
IDEALIZED CSP:
Procedures + Processes

Stephen Brookes
Department of Computer Science

Carnegie Mellon University

July 1997

1

THE ESSENCE OF CSP

• Idealized CSP =

communicating processes

+ call-by-name λ-calculus

• simply typed

θ ::= exp[τ] | var[τ] | chan[τ]
| comm | (θ → θ′) | θ × θ′

phrase types

τ ::= int | bool data types

cf. Reynolds: Idealized Algol

cf. Brookes: Parallel Algol

2

CONNECTIONS

• generalizes Hoare’s CSP

– fairness

– nested parallel

– dynamic process creation

– channel-based communication

– asynchronous output,
synchronous input

• generalizes Idealized Algol

– typed channels

– communicating processes

– local channel declarations

• generalizes Kahn networks

3

RATIONALE

• Programs can cooperate

– message-passing

– access to shared memory

• Procedures can encapsulate
parallel idioms

– bounded buffer

– communication protocols

• Local variables and channels
can limit scope of interference

INTUITION

Procedures and parallelism
should be orthogonal

4

BUFFERS

procedure buff1(in, out) =
new[τ] x in

while true do (in?x; out!x)

procedure buff(in, out) =
newchan[τ] h in

buff1(in, h) ‖ buff1(h, out)

• Encapsulates common way to build
buffers

• Relies on locality of x and h

5

SIEVE

procedure filter (p, in, out) =
new[int] x in

while true do
(in?x; if x mod p 6= 0 then out!x);

procedure sift(in, out) =
newchan[int] h in
new[int] p in

begin
in?p; out!p;
filter (p, in, h) ‖ sift(h, out)

end

6

SYNTAX

• Input and Output

π ` h : chan[τ] π ` E : exp[τ]

π ` h!E : comm

π ` h : chan[τ] π ` X : var[τ]

π ` h?X : comm

• Parallel composition

π ` P1 : comm π ` P2 : comm

π ` P1‖P2 : comm

• Local channel declaration

π, ι : chan[τ] ` P : comm

π ` newchan[τ] ι in P : comm

7

CATEGORY of WORLDS

• Objects are countable posets of
“allowed states”

V1 × · · · × Vk ×H∗1 × · · ·H∗n
ordered by prefix, componentwise

•Morphisms (f,Q) : W → X

– function f from X to W

– equivalence relation Q on X

– f puts each Q-class into
order-isomorphism with W

Generalizes Oles’s category:

• channels as components of state

• morphisms respect queue structure

8

EXPANSIONS

• For each pair of objects W and V
there is an expansion

−× V : W → W × V
given by

−× V = (fst : W × V → W, Q)
(w0, v0)Q(w1, v1) ⇐⇒ v0 = v1

• Use − × V ∗τ to model local channel
declaration

• Each morphism is an expansion, up
to order-isomorphism

• Some order-isomorphisms:

swap : W × V → V ×W
assoc : W × (V × U)→ (W × V)× U
but not rev : V ∗τ → V ∗τ

9

SEMANTICS

• Types denote functors from worlds
to domains, [[θ]] : W→ D

• Judgements π ` P : θ denote
natural transformations

[[P]] : [[π]] ·→ [[θ]]

i.e. when h : W → X ,

[[π]]X

[[π]]W [[θ]]W

[[θ]]X-

[[P]]X

?

[[θ]]h

-
[[P]]W

?

[[π]]h

commutes.

Naturality enforces locality

10

CARTESIAN CLOSURE

• The functor category DW is
cartesian closed

• Use ccc structure to interpret arrow
and product types

[[θ × θ′]] = [[θ]]× [[θ′]]
[[θ → θ′]] = [[θ]]⇒ [[θ′]]

• Procedures are natural and
therefore respect locality

11

PROCEDURES

A procedure of type θ → θ′ at world
Wdenotes a natural family of functions
p(−):
if h : W → X and h′ : X → Y ,

[[θ]]Y

[[θ]]X [[θ′]]X

[[θ′]]Y-

p(h;h′)

?

[[θ′]]h′

-
p(h)

?

[[θ]]h′

commutes.

Procedures can be called at expanded
worlds, and naturality enforces

locality constraints.

12

COMMANDS

[[comm]]W = ℘†((W ×W)∞)

. . . as for shared-variable programs

• commands denote trace sets

• closed under stuttering
and mumbling

αβ ∈ t & w ∈ W ⇒ α〈w,w〉β ∈ t
α〈w,w′〉〈w′, w′′〉β ∈ t ⇒ α〈w,w′′〉β ∈ t

. . . with certain modifications

• message-passing as state change

• interference thus models
communication by environment

• unrequited input = busy wait

13

INTUITION

• A trace

〈w0, w
′
0〉〈w1, w

′
1〉 . . . 〈wn, w′n〉 . . .

models a fair interaction

• Each step 〈wi, w′i〉 represents a finite
sequence of atomic actions

• If (f,Q) : W → X and c ∈ [[comm]]W

[[comm]](f,Q)c

behaves like c on the W-component
of state, has no effect elsewhere.

14

CHANNELS

An “object-oriented” semantics:

• output = acceptor

• input = expression with side-effect

[[chan[τ]]]W =
(Vτ → [[comm]]W)× [[exp[τ]]]W

[[exp[τ]]]W =
℘((W ×W)+ × Vτ ∪ (W ×W)ω)

cf. Reynolds, Oles

15

PARALLEL COMPOSITION

Fair merge of traces

[[P1‖P2]]Wu =
{α | ∃α1 ∈ [[P1]]Wu, α2 ∈ [[P2]]Wu.

(α1, α2, α) ∈ fairmergeW×W}†

where

fairmergeA = both∗A · oneA ∪ bothωA
bothA = {(α, β, αβ), (α, β, βα) | α, β ∈ A+}
oneA = {(α, ε, α), (ε, α, α) | α ∈ A∞}

fairmerge is natural

16

INPUT and OUTPUT

In world Vint × V ∗int and a suitable
environment

• h?x has traces
〈(v, nρ), (n, ρ)〉 (v, n ∈ Vint, ρ ∈ V ∗int)
and
〈(v0, ε), (v0, ε)〉 . . . 〈(vk, ε), (vk, ε)〉 . . .
• h!(x + 1) has traces

〈(m,σ), (m,σ(m+1))〉 (m ∈ Vint, σ ∈ V
∗
int)

• h?x‖h!(x + 1) has traces

〈(v, nρ), (n, ρ)〉〈(m,σ), (m,σ(m + 1))〉
and
〈(m,σ), (m,σ(m + 1))〉〈(v, nρ), (n, ρ)〉
and
〈(m, ε), (m + 1, ε)〉

17

CHOICE

An external choice

(a?x→ P1)2(b?x→ P2)

can

• input on a and behave like P1

• input on b and behave like P2

• busy-wait while a and b are both empty

However, an internal choice

(a?x→ P1) u (b?x→ P2)

can busy-wait if either a or b is empty

18

LOCAL CHANNELS

The traces of

newchan[τ] h in P

at worldW are projected from the traces
of P in world W × V ∗τ in which

• initially h is empty

• contents of h never change across step
boundaries

EXAMPLES

• newchan[τ] h in (h!e‖h?x) = x:=e

• newchan[τ] h in (h!0;P) = P
if h does not occur free in P

• newchan[τ] h in (h?x;P)
has only infinite stuttering traces,
because of unrequited input

19

BUFFERS

In world V ∗int × V ∗int and a suitable
environment

buff1 (left , right)

has trace
〈(0, ε), (ε, ε)〉 input 0

〈(1, ε), (1, 0)〉 output 0

〈(1, 0), (ε, 0)〉 input 1

. . .

Similarly

buff (left , right)

has trace
〈(0, ε), (ε, ε)〉 input 0

〈(1, ε), (ε, ε)〉 input 1

〈(2, ε), (2, 0)〉 output 0

. . .

20

LAWS

• Symmetry

newchan[τ1] h1 in
newchan[τ2] h2 in P

= newchan[τ2] h2 in
newchan[τ1] h1 in P

• Frobenius

newchan[τ] h in (P1‖P2) =
(newchan[τ] h in P1)‖P2

provided h does not occur free in P2

21

LAWS

• Local variables

newvar[τ] ι in P ′ = P ′

newvar[τ] ι in (P‖P ′) =
(newvar[τ] ι in P)‖P ′

when ι does not occur free in P ′

• Functional laws

(λι : θ.P)(Q) = P [Q/ι]
rec ι.P = P [rec ι.P/ι]

22

LOCAL LAWS

• Local output

newchan[τ] h = ρ in P1‖h!v;P2
= newchan[τ] h = ρv in P1‖P2

if h! not in P1

• Local input

newchan[τ] h = vρ in P1‖h?v;P2
= newchan[τ] h = ρ in P1‖P2

if h? not in P1

. . . help when channels are used in
at most one direction by each process

23

FAIRNESS LAWS

• Fair prefix
If h not free in P1 and

newchan[τ] h = ρ in P

diverges, then

newchan[τ] h = ρ in P‖(P1;P2)
= P1; newchan[τ] h = ρ in P‖P2

• Unrequited input
If h not free in P1 then

newchan[τ] h in (h?x;P)‖(P1;P2)
= P1; newchan[τ] h in (h?x;P)‖P2

24

CONCLUSIONS

• Transition traces are fundamental,
general and unifying

– shared-variable

– communicating process

• Fairness incorporated smoothly

• Deadlock = busy-waiting

– avoids need for failure sets

• Implicit treatment of channels

– no channel names in traces

– object-oriented model

– channels kept separate

25

FURTHER WORK

• Relational parametricity

– representation independence

– concurrent objects

• Full abstraction at ground types

– observing sequence of states

• Disjoint processes

[[P1‖P2]](W1 ×W2, H) =
[[P1]](W1, H) ‖ [[P2]](W2, H)

• Unreliable communication

– lossy channels

– bounded channels

• Synchronous communication

26

CONCURRENT OBJECTS

newchan[τ] h in
procedure put(y) = h!y;
procedure get(z) =

new[τ] x in (h?x; z:=x);
begin
P (put, get)

end

newchan[τ] h in
procedure put(y) = h!(−y);
procedure get(z) =

new[τ] x in (h?x; z:=(−x));
begin
P (put, get)

end

27

