IDEALIZED CSP:
 Procedures + Processes

Stephen Brookes

Department of Computer Science Carnegie Mellon University

July 1997

THE ESSENCE OF CSP

- Idealized CSP =

> communicating processes + call-by-name λ-calculus

- simply typed

$$
\begin{gathered}
\theta::=\exp [\tau]|\operatorname{var}[\tau]| \operatorname{chan}[\tau] \\
\tau|\operatorname{comm}|\left(\theta \rightarrow \theta^{\prime}\right) \mid \theta \times \theta^{\prime} \\
\text { phrase types } \\
\tau:=\text { int | bool } \quad \text { data types } \\
\text { cf. Reynolds: Idealized Algol } \\
\text { cf. Brookes: Parallel Algol }
\end{gathered}
$$

CONNECTIONS

- generalizes Hoare's CSP
- fairness
- nested parallel
- dynamic process creation
- channel-based communication
- asynchronous output, synchronous input
- generalizes Idealized Algol
- typed channels
- communicating processes
- local channel declarations
- generalizes Kahn networks

RATIONALE

- Programs can cooperate
- message-passing
- access to shared memory
- Procedures can encapsulate parallel idioms
- bounded buffer
- communication protocols
- Local variables and channels can limit scope of interference

INTUITION
Procedures and parallelism should be orthogonal

BUFFERS

procedure buff1(in, out) $=$ new $[\tau] x$ in while true do (in? $x ;$ out! x)
procedure buff(in, out) $=$ newchan $[\tau] h$ in

$$
\text { buff1 } \text { in, } h \text {) \| buff1(} h, \text { out })
$$

- Encapsulates common way to build buffers
- Relies on locality of x and h

SIEVE

procedure filter $(p$, in, out $)=$ new[int] x in while true do (in? x; if $x \bmod p \neq 0$ then out! x);
procedure $\operatorname{sift}($ in, out $)=$ newchan[int] h in
new[int] p in
begin
in? p; out! p;
filter $(p$, in, $h) \| \operatorname{sift}(h$, out $)$
end

SYNTAX

- Input and Output

$$
\frac{\pi \vdash h: \operatorname{chan}[\tau] \quad \pi \vdash E: \exp [\tau]}{\pi \vdash h!E: \operatorname{comm}}
$$

$$
\frac{\pi \vdash h: \operatorname{chan}[\tau] \quad \pi \vdash X: \operatorname{var}[\tau]}{\pi \vdash h ? X: \operatorname{comm}}
$$

- Parallel composition
$\pi \vdash P_{1}:$ comm $\quad \pi \vdash P_{2}:$ comm

$$
\pi \vdash P_{1} \| P_{2}: \text { comm }
$$

- Local channel declaration

$\pi, \iota: \operatorname{chan}[\tau] \vdash P:$ comm
$\pi \vdash$ newchan $[\tau] \iota$ in $P:$ comm

CATEGORY of WORLDS

- Objects are countable posets of "allowed states"

$$
V_{1} \times \cdots \times V_{k} \times H_{1}^{*} \times \cdots H_{n}^{*}
$$

ordered by prefix, componentwise

- Morphisms $(f, Q): W \rightarrow X$
- function f from X to W
- equivalence relation Q on X
- f puts each Q-class into order-isomorphism with W

Generalizes Oles's category:

- channels as components of state
- morphisms respect queue structure

EXPANSIONS

- For each pair of objects W and V there is an expansion

$$
-\times V: W \rightarrow W \times V
$$

given by

$$
\begin{aligned}
& -\times V=(\text { fst }: W \times V \rightarrow W, Q) \\
& \left(w_{0}, v_{0}\right) Q\left(w_{1}, v_{1}\right) \Longleftrightarrow \Longleftrightarrow v_{0}=v_{1}
\end{aligned}
$$

- Use $-\times V_{\tau}^{*}$ to model local channel declaration
- Each morphism is an expansion, up to order-isomorphism
- Some order-isomorphisms:
swap: $W \times V \rightarrow V \times W$ assoc: $W \times(V \times U) \rightarrow(W \times V) \times U$
but not rev: $V_{\tau}^{*} \rightarrow V_{\tau}^{*}$

SEMANTICS

- Types denote functors from worlds to domains, $\llbracket \theta \rrbracket: \mathbf{W} \rightarrow \mathbf{D}$
- Judgements $\pi \vdash P: \theta$ denote natural transformations

$$
\llbracket P \rrbracket: \llbracket \pi \rrbracket \dot{\rightarrow} \llbracket \theta \rrbracket
$$

i.e. when $h: W \rightarrow X$,

$$
\begin{array}{cc}
\llbracket \pi \rrbracket W \xrightarrow{\llbracket P \rrbracket W} & \llbracket \theta \rrbracket W \\
\llbracket \pi \rrbracket h & \llbracket \theta \rrbracket h \\
\llbracket \pi \rrbracket X-\llbracket \mid \\
\llbracket P \rrbracket X & \llbracket \theta \rrbracket X
\end{array}
$$

commutes.
Naturality enforces locality

CARTESIAN CLOSURE

- The functor category $\mathbf{D}^{\mathbf{W}}$ is cartesian closed
- Use ccc structure to interpret arrow and product types

$$
\begin{aligned}
& \llbracket \theta \times \theta^{\prime} \rrbracket=\llbracket \theta \rrbracket \times \llbracket \theta^{\prime} \rrbracket \\
& \llbracket \theta \rightarrow \theta^{\prime} \rrbracket=\llbracket \theta \rrbracket \Rightarrow \llbracket \theta^{\prime} \rrbracket
\end{aligned}
$$

- Procedures are natural and therefore respect locality

PROCEDURES

A procedure of type $\theta \rightarrow \theta^{\prime}$ at world W denotes a natural family of functions $p(-)$:
if $h: W \rightarrow X$ and $h^{\prime}: X \rightarrow Y$,

$$
\begin{array}{cc}
\llbracket \theta \rrbracket X- & p(h) \\
\llbracket \theta \rrbracket h^{\prime} \\
\llbracket \theta \rrbracket Y \xrightarrow[p\left(h ; h^{\prime}\right)]{ } \cdot \llbracket \theta^{\prime} \rrbracket X \\
\llbracket \theta^{\prime} \rrbracket Y
\end{array}
$$

commutes.

Procedures can be called at expanded worlds, and naturality enforces locality constraints.

COMMANDS

$$
\llbracket \mathbf{c o m m} \rrbracket W=\wp^{\dagger}\left((W \times W)^{\infty}\right)
$$

... as for shared-variable programs

- commands denote trace sets
- closed under stuttering and mumbling

$$
\begin{aligned}
& \alpha \beta \in t \& w \in W \Rightarrow \alpha\langle w, w\rangle \beta \in t \\
& \alpha\left\langle w, w^{\prime}\right\rangle\left\langle w^{\prime}, w^{\prime \prime}\right\rangle \beta \in t \Rightarrow \alpha\left\langle w, w^{\prime \prime}\right\rangle \beta \in t \\
& \text {. . with certain modifications }
\end{aligned}
$$

- message-passing as state change
- interference thus models
communication by environment
- unrequited input $=$ busy wait

INTUITION

- A trace

$$
\left\langle w_{0}, w_{0}^{\prime}\right\rangle\left\langle w_{1}, w_{1}^{\prime}\right\rangle \ldots\left\langle w_{n}, w_{n}^{\prime}\right\rangle \ldots
$$

models a fair interaction

- Each step $\left\langle w_{i}, w_{i}^{\prime}\right\rangle$ represents a finite sequence of atomic actions
- If $(f, Q): W \rightarrow X$ and $c \in \llbracket \mathbf{c o m m} \rrbracket W$ $\llbracket \mathrm{comm} \rrbracket(f, Q) c$
behaves like c on the W-component of state, has no effect elsewhere.

CHANNELS

An "object-oriented" semantics:

- output = acceptor
- input $=$ expression with side-effect
$\llbracket \operatorname{chan}[\tau] \rrbracket W=$
$\left(V_{\tau} \rightarrow \llbracket \operatorname{comm} \rrbracket W\right) \times \llbracket \exp [\tau] \rrbracket W$
$\llbracket \exp [\tau] \rrbracket W=$
$\wp\left((W \times W)^{+} \times V_{\tau} \cup(W \times W)^{\omega}\right)$
cf. Reynolds, Oles

PARALLEL COMPOSITION

Fair merge of traces

$$
\begin{aligned}
& \llbracket P_{1} \| P_{2} \rrbracket W u= \\
& \qquad\left\{\alpha \mid \exists \alpha_{1} \in \llbracket P_{1} \rrbracket W u, \alpha_{2} \in \llbracket P_{2} \rrbracket W u .\right. \\
& \left.\quad\left(\alpha_{1}, \alpha_{2}, \alpha\right) \in \text { fairmerge }_{W \times W}\right\}^{\dagger} \\
& \text { where } \\
& \text { fairmerge }_{A}=\text { both }_{A}^{*} \cdot \text { one }_{A} \cup \text { both }_{A}^{\omega} \\
& \text { both }_{A}=\left\{(\alpha, \beta, \alpha \beta),(\alpha, \beta, \beta \alpha) \mid \alpha, \beta \in A^{+}\right\} \\
& \text {one }_{A}=\left\{(\alpha, \epsilon, \alpha),(\epsilon, \alpha, \alpha) \mid \alpha \in A^{\infty}\right\}
\end{aligned}
$$

fairmerge is natural

INPUT and OUTPUT

In world $V_{i n t} \times V_{i n t}^{*}$ and a suitable environment

- $h ? x$ has traces

$$
\begin{aligned}
& \langle(v, n \rho),(n, \rho)\rangle \quad\left(v, n \in V_{\text {int }}, \rho \in V_{i n t}^{*}\right) \\
& \text { and } \\
& \left\langle\left(v_{0}, \epsilon\right),\left(v_{0}, \epsilon\right)\right\rangle \ldots\left\langle\left(v_{k}, \epsilon\right),\left(v_{k}, \epsilon\right)\right\rangle \ldots
\end{aligned}
$$

- $h!(x+1)$ has traces
$\langle(m, \sigma),(m, \sigma(m+1))\rangle \quad\left(m \in V_{i n t}, \sigma \in V_{i n t}^{*}\right)$
- $h ? x \| h!(x+1)$ has traces
$\langle(v, n \rho),(n, \rho)\rangle\langle(m, \sigma),(m, \sigma(m+1))\rangle$
and
$\langle(m, \sigma),(m, \sigma(m+1))\rangle\langle(v, n \rho),(n, \rho)\rangle$
and
$\langle(m, \epsilon),(m+1, \epsilon)\rangle$

CHOICE

An external choice

$$
\left(a ? x \rightarrow P_{1}\right) \square\left(b ? x \rightarrow P_{2}\right)
$$

can

- input on a and behave like P_{1}
- input on b and behave like P_{2}
- busy-wait while a and b are both empty

However, an internal choice

$$
\left(a ? x \rightarrow P_{1}\right) \sqcap\left(b ? x \rightarrow P_{2}\right)
$$

can busy-wait if either a or b is empty

LOCAL CHANNELS

The traces of newchan $[\tau] h$ in P
at world W are projected from the traces of P in world $W \times V_{\tau}^{*}$ in which

- initially h is empty
- contents of h never change across step boundaries

EXAMPLES

- newchan $[\tau] h$ in $(h!e \| h ? x)=x:=e$
- newchan $[\tau] h$ in $(h!0 ; P)=P$ if h does not occur free in P
- newchan $[\tau] h$ in $(h ? x ; P)$
has only infinite stuttering traces, because of unrequited input

BUFFERS

In world $V_{i n t}^{*} \times V_{i n t}^{*}$ and a suitable environment

$$
\text { buff } 1 \text { (left, right) }
$$

has trace

$$
\langle(0, \epsilon),(\epsilon, \epsilon)\rangle
$$

input 0

$$
\langle(1, \epsilon),(1,0)\rangle
$$

output 0

$$
\langle(1,0),(\epsilon, 0)\rangle
$$

input 1

Similarly
buff(left, right)
has trace

$$
\begin{array}{cl}
\langle(0, \epsilon),(\epsilon, \epsilon)\rangle & \text { input } 0 \\
\langle(1, \epsilon),(\epsilon, \epsilon)\rangle & \text { input } 1 \\
\langle(2, \epsilon),(2,0)\rangle & \text { output } 0
\end{array}
$$

LAWS

- Symmetry

$$
\begin{aligned}
& \text { newchan }\left[\tau_{1}\right] h_{1} \text { in } \\
& \text { newchan }\left[\tau_{2}\right] h_{2} \text { in } P \\
& \quad=\operatorname{newchan}\left[\tau_{2}\right] h_{2} \text { in } \\
& \quad \text { newchan }\left[\tau_{1}\right] h_{1} \text { in } P
\end{aligned}
$$

- Frobenius
newchan $[\tau] h$ in $\left(P_{1} \| P_{2}\right)=$ (newchan $[\tau] h$ in $\left.P_{1}\right) \| P_{2}$
provided h does not occur free in P_{2}

LAWS

- Local variables

$$
\begin{aligned}
& \text { newvar }[\tau] \iota \text { in } P^{\prime}=P^{\prime} \\
& \text { newvar }[\tau] \iota \text { in }\left(P \| P^{\prime}\right)= \\
& \quad(\text { newvar }[\tau] \iota \text { in } P) \| P^{\prime} \\
& \text { when } \iota \text { does not occur free in } P^{\prime}
\end{aligned}
$$

- Functional laws

$$
\begin{aligned}
& (\lambda \iota: \theta . P)(Q)=P[Q / \iota] \\
& \operatorname{rec} \iota . P=P[\operatorname{rec} \iota . P / \iota]
\end{aligned}
$$

LOCAL LAWS

- Local output

$$
\begin{aligned}
& \text { newchan }[\tau] h=\rho \text { in } P_{1} \| h!v ; P_{2} \\
& \quad=\text { newchan }[\tau] h=\rho v \text { in } P_{1} \| P_{2}
\end{aligned}
$$

if $h!$ not in P_{1}

- Local input

$$
\begin{aligned}
& \text { newchan }[\tau] h=v \rho \text { in } P_{1} \| h ? v ; P_{2} \\
& \quad=\text { newchan }[\tau] h=\rho \text { in } P_{1} \| P_{2}
\end{aligned}
$$

if h ? not in P_{1}
...help when channels are used in at most one direction by each process

FAIRNESS LAWS

- Fair prefix

If h not free in P_{1} and
newchan $[\tau] h=\rho$ in P
diverges, then
newchan $[\tau] h=\rho$ in $P \|\left(P_{1} ; P_{2}\right)$
$=P_{1} ;$ newchan $[\tau] h=\rho$ in $P \| P_{2}$

- Unrequited input

If h not free in P_{1} then
newchan $[\tau] h$ in $(h ? x ; P) \|\left(P_{1} ; P_{2}\right)$
$=P_{1} ;$ newchan $[\tau] h$ in $(h ? x ; P) \| P_{2}$

CONCLUSIONS

- Transition traces are fundamental, general and unifying
- shared-variable
- communicating process
- Fairness incorporated smoothly
- Deadlock = busy-waiting
- avoids need for failure sets
- Implicit treatment of channels
- no channel names in traces
- object-oriented model
- channels kept separate

FURTHER WORK

- Relational parametricity
- representation independence
- concurrent objects
- Full abstraction at ground types
- observing sequence of states
- Disjoint processes

$$
\begin{aligned}
& \llbracket P_{1} \| P_{2} \rrbracket\left(W_{1} \times W_{2}, H\right)= \\
& \quad \llbracket P_{1} \rrbracket\left(W_{1}, H\right) \| \llbracket P_{2} \rrbracket\left(W_{2}, H\right)
\end{aligned}
$$

- Unreliable communication
- lossy channels
- bounded channels
- Synchronous communication

CONCURRENT OBJECTS

newchan $[\tau] h$ in
procedure $\operatorname{put}(y)=h!y$;
procedure $\operatorname{get}(z)=$
new $[\tau] x$ in $(h ? x ; z:=x)$;
begin

$P($ put, get $)$
end

newchan $[\tau] h$ in
procedure $\operatorname{put}(y)=h!(-y)$;
procedure $\operatorname{get}(z)=$
new $[\tau] x$ in $(h ? x ; z:=(-x)) ;$
begin

$$
\begin{aligned}
& P(p u t, g e t) \\
& \text { end }
\end{aligned}
$$

