IDEALIZED CSP:
Procedures + Processes

Stephen Brookes
Department of Computer Science
Carnegie Mellon University

July 1997
THE ESSENCE OF CSP

- Idealized CSP =
 communicating processes
 + call-by-name λ-calculus

- simply typed

 $\theta ::= \exp[\tau] \mid \var[\tau] \mid \chan[\tau]$
 $\mid \text{comm} \mid (\theta \rightarrow \theta') \mid \theta \times \theta'$

 phrase types

 $\tau ::= \text{int} \mid \text{bool}$

 data types

cf. Reynolds: Idealized Algol

cf. Brookes: Parallel Algol
CONNECTIONS

• generalizes Hoare’s CSP
 – fairness
 – nested parallel
 – dynamic process creation
 – channel-based communication
 – asynchronous output, synchronous input

• generalizes Idealized Algol
 – typed channels
 – communicating processes
 – local channel declarations

• generalizes Kahn networks
RATIONALE

• Programs can cooperate
 – message-passing
 – access to shared memory

• Procedures can encapsulate parallel idioms
 – bounded buffer
 – communication protocols

• Local variables and channels can limit scope of interference

INTUITION

Procedures and parallelism should be orthogonal
BUFFERS

procedure buff1(in, out) =
 new[τ] x in
 while true do (in?x; out!x)

procedure buff(in, out) =
 newchan[τ] h in
 buff1(in, h) || buff1(h, out)

• Encapsulates common way to build buffers

• Relies on locality of x and h
SIEVE

procedure filter(p, in, out) =
 new[int] x in
 while true do
 (in?x; if x mod p \neq 0 then out!x);

procedure sift(in, out) =
 newchan[int] h in
 new[int] p in
 begin
 in?p; out!p;
 filter(p, in, h) || sift(h, out)
 end
SYNTAX

• Input and Output

\[\pi \vdash h : \text{chan}[\tau] \quad \pi \vdash E : \text{exp}[\tau] \]
\[\pi \vdash h!E : \text{comm} \]
\[\pi \vdash h : \text{chan}[\tau] \quad \pi \vdash X : \text{var}[\tau] \]
\[\pi \vdash h?X : \text{comm} \]

• Parallel composition

\[\pi \vdash P_1 : \text{comm} \quad \pi \vdash P_2 : \text{comm} \]
\[\pi \vdash P_1 \parallel P_2 : \text{comm} \]

• Local channel declaration

\[\pi, \iota : \text{chan}[\tau] \vdash P : \text{comm} \]
\[\pi \vdash \text{newchan}[\tau] \iota \text{ in } P : \text{comm} \]
CATEGORY of WORLDS

• Objects are countable posets of “allowed states”
 \[V_1 \times \cdots \times V_k \times H_1^* \times \cdots H_n^* \]
 ordered by prefix, componentwise

• Morphisms \((f, Q) : W \rightarrow X\)
 – function \(f\) from \(X\) to \(W\)
 – equivalence relation \(Q\) on \(X\)
 – \(f\) puts each \(Q\)-class into order-isomorphism with \(W\)

Generalizes Oles’s category:

• channels as components of state
• morphisms respect queue structure
EXPANSIONS

• For each pair of objects W and V there is an expansion

$$- \times V : W \rightarrow W \times V$$

given by

$$- \times V = (\text{fst} : W \times V \rightarrow W, \ Q)$$

$$(w_0, v_0)Q(w_1, v_1) \iff v_0 = v_1$$

• Use $- \times V^*_\tau$ to model local channel declaration

• Each morphism is an expansion, up to order-isomorphism

• Some order-isomorphisms:

\[\text{swap} : W \times V \rightarrow V \times W\]
\[\text{assoc} : W \times (V \times U) \rightarrow (W \times V) \times U\]

but not $\text{rev} : V^*_\tau \rightarrow V^*_\tau$
SEMANTICS

• Types denote functors from worlds to domains, $[\theta] : W \to D$

• Judgements $\pi \vdash P : \theta$ denote natural transformations

$$[P] : [\pi] \to [\theta]$$

i.e. when $h : W \to X$,

\[
\begin{array}{c}
:\[\pi\]W & \xrightarrow{[P]W} & \[\theta\]W \\
\downarrow{[\pi]h} & & \downarrow{[\theta]h} \\
:\[\pi\]X & \xrightarrow{[P]X} & \[\theta\]X
\end{array}
\]

commutes.

\textit{Naturality enforces locality}
The functor category \mathbf{D}^W is cartesian closed.

Use ccc structure to interpret arrow and product types:

\[
\begin{align*}
[\theta \times \theta'] &= [\theta] \times [\theta'] \\
[\theta \rightarrow \theta'] &= [\theta] \Rightarrow [\theta']
\end{align*}
\]

Procedures are natural and therefore respect locality.

CARTESIAN CLOSURE
A procedure of type $\theta \rightarrow \theta'$ at world W denotes a natural family of functions $p(-)$:

if $h : W \rightarrow X$ and $h' : X \rightarrow Y$,

\[
\begin{array}{c}
\theta]X \xrightarrow{p(h)} [\theta']X \\
\theta]h' \downarrow \quad \quad \quad \quad \downarrow [\theta']h' \\
\theta]Y \xrightarrow{p(h; h')} [\theta']Y \\
\end{array}
\]

commutes.

Procedures can be called at expanded worlds, and naturality enforces locality constraints.
COMMANDS

\[[\text{comm}]W = \varnothing^\dagger((W \times W)^\infty) \]

... as for shared-variable programs

- commands denote trace sets
- closed under stuttering and mumbling

\[
\alpha\beta \in t \& w \in W \Rightarrow \alpha\langle w, w\rangle\beta \in t
\]
\[
\alpha\langle w, w'\rangle\langle w', w''\rangle\beta \in t \Rightarrow \alpha\langle w, w''\rangle\beta \in t
\]

... with certain modifications

- message-passing as state change
- interference thus models communication by environment
- unrequited input = busy wait
INTUITION

• A trace
 \[\langle w_0, w'_0 \rangle \langle w_1, w'_1 \rangle \ldots \langle w_n, w'_n \rangle \ldots \]
 models a fair interaction

• Each step \(\langle w_i, w'_i \rangle \) represents a finite sequence of atomic actions

• If \((f, Q) : W \rightarrow X\) and \(c \in \llbracket \text{comm} \rrbracket W\)

\[
\llbracket \text{comm} \rrbracket (f, Q)c
\]
behaves like \(c\) on the \(W\)-component of state, has no effect elsewhere.
CHANNELS

An “object-oriented” semantics:

• output = acceptor
• input = expression with side-effect

\[
\begin{align*}
[\text{chan}[\tau]]W &= \(V_\tau \rightarrow [\text{comm}]W\) \times [\text{exp}[\tau]]W \\
[\text{exp}[\tau]]W &= \wp((W \times W)^+ \times V_\tau \cup (W \times W)^\omega)
\end{align*}
\]

cf. Reynolds, Oles
PARALLEL COMPOSITION

Fair merge of traces

\[
[P_1 \parallel P_2]Wu = \\
\{ \alpha \mid \exists \alpha_1 \in [P_1]Wu, \ \alpha_2 \in [P_2]Wu. \ \\
(\alpha_1, \alpha_2, \alpha) \in \text{fairmerge}_W \times W \}^\dagger
\]

where

\[
\text{fairmerge}_A = \text{both}_A^* \cdot \text{one}_A \cup \text{both}_A^\omega
\]

\[
\text{both}_A = \{ (\alpha, \beta, \alpha\beta), (\alpha, \beta, \beta\alpha) \mid \alpha, \beta \in A^+ \}
\]

\[
\text{one}_A = \{ (\alpha, \epsilon, \alpha), (\epsilon, \alpha, \alpha) \mid \alpha \in A^\infty \}
\]

fairmerge is natural
INPUT and OUTPUT

In world $V_{int} \times V_{int}^*$ and a suitable environment

• $h?x$ has traces
 \[
 \langle (v, n\rho), (n, \rho) \rangle \quad (v, n \in V_{int}, \rho \in V_{int}^*)
 \]
 and
 \[
 \langle (v_0, \epsilon), (v_0, \epsilon) \rangle \ldots \langle (v_k, \epsilon), (v_k, \epsilon) \rangle \ldots
 \]

• $h!(x + 1)$ has traces
 \[
 \langle (m, \sigma), (m, \sigma(m+1)) \rangle \quad (m \in V_{int}, \sigma \in V_{int}^*)
 \]

• $h?x \parallel h!(x + 1)$ has traces
 \[
 \langle (v, n\rho), (n, \rho) \rangle \langle (m, \sigma), (m, \sigma(m + 1)) \rangle
 \]
 and
 \[
 \langle (m, \sigma), (m, \sigma(m + 1)) \rangle \langle (v, n\rho), (n, \rho) \rangle
 \]
 and
 \[
 \langle (m, \epsilon), (m + 1, \epsilon) \rangle
 \]
CHOICE

An external choice

$$(a?x \rightarrow P_1) \lozenge (b?x \rightarrow P_2)$$

can

• input on a and behave like P_1
• input on b and behave like P_2
• busy-wait while a and b are both empty

However, an internal choice

$$(a?x \rightarrow P_1) \sqcap (b?x \rightarrow P_2)$$

can busy-wait if either a or b is empty
LOCAL CHANNELS

The traces of

\texttt{newchan}[\tau] \ h \ \texttt{in} \ P

at world \(W \) are projected from the traces of \(P \) in world \(W \times V_\tau^* \) in which

- initially \(h \) is empty
- contents of \(h \) never change across step boundaries

EXAMPLES

- \texttt{newchan}[\tau] \ h \ \texttt{in} \ (h!e \parallel h?x) = x:=e

- \texttt{newchan}[\tau] \ h \ \texttt{in} \ (h!0; P) = P
 if \(h \) does not occur free in \(P \)

- \texttt{newchan}[\tau] \ h \ \texttt{in} \ (h?x; P)
 has only infinite stuttering traces, because of unrequited input
BUFFERS

In world $V_{int}^* \times V_{int}^*$ and a suitable environment

$$buff1(left, right)$$

has trace

\[\langle (0, \epsilon), (\epsilon, \epsilon) \rangle \] \hspace{1cm} \text{input 0}

\[\langle (1, \epsilon), (1, 0) \rangle \] \hspace{1cm} \text{output 0}

\[\langle (1, 0), (\epsilon, 0) \rangle \] \hspace{1cm} \text{input 1}

\[\ldots \]

Similarly

$$buff(left, right)$$

has trace

\[\langle (0, \epsilon), (\epsilon, \epsilon) \rangle \] \hspace{1cm} \text{input 0}

\[\langle (1, \epsilon), (\epsilon, \epsilon) \rangle \] \hspace{1cm} \text{input 1}

\[\langle (2, \epsilon), (2, 0) \rangle \] \hspace{1cm} \text{output 0}

\[\ldots \]
LAWS

• Symmetry

\[
\text{newchan}[\tau_1] \ h_1 \ \text{in} \\
\text{newchan}[\tau_2] \ h_2 \ \text{in} \ P
\]
\[
= \text{newchan}[\tau_2] \ h_2 \ \text{in} \\
\text{newchan}[\tau_1] \ h_1 \ \text{in} \ P
\]

• Frobenius

\[
\text{newchan}[\tau] \ h \ \text{in} \ (P_1\|P_2) = \\
(\text{newchan}[\tau] \ h \ \text{in} \ P_1)\|P_2
\]

provided \(h\) does not occur free in \(P_2\)
LAWS

• Local variables

\[
\text{newvar}[^\tau] \; \iota \; \text{in} \; P' = P' \\
\text{newvar}[^\tau] \; \iota \; \text{in} \; (P \parallel P') = \\
(\text{newvar}[^\tau] \; \iota \; \text{in} \; P) \parallel P'
\]

when \(\iota \) does not occur free in \(P' \)

• Functional laws

\[
(\lambda \iota : \theta. P)(Q) = P[Q/\iota] \\
\text{rec } \iota. P = P[\text{rec } \iota. P/\iota]
\]
LOCAL LAWS

• Local output

\[
\text{newchan}[\tau] \ h = \rho \ \text{in} \ P_1 \parallel h!v; P_2
\]
\[
= \ \text{newchan}[\tau] \ h = \rho v \ \text{in} \ P_1 \parallel P_2
\]

if \(h! \) not in \(P_1 \)

• Local input

\[
\text{newchan}[\tau] \ h = \nu \rho \ \text{in} \ P_1 \parallel h?v; P_2
\]
\[
= \ \text{newchan}[\tau] \ h = \rho \ \text{in} \ P_1 \parallel P_2
\]

if \(h? \) not in \(P_1 \)

...help when channels are used in
at most one direction by each process
FAIRNESS LAWS

- **Fair prefix**
 If h not free in P_1 and
 \[
 \text{newchan}[\tau] h = \rho \text{ in } P
 \]
diverges, then
 \[
 \text{newchan}[\tau] h = \rho \text{ in } P \parallel (P_1; P_2) = P_1; \text{newchan}[\tau] h = \rho \text{ in } P \parallel P_2
 \]

- **Unrequited input**
 If h not free in P_1 then
 \[
 \text{newchan}[\tau] h \text{ in } (h?x; P) \parallel (P_1; P_2) = P_1; \text{newchan}[\tau] h \text{ in } (h?x; P) \parallel P_2
 \]
CONCLUSIONS

• Transition traces are fundamental, general and unifying
 – shared-variable
 – communicating process

• Fairness incorporated smoothly

• Deadlock = busy-waiting
 – avoids need for failure sets

• Implicit treatment of channels
 – no channel names in traces
 – object-oriented model
 – channels kept separate
FURTHER WORK

• Relational parametricity
 – representation independence
 – concurrent objects

• Full abstraction at ground types
 – observing sequence of states

• Disjoint processes
 \[
 \llbracket P_1 \parallel P_2 \rrbracket(W_1 \times W_2, H) = \llbracket P_1 \rrbracket(W_1, H) \parallel \llbracket P_2 \rrbracket(W_2, H)
 \]

• Unreliable communication
 – lossy channels
 – bounded channels

• Synchronous communication
newchan[τ] h in
 procedure put(y) = h!y;
 procedure get(z) =
 new[τ] x in (h?x; z:=x);
 begin
 P(put, get)
 end

newchan[τ] h in
 procedure put(y) = h!(-y);
 procedure get(z) =
 new[τ] x in (h?x; z:=(-x));
 begin
 P(put, get)
 end