants and X range over a set **Ide** of *identifiers*. Each constant c has a given type τ_c .
- The set of *raw terms* is defined by:

$$M ::= c \mid X \mid M_1M_2 \mid \lambda X : \tau.M \mid$$
$$(M_1, M_2) \mid \texttt{fst} \ M \mid \texttt{snd} \ M.$$

- A type environment is a finite partial function w from **Ide** to **Type**.
- A type judgement has form $w \vdash M : \tau$.

TYPE JUDGEMENTS

$$\label{eq:constraint} \begin{split} \overline{w \vdash c:\tau_c} \\ \overline{w \vdash X:w[\![X]\!]} & \text{when } X \in \operatorname{dom}(w) \\ \\ \underline{w \vdash M_1:(\tau \to \tau') \quad w \vdash M_2:\tau} \\ w \vdash M_1M_2:\tau' \\ \\ \frac{w[\tau/X] \vdash M':\tau'}{w \vdash (\lambda X:\tau.M'):\tau \to \tau'} \\ \\ \frac{w \vdash M_1:\tau_1 \quad w \vdash M_2:\tau_2}{w \vdash (M_1,M_2):\tau_1 \times \tau_2} \\ \\ \\ \frac{w \vdash M:\tau_1 \times \tau_2}{w \vdash \operatorname{fst} M:\tau_1} & \frac{w \vdash M:\tau_1 \times \tau_2}{w \vdash \operatorname{snd} M:\tau_2} \end{split}$$

TYPE INTERPRETATIONS

- Assume given a domain A_{ρ} for each atomic type ρ .
- The extensional and intensional type interpretations

$$E = (E_{\tau} \mid \tau \in \mathbf{Type})$$
$$I = (I_{\tau} \mid \tau \in \mathbf{Type})$$

are defined by:

$$E_{\rho} = A_{\rho} \qquad I_{\rho} = A_{\rho}$$

$$E_{\tau_1 \times \tau_2} = E_{\tau_1} \times E_{\tau_2} \qquad I_{\tau_1 \times \tau_2} = I_{\tau_1} \times I_{\tau_2}$$

$$E_{\tau \to \tau'} = E_{\tau} \to E_{\tau'} \qquad I_{\tau \to \tau'} = I_{\tau} \to^i I_{\tau'}.$$

- Products and exponentiations are taken in **CONT** and **ALG**, respectively.
- $I_{\tau} \to^i I_{\tau'} = TI_{\tau} \to I_{\tau'}.$

ENVIRONMENTS

Let w be a type environment.

• An extensional *w*-environment maps each identifier in scope to an extensional value of appropriate type:

$$\operatorname{Env}_{Ew} = \prod_{X \in \operatorname{dom}(w)} E_{w[\![X]\!]}.$$

- When $w \vdash M : \tau$ the extensional meaning of M is a function from Env_{Ew} to E_{τ} .
- An intensional *w*-environment maps each identifier in scope to an intensional value of appropriate type:

 $\operatorname{Env}_{Iw} = \prod_{X \in \operatorname{dom}(w)} I_{w[\![X]\!]}.$

- When $w \vdash M : \tau$ the intensional meaning of M is an algorithm from Env_{Iw} to I_{τ} .
- Since T preserves finite products,

$$T(\operatorname{Env}_{Iw}) = \prod_{X \in \operatorname{dom}(w)} TI_{w[X]},$$

so identifiers get bound to *computations* in the intensional semantics.

EXTENSIONAL SEMANTICS

• Assume given an extensional interpretation $[\![c]\!]_E \in E_{\tau_c}$

for each constant c.

• The extensional semantics is the family of semantic functions

 $\begin{aligned} \mathcal{E}_{w,\tau} : \mathbf{Term}_{w,\tau} &\to (\operatorname{Env}_{Ew} \to E_{\tau}) \\ \text{defined by:} \\ & \mathcal{E}\llbracket c \rrbracket \epsilon = \llbracket c \rrbracket_E \\ & \mathcal{E}\llbracket X \rrbracket \epsilon = \epsilon \llbracket X \rrbracket \\ & \mathcal{E}\llbracket M_1 M_2 \rrbracket \epsilon = (\operatorname{app} \circ \langle \mathcal{E}\llbracket M_1 \rrbracket, \mathcal{E}\llbracket M_2 \rrbracket \rangle) \epsilon \\ &= (\mathcal{E}\llbracket M_1 \rrbracket \epsilon) (\mathcal{E}\llbracket M_2 \rrbracket \epsilon) \\ & \mathcal{E}\llbracket \lambda X : \tau. M \rrbracket \epsilon = \operatorname{curry} (\mathcal{E}\llbracket M \rrbracket) \epsilon \\ &= \lambda e \in E_{\tau}. \mathcal{E}\llbracket M \rrbracket (\epsilon [e/X]) \\ & \mathcal{E}\llbracket (M_1, M_2) \rrbracket \epsilon = (\mathcal{E}\llbracket M_1 \rrbracket \epsilon, \mathcal{E}\llbracket M \rrbracket (\epsilon [e/X])) \\ & \mathcal{E}\llbracket \operatorname{fst} M \rrbracket \epsilon = \pi_1 (\mathcal{E}\llbracket M \rrbracket \epsilon) \\ & \mathcal{E}\llbracket \operatorname{snd} M \rrbracket \epsilon = \pi_2 (\mathcal{E}\llbracket M \rrbracket \epsilon). \end{aligned}$

INTENSIONAL SEMANTICS

• Assume given an intensional interpretation $\llbracket c \rrbracket_I \in I_{\tau_c}$

for each constant c.

• The intensional semantics is the family of semantic functions

 $\mathcal{I}_{w,\tau}: \mathbf{Term}_{w,\tau} \to (T \operatorname{Env}_{Iw} \to I_{\tau})$

defined by:

$$\begin{split} \mathcal{I}\llbracket c \rrbracket \iota &= \llbracket c \rrbracket_I \\ \mathcal{I}\llbracket X \rrbracket \iota &= \operatorname{val}(\iota\llbracket X \rrbracket) \\ \mathcal{I}\llbracket M_1 M_2 \rrbracket \iota &= (\widehat{\operatorname{app}} \mathbin{\bar{\circ}} \langle \mathcal{I}\llbracket M_1 \rrbracket, \mathcal{I}\llbracket M_2 \rrbracket \rangle) \iota \\ &= (\mathcal{I}\llbracket M_1 \rrbracket \iota) (T(\mathcal{I}\llbracket M_2 \rrbracket) (\operatorname{pre} \iota)) \\ \mathcal{I}\llbracket \lambda X : \tau. M \rrbracket \iota &= \operatorname{curry}(\mathcal{I}\llbracket M \rrbracket) \iota \\ &= \lambda t \in TI_{\tau}. \mathcal{I}\llbracket M \rrbracket (\iota[t/X]) \\ \mathcal{I}\llbracket (M_1, M_2) \rrbracket \iota &= (\mathcal{I}\llbracket M_1 \rrbracket \iota, \mathcal{I}\llbracket M \rrbracket (\iota[t/X]) \\ \mathcal{I}\llbracket \operatorname{fst} M \rrbracket \iota &= \pi_1(\mathcal{I}\llbracket M \rrbracket \iota) \\ \mathcal{I}\llbracket \operatorname{snd} M \rrbracket \iota &= \pi_2(\mathcal{I}\llbracket M \rrbracket \iota). \end{split}$$

RELATING TYPE INTERPRETATIONS

Define a type-indexed family of relations

$$\sim_{\tau} \subseteq I_{\tau} \times E_{\tau}$$

by:

$$\begin{array}{rcl} \sim_{\rho} &=& \operatorname{id}_{A\rho} \\ \sim_{\tau_{1}\times\tau_{2}} &=& \{((i_{1},i_{2}),(e_{1},e_{2})) \mid i_{1}\sim_{\tau_{1}}e_{1} \& i_{2}\sim_{\tau_{2}}e_{2}\} \\ \sim_{\tau\to\tau'} &=& \{(a,f) \mid \forall (i,e) \in I_{\tau} \times E_{\tau}. \\ & & i \sim_{\tau} e \implies \operatorname{fun}(a)i \sim_{\tau'} f(e)\} \end{array}$$

PROPERTIES

• Algorithm compositions relate to function compositions:

 $a \sim_{\tau \to \tau'} f \& a' \sim_{\tau' \to \tau''} f' \Rightarrow (a' \bar{\circ} a) \sim_{\tau \to \tau''} (f' \circ f).$

• Currying of algorithms relates to currying of functions:

$$a \sim_{\tau_1 \times \tau_2 \to \tau'} f \Rightarrow \operatorname{curry}(a) \sim_{\tau_1 \to (\tau_2 \to \tau')} \operatorname{curry}(f).$$

RELATING ENVIRONMENTS

Let w be a type environment, $\iota \in T \operatorname{Env}_{Iw}$, $\epsilon \in \operatorname{Env}_{Ew}$.

DEFINITION

 $\iota \sim \epsilon$ iff for all $X : \tau \in w$, there is a pair $(i, e) \in I_{\tau} \times E_{\tau}$ such that $\iota[X] = \operatorname{path} i, \epsilon[X] = e$, and $i \sim_{\tau} e$.

So ι relates to ϵ iff for all relevant identifiers X, $\iota[\![X]\!]$ is a degenerate computation of an intensional value that relates to the extensional value $\epsilon[\![X]\!]$.

This is similar to a *logical relation*, but not identical because of the use of fun.

RELATING SEMANTICS

INTUITION

Whenever $\iota \sim \epsilon$, the intensional meaning of a well-typed term in ι relates to its extensional meaning in ϵ .

PROPOSITION

- Assume that for each constant c, $\llbracket c \rrbracket_I \sim_{\tau_c} \llbracket c \rrbracket_E$.
- Then for all $M \in \mathbf{Term}_{w,\tau}$, all $\iota \in T \operatorname{Env}_{Iw}$, and all $\epsilon \in \operatorname{Env}_{Ew}$,

$$\iota \sim \epsilon \; \Rightarrow \; \mathcal{I}\llbracket M \rrbracket \iota \sim_{\tau} \mathcal{E}\llbracket M \rrbracket \epsilon.$$

PROOF:

by induction on the proof of $w \vdash M : \tau$.

EXT and INT

DEFINITION

Define two type-indexed families of functions

 $\operatorname{ext}_{\tau}: I_{\tau} \to E_{\tau} \qquad \operatorname{int}_{\tau}: E_{\tau} \to I_{\tau}$

by induction on τ :

- For $\rho \in \text{Atomic}$, ext_{ρ} and int_{ρ} are the identity function.
- For product types:

 $\operatorname{ext}_{ au_1 imes au_2} = \operatorname{ext}_{ au_1} imes\operatorname{ext}_{ au_2} \qquad \operatorname{int}_{ au_1 imes au_2} = \operatorname{int}_{ au_1} imes\operatorname{int}_{ au_2}.$

• For an exponentiation $\tau \to \tau'$ let:

 $\begin{aligned} \mathsf{ext}_{\tau \to \tau'} &= \lambda a \ . \ \mathsf{ext}_{\tau'} \circ \mathsf{fun}(a) \circ \mathsf{int}_{\tau} \\ \mathsf{int}_{\tau \to \tau'} &= \lambda f \ . \ \mathsf{alg}(\mathsf{int}_{\tau'} \circ f \circ \mathsf{ext}_{\tau}). \end{aligned}$

TERMINOLOGY

- $ext_{\tau}(a)$ is the *extension* of a.
- $\operatorname{int}_{\tau}(e)$ is the *intension* of e.

PROPERTIES of EXT and INT

- Atomic types have no (extra) intensional content.
- When τ is a product of atomic types $ext_{\tau \to \tau'}$ is fun, and $int_{\tau \to \tau'}$ is alg.
- For each τ , E_{τ} is a retract of I_{τ} : for all $e \in E_{\tau}$ and all $a \in I_{\tau}$, $e = \operatorname{ext}_{\tau}(\operatorname{int}_{\tau} e),$ $a \leq^{i} \operatorname{int}_{\tau}(\operatorname{ext}_{\tau} a).$

Thus every extensional value is the extension of some intensional value.

EXTENSIONAL EQUIVALENCE

DEFINITION

- a_1 is extensionally below a_2 , written $a_1 \leq^e a_2$, iff $ext_{\tau} a_1 \leq ext_{\tau} a_2$.
- a_1 and a_2 are extensionally equivalent, written $a_1 = a_2$, iff they have the same extension.

PROPOSITION

- For all $a_1, a_2 \in I_{\tau}, a_1 \leq^i a_2$ implies $a_1 \leq^e a_2$.
- Hence, the quotient of I_{τ} by extensional equivalence is isomorphic to E_{τ} , with ext_{τ} and int_{τ} inducing the isomorphism:

$$(I_{\tau}, \leq^i)/_{=^e} \cong (E_{\tau}, \leq).$$

• For all $a_1, a_2 \in I_{\tau \to \tau'}, a_1 \leq^{io} a_2$ implies $a_1 \leq^e a_2$.

CORRESPONDENCE THEOREM

PROPOSITION

For all τ , and all $i \in I_{\tau}$ and $e \in E_{\tau}$,

- $i \sim_{\tau} e \Rightarrow e = \operatorname{ext}_{\tau} i.$
- $\operatorname{int}_{\tau} e \sim_{\tau} e$.

COROLLARY

Assume that for all $c \in \mathbf{Con}$, $[\![c]\!]_I \sim_{\tau_c} [\![c]\!]_E$. Then for all $M \in \mathbf{Term}_{w,\tau}$ and all $\iota \in T \operatorname{Env}_{Iw}$, $\epsilon \in \operatorname{Env}_{Ew}, \, \iota \sim \epsilon \implies \operatorname{ext}_{\tau}(\mathcal{I}[\![M]\!]\iota) = \mathcal{E}[\![M]\!]\epsilon$.

INTUITION

- For a well-typed term M and all suitably related intensional and extensional environments, the extensional meaning of M is the extension of its intensional meaning.
- The extensional semantics is faithfully embedded in the intensional semantics.

INTENSIONAL MODELS of PCF

- Choose an intensional interpretation for each PCF constant: e.g.
 - a particular sequential algorithm
 - a most eager parallel algorithm
 - a most lazy parallel algorithm

for the corresponding function.

- The corresponding intensional model of PCF will relate sensibly to the standard extensional model.
- For any well-typed closed PCF term, the extension of its intensional meaning is the same as its extensional meaning.
- This holds even for terms using the Y-operator, relating the meaning of recursively defined algorithms and functions.

GENERALITY of APPROACH

- Berry-Curien sequential algorithms can be embedded in the parallel algorithms model.
- Can vary the extensional category, e.g.
 - effectively given domains and computable functions
 - concrete domains and sequential functions
 - dI-domains and stable functions
- Can vary the comonad, e.g.
 - non-decreasing sequences
 - increasing sequences
 - finite and infinite sequences
 - timed data

REFERENCES

- Computational Comonads and Intensional Semantics, by S. Brookes and S. Geva. In: Applications of Categories in Computer Science, LMS Lecture Notes vol. 177, Cambridge University Press, 1992.
- Continuous Functions and Parallel Algorithms on Generalized Concrete Data Structures, by S. Brookes and S. Geva. In: Mathematical Foundations of Programming Semantics (MFPS'91), Springer-Verlag LNCS vol. 598, 1992.
- A Cartesian Closed Category of Parallel Algorithms on Scott Domains, by S. Brookes and S. Geva. In: Semantics of Programming Languages and Model Theory, Gordon and Breach Science Publishers, 1992.
- Towards a Theory of Parallel Algorithms on Concrete Data Structures, by S. Brookes and S. Geva. In Semantics for Concurrency (Leicester 1990), Springer-Verlag, 1991. Extended version in Theoretical Computer Science, 1992.