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PARALLEL PARADIGMS

• Shared memory

– concurrent reads and writes

•Asynchronous communication

– output always enabled

– input waits until data is available

– channels behave like queues

• Synchronous communication

– output waits until matching input

– input waits until matching output

– synchronized handshake
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SEMANTIC MODELS

• State-based

– sequences of state changes

(s0, s
′
0)(s1, s

′
1) . . . (sn, s′n) . . .

– “transition traces”

•Communication-based

– communication traces + book-keeping

(λ1λ2 . . . λn . . . , X)

– “failures”
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FAIRNESS

For shared-memory
or asynchronous i/o

P‖Q λ−−→ if P λ−−→ or Q λ−−→

• Assume no process left behind

• Weak (process) fairness

• Satisfied by round-robin scheduler

• Can be modelled by transition traces

• Ensures that

local stop=false in
(stop:=true ‖while ¬stop do go)

always terminates
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FAIRNESS

For synchronous i/o

P‖Q λ−−→ if P λ−−→ or Q λ−−→
P‖Q δ−→ if P h!v−−−→ & Q h?v−−−→

• Assume no process left behind,
and no synchronization ignored

• Weak (synchronizing) fairness

• Satisfied by variant of round-robin

• Not modelled by failures

• Ensures validity of fair liveness laws,
e.g.

local h in P‖(h!0; Q)‖(h?x; R)
= local h in P‖Q‖(x:=0; R)

if h 6∈ chans(P )
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THIS TALK

•A fair trace semantics for CSP

– synchronous communication

– avoids complex book-keeping

– state handled implicitly

– generalization of failures

– fully abstract

•A partial-order semantics

– synchronous pomsets

– recovering the fair traces

•Adaptability

– asynchronous communication

– shared memory
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SYNTAX

• Processes

P ::= skip | x:=e | h?x | h!e
| P1; P2 | P1‖P2 | P1 u P2
| if G fi | do G od
| if b then P1 else P2 | while b do P
| local h in P | local x=e in P

•Guarded commands

G ::= (h?x → P ) | G1�G2

NOTES

• P1 u P2 is internal choice

• G1�G2 is external choice
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ACTIONS

λ ::= x=v read
| x:=v write
| h?v input
| h!v output
| δX wait

where X ⊆ Dir = {h?, h! | h ∈ Chan}

TRACES

Finite or infinite sequences of actions

α ∈ Λ∞ = Λ+ ∪ Λω

δλ = λδ = λ

STATES

Characterized implicitly by enabling relation

s λ−−→ s′
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NOTATION

• Λ is the set of actions

• ∆ = {δX | X ⊆fin Dir}
is the set of waiting actions

• δ abbreviates δ{}
• δλ abbreviates δ{λ}

MATCHING

•match(λ1, λ2) iff {λ1, λ2} = {h?v, h!v}
•match(d1, d2) iff {d1, d2} = {h?, h!}
•match(X1, X2) iff match(d1, d2) for

some d1 ∈ X1, d2 ∈ X2
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OPERATIONAL SEMANTICS

Sketch

• State

S = Ide ⇀fin Z

• Transitions

P, s λ−−→ P ′, s′

G, s λ−−→ P ′, s′

• Termination

P, s term

• Fair executions

P, s α−−→
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TRANSITION RULES

for guarded commands

(h?x → P ), s h?v−−−→ x:=v; P, s

(h?x → P ), s δh?−−−→ (h?x → P ), s

G1, s
λ−−→ P1, s

′

G1�G2, s
λ−−→ P1, s′

λ 6∈ ∆

G2, s
λ−−→ P2, s

′

G1�G2, s
λ−−→ P2, s′

λ 6∈ ∆

G1, s
δX−−−→ G1, s G2, s

δY−−−→ G2, s

G1�G2, s
δX∪Y−−−−−→ G1�G2, s
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TRANSITION RULES

for parallel composition

P1, s
λ−−→ P ′

1, s
′

P1‖P2, s
λ−−→ P ′

1‖P2, s′

P2, s
λ−−→ P ′

2, s
′

P1‖P2, s
λ−−→ P1‖P ′

2, s
′

P1, s
λ1−−→ P ′

1, s P2, s
λ2−−→ P ′

2, s

P1‖P2, s
δ−→ P ′

1‖P
′
2, s

if match(λ1, λ2)

interleaving,
possible synchronization
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TRANSITION RULES

for local channels

P, s λ−−→ P ′, s′ chan(λ) 6= h

local h in P, s λ−−→ local h in P ′, s′

P, s δX−−−→ P ′, s

local h in P, s
δX\h−−−−→ local h in P ′, s

only non-local actions
remain visible
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TERMINATION

skip, s term

P1, s term P2, s term

P1‖P2, s term

P, s term

local h in P, s term

all parallel components
must terminate
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FAIRNESS

. . . operationally

• Can give syntax-directed definition
of the fair transition sequences of P

• A sequence for P1‖P2, s is fair iff

(i) the subsequences for P1 and P2
are each maximal (and fair)

(ii) the processes do not become blocked
on a matching pair of directions

• Maximal = finite and terminal, or infinite

• A computation is a maximal sequence
of consecutive transitions
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EXAMPLES

• h!0, s δh!−−−→ h!0, s δh!−−−→ · · · fair

• h?x, s δh?−−−→ h?x, s δh?−−−→ · · · fair
• But the computation

(h!0‖h?x), s δh!−−−→ (h!0‖h?x), s δh?−−−→ · · ·
is not fair

• Every fair computation of h!0‖h?x
has an output h!0, or an input h?v,
or a write x:=0

• Every fair computation of local h in (h!0‖h?x)
has a write x:=0
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TECHNICALITIES

• The operational definition of fairness
involves interactive computations,
that allow for state change by the
environment between actions by the
process

• The fair interactive computations
of P can be defined compositionally

• The fair interference-free computations
of P can’t be defined compositionally. . .

• . . . but form a natural subset of the
fair interactive computations

• Write P α−−→ · fair when there is a
fair interactive computation of P in
which P performs action sequence α
NOTE: we elide the state!
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DENOTATIONAL
SEMANTICS

• Define trace sets

T (P ) ⊆ Λ∞

with
T (e) ⊆ Λ∗ × Z
T (b) ⊆ Λ∗ × {true, false}
T (G) ⊆ Λ∞

by structural induction

• Based on same operational model

• Just traces for fair interactive computations

• State is implicit!
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SEMANTIC DEFINITIONS

T (skip) = {δ}

T (x:=e) = {α x:=v | (α, v) ∈ T (e)}

T (h?x) = {h?v x:=v | v ∈ Z} ∪ {(δh?)
ω}

T (h!e) = {α h!v, α(δh!)
ω | (α, v) ∈ T (e)}

T (P1; P2) = {α1α2 | α1 ∈ T (P1) & α2 ∈ T (P2)}

T (P1‖P2) = {α ∈ α1‖α2 |
α1 ∈ T (P1) & α2 ∈ T (P2) &
¬match(blocks α1, blocks α2)}

T (P1 u P2) = T (P1) ∪ T (P2)
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SEMANTIC DEFINITIONS

T (h?x → P ) = {h?v x:=v α | α ∈ T (P )}

T (G1�G2) =
{α ∈ T (G1) ∪ T (G2) | α 6∈ ∆ω}

∪ {(δX∪Y )ω | (δX)ω ∈ T (G1) & (δY )ω ∈ T (G2)}

T (if G fi) = T (G)

T (do G od) = (T (G))ω

T (if b then P1 else P2) =
T (b)true T (P1) ∪ T (b)false T (P2)

T (while b do P ) =
(T (b)true T (P ))∗ T (b)false ∪ (T (b)true T (P ))ω
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SEMANTIC DEFINITIONS

T (local h in P ) =
{α\h | α ∈ T (P ) & h 6∈ chans(α)}

T (local x = e in P ) =
{α\x | α ∈ T (P )x=v & (α, v) ∈ T (e)}
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DETAILS

• δλ = λ = λδ

• (δh?)h?v = h?v

• d ∈ blocks(α) iff αdd has suffix (δd)
ω

• α‖β is set of fairmerges, defined coinductively,
as a greatest fixed point

– interleave, allow synchronization

• local h in P “forces” synchronization on h

? α\h when α has no h?v, h!v actions

? replaces δX with δX−{h?,h!}
• local x=e in P “localizes” x

? α ∈ T (P )x=v iff α ∈ T (P ) and
no external interference on x
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EXAMPLES

• T (h!0) = {h!0} ∪ {(δh!)
ω}

• T (h?x) = {h?v x:=v | v ∈ Z} ∪ {(δh?)
ω}

• T (h!0‖h?x) given by

{α ∈ α1‖α2 |
α1 ∈ T (h!0) & α2 ∈ T (h?x) &
¬match(blocks α1, blocks α2)}

• h!0‖h?0 = {h!0 h?0, h?0 h!0, δ}
• T (local h in (h!0‖h?x)) = {x:=0}
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EXAMPLE

• Let buff 1(in, out) be

local x in
while true do (in?x; out !x)

• Behaves like a 1-place buffer

T (buff 1(in, out)) = copy∗wait ∪ copyω

where

copy = (δin?)
∗ {in?v out !v | v ∈ Z}

wait = {(δin)ω}

• Greatest (and unique!) solution to
the recursive process definition

buff 1 = local x in (in?x; out !x; buff 1)
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EXAMPLE

• Let buff 2(in, out) be

local mid in
buff 1(in,mid)‖buff 1(mid , out)

• Behaves like a 2-place buffer

T (buff 2(in, out)) = B2(ε)

B2(ε) = (δin?)
∞ {in?v β | β ∈ B2(v), v ∈ Z}

B2(v) = (δin?)
∗ out !v B2(ε)

∪ (δin?)
∗{in?v′ γ | γ ∈ B2(vv′), v′ ∈ Z}

B2(vv′) = out !v B2(v
′)

• For every prefix β of a trace in T (buff 2(in, out))

(i) βdout ! is a prefix of βdin?

(ii) 0 ≤ len(βdin?)− len(βdout !) ≤ 2
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SEMANTIC PROPERTIES

Standard CSP laws

P1‖P2 = P2‖P1
P1‖(P2‖P3) = (P1‖P2)‖P3
P‖skip = P

P u P = P
P1 u P2 = P2 u P1
P1 u (P2 u P3) = (P1 u P2) u P3

G�G = G
G1�G2 = G2�G1
G1�(G2�G3) = (G1�G2)�G3

(h?x → P1)�(h?x → P2) = h?x → (P1 u P2)

Handshake law

local h in (h!e‖h?x) = x:=e
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SEMANTIC PROPERTIES

Scope motion

local h in (P1‖P2) = P1‖(local h in P2)
if h 6∈ chans(P1)

local h in (P1; P2) = P1; (local h in P2)
if h 6∈ chans(P1)

local h in (P1; P2) = (local h in P1); P2
if h 6∈ chans(P2)
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SEMANTIC PROPERTIES

Nesting

local h1 in local h2 in P
= local h2 in local h1 in P

local h in local h in P
= local h in P

Useful abbreviation:

T (local h1, h2 in P ) =
{α\{h1, h2} | α ∈ T (P ) & h1, h2 6∈ chans(α)}
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FAIR LAWS

Inevitable Synchronization

local h in [P‖(h!0; Q)‖(h?x; R)]
= local h in [P‖(x:=0; (Q‖R))]

if h 6∈ chans(P )

Non-local Promotion

local h in [(h?x; P )‖(Q1; Q2)]
= Q1; local h in [(h?x; P )‖Q2]

if h 6∈ chans(Q1)

local h in [(h!0; P )‖(Q1; Q2)]
= Q1; local h in [(h!0; P )‖Q2]

if h 6∈ chans(Q1)

Not valid in unfair semantics
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COMPOSITIONALITY

• Semantic equivalence is compositional

• For all P1, P2, if T (P1) = T (P2) then for all
program contexts C[−], T (C[P1]) = T (C[P2]).

• A trivial consequence of the way we defined
the semantics!
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SEMANTIC PROPERTIES

Fixed point laws

while b do P
= if b then (P ; while b do P ) else skip

do G od
= if G fi; do G od

Recursive process definitions
. . . behave like greatest fixed points

(νp.F (p)) = F (νp.F (p))
Q = F (Q) ⇒ Q ⊆ νp.F (p)
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RESULTS

• Denotational matches operational

T (P ) = {α | P α−→ · fair}

PROOF
Structural induction
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RESULTS

• Traces are sensitive to deadlock

(a?x → P1)�(b?y → P2)

has (δ{a?,b?})
ω

(a?x → P1) u (b?y → P2)

has (δa?)
ω and (δb?)

ω
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RESULTS

• Full abstraction

T (P ) = T (Q) ⇔ ∀C.B(C[P ]) = B(C[Q])

where B observes communications, state changes,
and deadlock

• A program is a process executed without
interference

• B(P ) =def {α ∈ T (P ) | α interference-free}
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SUMMARY

• Trace semantics given denotationally,
so supports compositional reasoning

• Validates natural laws based on fairness,
allowing calculational reasoning about safety
and liveness

• Recursion and fixed-point reasoning
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AN EXAMPLE

• Dining Cryptographers

• Trace semantics used to establish that
a protocol ensures anonymity

• Expressed as equational properties

P [Q1] = P [Q2]
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RELATED WORK

• Traditional CSP models

– used finite traces and prefix-closure

– cannot model fairness

– treat divergence as catastrophic

• Traces subsume (stable) failures

(α, R) ∈ F(P ) ⇔ α(δX)ω ∈ T (P )

for some X such that ¬match(X,R)

• Older’s models

– traces + book-keeping

– different fairness notions

– introduced fairness mod X

– α is fair mod X iff blocks(α) ⊆ X
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PARTIAL-ORDER SEMANTICS

• Process denotes set P(P ) of pomsets

• A pomset (T, <) consists of:

– a multiset T of actions

– a partial (pre-)order < on T

– synchronization when h?v <> h!v

• A pomset determines a trace set L(T, <)

– linearizations consistent with <

• T1‖T2 is disjoint union

– fair only if there are no concurrent match-
ing blocks

• T �h T ′ if T ′ arises by choosing a synchro-
nizing schedule for T on channel h
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SEMANTIC DEFINITIONS

T (skip) = {δ}

P(h?x) = {{h?v x:=v} | v ∈ Z} ∪ {{δh?
ω}}

P(h!e) = {T ;{h!v}, T ;{(δh!)
ω} | (T, v) ∈ P(e)}

P(P1 u P2) = P(P1) ∪ P(P2)

P(P1; P2) = {T1; T2 | T1 ∈ P(P1) & T2 ∈ P(P2)}

P(G1�G2) =
{T ∈ P(G1) ∪ P(G2) | T ∩∆ω = {}} ∪
{{(δX∪Y )ω}| {(δX)ω} ∈ P(G1), {(δY )ω} ∈ P(G2)}

P(P1‖P2) =
{T1‖T2 | T1 ∈ P(P1) & T2 ∈ P(P2) &

¬match(blocks T1, blocks T2)}

P(local h in P ) =
{T ′\h | T ∈ P(P ) & T �h T ′}
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RESULTS

• Recovering traces:

T (P ) =
⋃
{L(T, <) | (T, <) ∈ P(P )}

• Transfer Principle:

P(P1) = P(P2) ⇒ T (P1) = T (P2)

TRUE CONCURRENCY

The processes

a?x‖b?y
(a?x → b?y)�(b?y → a?x)
(a?x → b?y) u (b?y → a?x)

are not trace- or pomset-equivalent
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EXAMPLE

local mid in
buff1(in,mid)‖buff1(mid , out)

Typical unblocked pomset:

in?v1

in?v2

in?v3

in?v4

in?vk

out!v1

out!v2

out!v3

out!v4

out!vk

-

-

@
@@R

@
@R

-

-

@
@@R

@
@@R

@
@R

@
@R

@
@

@R

........
@

@
@R

@
@R

@
@R

?

?

?

?

-

........

. . . behaves like a 2-place buffer
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ADAPTABILITY

Can handle other parallel paradigms
by making minor changes

• Choose appropriate set of actions Λ

• Adjust relevant semantic definitions

– parallel composition

– input/output

– local channels

In each case:

• Processes denote trace sets

• Full abstraction for safety and liveness

• Can give partial-order semantics
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ASYNCHRONOUS
COMMUNICATION

λ ::= x=v | x:=v | h?v | h!v | δX

where X ⊆ {h? | h ∈ Chan}

T (h!e) = {α h!v | (α, v) ∈ T (e)}

T (P1‖P2) = {α ∈ α1‖α2 |
α1 ∈ T (P1) & α2 ∈ T (P2)}

T (local h in P ) =
{α\h | α ∈ T (P ) & αdh is FIFO}

• α‖β interleaves, without synchronization

• αdh is FIFO if every input is justified by
earlier output
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ASYNCHRONOUS LAWS

Inevitable Synchronization

local h in P‖(h!0; Q)‖(h?x; R)
= local h in P‖Q‖(x:=0; R)

if h 6∈ chans(P )

Non-local Promotion

local h in (h?x; P )‖(Q1; Q2)
= Q1; local h in (h?x; P )‖Q2

if h 6∈ chans(Q1)

Not valid in unfair semantics
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SHARED MEMORY

λ ::= x=v | x:=v | 〈α〉
(α finite, sequential)

T (P1‖P2) = {α ∈ α1‖α2 |
α1 ∈ T (P1) & α2 ∈ T (P2)}

T (local x in P ) =
{α\x | α ∈ T (P ) & αdx sequential}

• αdx sequential iff every read of x is justified
by the previous write
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COMMON THEME

• Programs denote sets of traces

• Fully abstract for safety and liveness

• Can extract traditional semantics

• Trace sets form complete lattice

• Program constructs denote monotone functions
on trace sets

T1 ⊆ T2 ⇒ F (T1) ⊆ F (T2)

• Recursive constructs denote fixed points

– least fixed point = finite traces

– greatest fixed point = finite + infinite traces
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UNIFICATION

Action traces can be used to model

• shared-memory

• asynchronous communication

• synchronous communication

Can extract traditional semantics

• transition traces

• failures
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FUTURE RESEARCH

• Low-level traces

– pointers, stores, heaps

– Concurrent Separation Logic

• Footstep traces

– abstract away from granularity

• Probabilistic traces

– measurable trace sets

– “fairly likely” correctness

• Procedures

– possible worlds, parametricity

• Other fairness notions

– strong, weak / process, channel
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