]r‘] ; A]C'?LICCL*L‘)\,. Q ’{ C“‘I;)E)-’Dl&j A% CJV““-!M_(Q.“’ -.“:3*1&4:1 eQ
LMS Lo Aue Nete (77
Camkﬂ'{,[}()_ (_,*Lw\lts:gtj P:‘CSI' 199 2

Computational Comonads
and Intensional Semantics

Stephen Brookes* Shat Geva*

Abstract

We explore some foundational issues in the development of
a theory of intensional semantics, in which program denotations
may convey information about computation strategy in addition
to the usual extensional information. Beginning with an “exten-
sional” category C, whose morphisms we can think of as functions
of some kind, we model a notion of computation using a comonad
with certain extra structure and we regard the Kleisli category of
the comonad as an intensional category. An intensional morphism,
or algorithm, can be thought of as a function from computations
to values, or as a function from values to values equipped with a
computation strategy. Under certain rather general assumptions
the underlying category C can be recovered from the Kleisli cat-
egory by taking a quotient, derived from a congruence relation
that we call extensional equivalence. We then focus on the case
where the underlying category is cartesian closed. Under further
assumptions the Kleisli category satisfies a weak form of cartesian
closure: application morphisms exist, currying and uncurrying of
morphisms make sense, and the diagram for exponentiation com-
mutes up to extensional equivalence. When the underlying cat-
egory is an ordered category we identify conditions under which
the exponentiation diagram commutes up to an inequality. We
illustrate these ideas and results by introducing some notions of
computation on domains and by discussing the properties of the
corresponding categories of algorithms on domains.

*School of Computer Science, Carnegie Mellon University, Pittsburgh, Pa 15213, USA.
This research was supported in part by National Science Foundation grant CCR-9006064
and in part by DARPA/NSF grant CCR-8906483.

1

BROOKES AND GEVA : COMPUTATIONAL COMONADS

1 Introduction

Most existing denotational semantic treatments of programming languages
are extensional, in that they abstract away from computational details and
ascribe essentially extensional meanings to programs. For instance, in the
standard denotational treatment of imperative while-programs the meaning
of a program is taken to be a partial function from states to states; and in
the standard denotational model of the simply typed A-calculus, the meaning
of a term of function type is taken to be a continuous function. Extensional
models are appropriate if one wants to reason only about extensional prop-
erties of programs, such as partial correctness of while-programs. However,
such models give no insight into questions concerning essentially intensional
aspects of program behavior, such as efficiency or complexity. For instance,
in a typical extensional model all sorting programs denote the same function,
regardless of their computation strategy, and therefore regardless of their
worst- or average-case behavior. It is desirable to have a semantic model in
which sensible comparisons can be made between programs with the same
extensional behavior, on the basis of their computation strategy.

We emphasize that we regard intensionality as a relative term; given a pro-
gramming language we might wish to provide an extensional semantics and
also an intensional semantics that contains more computational information
and is thus at a lower level of abstraction. We would like to be able to extract
extensional meanings from intensional meanings, and to show that the inten-
sional semantics “fits properly” on top of the extensional semantics. Suppose
that we have an extensional semantics provided in a category whose objects
represent sets of data values and whose morphisms are functions of some
kind; and that we have an intensional semantics in a category with the same
objects but with morphisms that we regard as algorithms, which correspond
to functions equipped with a computation strategy. It seems reasonable that
we should be able to define an equivalence relation on algorithms (in the
same hom-set) that identifies all pairs of algorithms with the same “exten-
sional part”; that composition of algorithms should respect this equivalence;
and that quotienting the algorithms from A to B by this equivalence relation
should yield precisely the extensional morphisms.

In this paper we set out a basis for a category-theoretic approach to inten-
sional semantics, motivated by the following intuition. If the extensional
meaning of a program may be modelled as some kind of function from data
values to data values, then we can obtain an intensional semantics by intro-
ducing a notion of computation and defining an intensional meaning to be a
function from computations to values. This accords with an intuitive opera-
tional semantics for programs in which the execution of a program proceeds
lazily in a demand-driven, coroutine-like manner [10]: the program responds

BROOKES AND GEVA : COMPUTATIONAL COMONADS

to requests for output (say, from a user) by performing input computation
until it has sufficient information to supply an output value. We formalize
what we mean by a notion of computation in abstract terms as follows. Sup-
pose that extensional meanings are given in some category C. Then, for each
object A, we specify an object T'A of computations over A and we specify how
to lift a morphism f from A to B into a morphism T'f from T'A to TB; we
require that T be a functor on C. We specify, for each object A, a morphism
€4 : TA — A from computations to values and a morphism 64 : TA — T?A
that maps a computation over A to a computation over T'A. Intuitively, €
maps a computation to the value it computes, and é shows how a compu-
tation may itself be computed. We require that (T, ¢,6) be a comonad over
C. Then we regard the Kleisli category of this comonad as an intensional
category; it has the same objects as C, and an intensional morphism from A
to B is just a morphism in C from T A to B.

We say that a comonad is computational if there is a natural way to convert a
data value into a degenerate computation returning that value. This enables
us to extract from an algorithm a function from values to values, and we ob-
tain an extensional equivalence relation on algorithms by identifying all pairs
of algorithms that determine the same function. We show that if the comonad
is computational then the Kleisli category collapses onto C under extensional
equivalence. This means that an intensional semantics based on a computa-
tional comonad can be viewed as a conservative extension of a corresponding
extensional semantics based on the underlying category. We may therefore
use this framework for reasoning at different levels of abstraction, while being
assured that the addition of intensional information does not interfere with
purely extensional aspects of program behavior.

We then show that, assuming certain further conditions concerning products,
the Kleisli category satisfies an intensional analogue of the cartesian closed-
ness property. This generalizes from the known result that if the underlying
category is cartesian closed and the (functor part of the) comonad preserves
products then the Kleisli category is also cartesian closed. When the under-
lying category C is an ordered category, we identify conditions under which
the Kleisli construction preserves certain lax forms of cartesian closedness.

Throughout the paper we motivate our definitions and results by means of
notions of computation on domains. We focus primarily on three forms of
computation at differing levels of abstraction. At the end of the paper we
discuss briefly some further examples that indicate the broader applicability
of our ideas. We also mention the relationship between our work and the
sequential algorithms model of Berry and Curien [6].

We assume familiarity with elementary category theory and domain theory.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

We refer the reader to [11] and [1] for cateéorica.l background and to [8] for
the relevant domain theory.

2 Computations, Comonads and Algorithms

Let C be a category that we regard as providing an extensional framework. We
wish to encapsulate in abstract terms what a notion of computation over C is,
and to build an “intensional” category whose morphisms can be thought of as
extensional morphisms equipped with additional computational information.
We model a notion of computation over C using a comonad over C, the functor
part of which maps an object A to an object T'A representing computations
over A. The two other components of the comonad describe how to extract
a value from a computation, and how a computation is built up from its
sub-computations. We then take an intensional morphism from A to B to be
an extensional morphism from T'A to B, essentially a morphism from input
computations over A to output values in B. This leads us to use for our
intensional category the Kleisli category Cr [11], which has the same objects
as C and in which the morphisms from A to B are exactly the C-morphisms
from T'A to B. Typically C is a category in which morphisms are functions of
some kind, and we will refer to intensional morphisms in Cr as algorithms to
emphasize their computational content. In case we need to compare Kleisli
categories for different comonads over the same underlying category we will
use the term T-algorithm, indicating the comonad explicitly.

2.1 Comonads and the Kleisli category

Definition 2.1 A comonad over a category C is a triple (T, ¢,6) where T :
C — C is a functor, ¢ : T = I¢ is a natural transformation from T to the
identity functor, and § : T = T? is a natural transformation from T' to T?,
such that the following associativity and identity conditions hold, for every
object A:

T(EA)OéA = 6TA°5A
emoé,q = T(CA)O(SA = idTA.

Figures 1 and 2 express these requirements in diagrammatic form. °

Definition 2.2 Given a comonad (T ¢,§) over C, the Kleisli category Cr is
defined by:

e The objects of Cr are the objects of C.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

TA i TB TA 1) THB

€A €6 0a dB

A B T?A T*B
iy T*f

Figure 1. Naturality of ¢ and § in a comonad: these diagrams commute, for

all A, B, f: A= B.

o -) S R L S V. L P
idra da T4 N 814
TA T A T3
T4 A

Figure 2. Identity and associativity laws of a comonad: these diagrams com-
mute, for all A.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

e The morphisms from A to B in Cr are the morphisms from T'A to B
in C.

e The identity morphism id aon AinCrisesq:TA—C A

e The composition in Cr of @ : A —=°7 B and a’ : B —°7 C, denoted
a' 5 a, is the composition in C of §4 : TA —¢ T?A, Ta : T’A —° TB
and @' : TB =€ C, i.e.,

a'da=a"o0Taody,.

The associativity and identity laws of the comonad ensure that Cr is a cate-
gory [11]. s

This use of morphisms from T A to B to model algorithms from A to B fits
well with an intuitive operational semantics based on the coroutine mech-
anism [10]. A program responds to requests for output by requiring some
computation on its input (typically, to evaluate some portion of the input)
until it has enough information to determine what output value to produce.
Execution is lazy, in that computation is demand-driven. The operational be-
havior of algorithm composition can be described as follows. Let a : A —°r B
and @’ : B —°T C. Then @’ & a responds to a request for output (in C) by
performing an input computation ¢ over A, transforming this into a compu-
tation ¢’ over B by applying § and then Ta to ¢, and supplying t’ as argument
to a’. For further details concerning operational semantics we refer to [5].

3 Notions of computation on domains

Our main examples will be based on a category of domains and continuous
functions. To avoid repetition and to be precise, let us remark that by a
domain we mean a directed-complete, bounded-complete, algebraic partial
order with a least element. That is, a domain (D,C) is a set D equipped
with a partial order C satisfying the following conditions:

e D has a least element, denoted Lp.
e Every non-empty directed subset X C D has a least upper bound | | X.
e Every non-empty bounded subset X C D has a least upper bound [| X.

e Every element of D is the least upper bound of its (directed set of)
finite approximations.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

A set X is directed iff for all z,y € X there is a z € X such that z € 2z and
y C z. A set X is bounded (or consistent) iff there is a z € D such that z C 2
for all z € X. An element e € D is finite (or isolated) iff, for all directed
subsets X C D, if e C || X then e C z for some z € X.

We remark that none of our example comonads really requires that the un-
derlying domain be algebraic, and nor does the presence of a least element
play any prominent réle (except, of course, in justifying the existence of least
fixed points). We could just as well work in the category of directed-complete,
bounded complete partial orders and continuous functions. Nevertheless, the
property of algebraicity is very natural in the computational setting and all
of our example functors on domains preserve algebraicity. At the end of
the paper we will discuss further examples based on different categories and
different types of domain.

3.1 Increasing paths

The first notion of computation that we introduce models in abstract terms
a sequence of time steps in which some incremental evaluation is being per-
formed. For example, a program with two inputs may need to evaluate one
or more of its input arguments and it may attempt to perform evaluations
in parallel or in sequence; moreover, it may only require partial information
about its arguments, as is typically the case, say, when an argument is a
function and the program needs to apply that argument to an already known
parameter. One natural way to formalize this form of computation is as an in-
creasing sequence of values drawn from a domain, whose partial order reflects
the amount of information inherent in a value.

We define the comonad T} of “increasing paths” as follows®.

e For a given domain (D,C), let T1D be the set of infinite increasing
sequences over D, ordered componentwise. Thus, the elements of 17D
have form (d,)2,, where for each n > 0, d, C dny1; and we define
(dn)2o Crip (d,)2, iff for all n > 0, dn Cp 4.

e For a continuous function f:D —= D' let T1f : 1D — TD' be
the function that applies f componentwise. That is, (T1f)(dn)rze =

(fdn)rzo-

e For t € Ty D let ept be the least upper bound of t. That is, €(dn)o2, =
LJ‘;I“:D dn .

1This comonad, adapted for Scott domains, was first introduced in [4].

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Figure 3. The domain Two X Two.

e For t € Ty D let 6pt be the sequence of prefixes of ¢, each represented
as an infinite sequence. That is, if ¢ = (dn)i%o, then for each n > 0,
(6t)n = do...dnd%. '

Intuitively, a computation may be viewed as a (time-indexed) sequence of
increments in the amount of information known about a data value, and
the value “computed” by such a computation is its least upper bound; each
computation is itself built up progressively from its prefixes. Equijvalently, we
can regard a computation over D as a continuous function from the domain
VNat of “vertical” natural numbers (together with limit point w) to D. Our
ordering on computations then corresponds exactly to the pointwise ordering
on such functions.

The least element of 73D is the sequence L. The finite (isolated) elements
of Ty D are just the eventually constant sequences all of whose elements are
finite in D. It is easy to verify that T; maps domains to domains and is indeed
a functor. The comonad laws hold: naturality of € corresponds to continuity
of f; naturality of § states that the operation of applying a function compo-
nentwise to a sequence “commutes” with taking prefixes; every computation
is the least upper bound of its prefixes; and every prefix of a prefix of ¢ is also
a prefix of ¢.

For illustration, let Two be the domain {L1,T}. The domain Two x Two is
shown in Figure 3, and Figure 4 shows the six continuous functions from
Two X Two to Two, ordered pointwise. We give these functions mnemonic
names: L and T are constant functions; | is strict in its left argument; r is
strict in its right argument; b is strict in both arguments; poll returns T if
either of its two arguments is T, so that poll is not strict in either argument.
Each function is depicted by a Hasse diagram corresponding to Figure 3, in
which the nodes are shaded to indicate their image under the function being
described: o corresponds to L, e to T.

Figure 5 shows part of Tj(Two x Two). Figure 6 shows some of the Ti-
algorithms from Two x Two to Two, ordered pointwise. The notation for de-
scribing algorithms is based on Figure 5, again with o representing L and e
representing T. In each case the intended algorithm is the least continuous

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Figure 4. Continuous functions from Two X Two to Two, ordered pointwise.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

(T, 7)°
il g
(T, L) (T, T (L, T)T,T)

|

(T,L)” (L, T)*
™~ -~
(L,L1)°

Figure 5. Some paths in T}(Two x Two).

function on paths consistent with this description. The nomenclature is in-
tended to indicate (as yet only informally) the function computed by each
algorithm and what computation strategy the algorithm uses. For instance,
the algorithms pb, Ib, rb and db all compute the function b; pb computes both
arguments in parallel immediately, Ib computes left-first and then right, rb
computes right-first and then left, and db computes both arguments in either
order. Since the diagram includes only one algorithm for poll, for L, and for
T, in these cases we use the same name for the algorithm as for the function.

Since Tj(Two x Two) includes paths with repeated steps, we can also make
distinctions between algorithms which differ not in the order in which they
evaluate their arguments, but in the amount of time they are prepared to wait
for each successive increment to be achieved. For instance, for the function
b there are algorithms pb,,, |b,, rb, and db, for each n > 0, characterized as
the least functions on paths such that

Informally, pb,, is the algorithm which needs to evaluate both arguments and
returns T provided each evaluation succeeds (with result T) in at most n time
steps. Similarly, Ib, evaluates both arguments and returns T provided eval-
uation of the left argument succeeds in at most n time steps and evaluation
of the right argument succeeds-in at most 2n + 1 time steps.

The following relationships hold, for all n > 0:
an E Ib'n ; Pb2n+1

pb, C rb, C pby,y,
db, = Ib, U rb,.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Figure 6. Some T}-algorithms from Two X Two to Two, ordered' pointwise.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Moreover, pb, = pb,.1, Ibn T Ibay1, fa T faga, and dbp E dbnis for all
n > 0. Each of these sequences of algorithms has the same least upper bound,
characterized as the algorithm b, that maps every path with lub (T, T) to

T. Of course, in Figure 6, pb is just pby, and so on.

3.2 Strictly increasing paths

In the comonad T; a computation has a built-in measure of the number of
time steps it takes between successive proper increments. We obtain a more
abstract notion of computation by retaining only the increments themselves,
so that we may still make distinctions on the basis of the order of evaluation
of arguments. To do this we model a computation as a “strictly increasing
path”. We define the strictly increasing path comonad T as follows.

e Let T, D be the set of strictly increasing finite and infinite sequences
over D. For convenience, we represent a finite sequence as an eventually
constant infinite sequence. That is, the elements of T2D are either of
form (d,)2,, with d, Cp d,.+1 for all n > 0; or of form dyp . ..dNn-1d%,
where N > 0 and d, Cp dny1 for 0 < n < N. Let Cp,p be the least
partial order on T>D such that

do dN_ Csz dg dN—-lt ifte TQD & dN ;D to.

This ordering is based on the prefix ordering on sequences, but adjusted
to take appropriate account of the underlying order on data values. The
order Cr,p is actually the stable ordering (2] on T;D, when we regard
the elements of T, D as (strictly increasing, possibly eventually constant)
stable functions from VNat to D. Note tha.t every continuous function
from VNat to D is also stable.

e For a continuous function f : D — D’ we define T, f to be the function
which applies f componentwise and suppresses any repetitions (except
for constant suffixes). That is, T3 f is the least continuous function such
that for all d € D, for all do,d; € D such that do C di, and for all

te TQD
Tf(a*) = (fd)*
T2f(dodrt) = (fdo)(T2f(drt)) if fdo # fd
= Tyf(dit) if fdo = fdy.

e For all t e T, D, let ept be the lub of t. That is, €(dn)3%0 = Uszo dn-

BROOKES AND GEVA : COMPUTATIONAL COMONADS

(T, (T, T)* (L, TN(T,T)"
(T,)"

(T, L)” (L, T)*
% #
(L, L)*

Figure 7. Part of T3(Two x Two).

e For all t € T,D, let §pt be the sequence of prefixes of t. Again, if
t = (d,)2, then for each n > 0, (6t)n = do...dndy. Note that if ¢ is

strictly increasing, so is 6t.

The least element of T;D is the sequence L“. The lub of a directed (or
bounded) set of strictly increasing paths is again a strictly increasing path?.
The finite elements of T; D are the eventually constant sequences of form
(do...dNn-1)d%, where N > 0 and dy is a finite element of D. Every element
of T, D is the lub of its finite approximations. Thus, T; maps domains to
domains. Functoriality is easily checked.

Although the order is not pointwise, it is still true that every ¢ € T, D is the
lub of its prefixes. The comonad laws hold for (T3,¢,9).

Figure 7 shows some of the paths in T3(Two x Two). Figure 8 shows some of

the T;-algorithms from Two X Two to Two, ordered pointwise, using a notation
based on Figure 7. Again the nomenclature is chosen to indicate the func-

tion computed and the computation strategy. Each of the Ti-algorithms of

Figure 6 has a corresponding T,-algorithm, for which we use the same name;

but because of the different ordering on paths, there are three additional T>-

algorithms. Note also that since T;D does not include paths with repeated

elements, only pb, and pb, of the family of pb,, algorithms defined above have

corresponding T,-algorithms.

3.3 Timed data

A simple notion of computation over domains is obtained by regarding a com-
putation as a pair consisting of a data value and a natural number, intuitively
representing the amount of time or the cost associated with the calculation

2However, this would not be the case if we ordered T; D componentwise, since T3 D is
not directed-complete under the componentwise ordering.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Figure 8. Some T-algorithms from Two x Two to Two, ordered pointwise.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

of the value. With this intuitition it seems reasonable to regard one compu-
tation (d,n) as approximating another (d’,n’) iff d C ¢’ and n’ < n; that is,
a better computation produces a more precise data value in less time. This
suggests the use of the following comonad:

T3D = D x VNat°?, ordered componentwise.
For f : D — D', (Tof) (dy) = (fd,n).
e(d,n) =d.

§(d,n) = ((d,n),n).

Here VNat°P is the domain consisting of the natural numbers together with
w, ordered by the reverse of the usual ordering, so that w is the least element.
The least element of T3D is (Lp,w).

We may define for each continuous function f : D — D’ and each n € VNat
an algorithm f, from D to D"

fald,k) = fd ifk<n

= 1 otherwise.

Clearly, whenever f C g we also get fu T gn. Moreover, because of our
ordering on T3 D, we get fn T fa41 for each n > 0; and f, is simply A (d, n).fd.
The lub of the f, is the function f. = A(d,n).(n = w — L, fd), which is
below f,,. Using this nomenclature, we show some of the T3-algorithms from
Two X Two to Two in Figure 9.

It is also possible to define a comonad based on the functor TD = D x VNat,
using the usual ordering on the integer component.

4 _Relating algorithms and functions

4.1 Computational comonads

We will say that a comonad is computational if for each object A, every
data value in A can be regarded as a “degenerate” computation in T'A, and
degenerate computations possess certain simple properties. This permits us to
extract from an algorithm a function from values to values, by looking at the
algorithm’s effect when applied to degenerate computations. Two algorithms
are called extensionally equivalent iff they determine the same function.

More precisely, we define a computational comonad to be a comonad (T, ¢, §)
together with a natural transformation v : Ic — T satisfying some axioms

BROOKES AND GEVA : COMPUTATIONAL COMONADS

poll
|
poll
[
poll,,
[
poll,,

L 7
| |
l. fe
! : |
lnt1 Frt1
' |
s ra
bu
I
b.

I
bn+1
I
bn
i

Figure 9. Some T3-algorithms from Two x Two to Two, ordered pointwise.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

A idy A A 74 TA A f B
\ / V4 b4 74 vB
' 3
TA TA———T'A TA 77 TB

Figure 10. Properties of a computational comonad: these diagrams commute,

for all A, B, and all morphisms f : A —¢ B.

which capture formally what we mean by degeneracy. We then show that this
permits us to define an “extensional equivalence” relation on each hom-set in
Cr. Extensional equivalence is preserved by composition, so that we actually
have a congruence on Cr. The underlying category C may then be recovered

from Cr by taking a quotient.

Definition 4.1 A computational comonad over a category C is a quadruple
(T,e,6,7) where (T,¢,6) is a comonad over C and v : Ic — T is a natural
transformation such that, for every object A,

® €404 = ICL.;l
® 54094 =7TAOY4-

Naturality guarantees that, for every morphism f : A =€ B,
e Tfoya=19pof.

Figure 10 shows these properties in diagrammatic form.)

As an immediate corollary of these properties, ¢4 is epi and 74 is mono, for
every object A.

Proposition 4.2 If (T,¢,6,7) is a computational comonad, then there is a
pair of functors (alg,fun) between C and Cr with the following definitions and
properties:

BROOKES AND GEVA : COMPUTATIONAL COMONADS
e alg : C — Cr is the identity on objects, and alg(f) = f o €4, for every
f:A—=CB.

e fun : Cr — C is the identity on objects, and fun(a) = a o v4, for all
a: A=°T B,

e fun induces an equivalence relation =° on Cr, given by
a; =° a3 <= fun(a,) = fun(az).

This relation is a congruence; that is, for all ay,a; : A —°T B and
ay,ay: B —°T C,

= ' =
ay=a; &ay=a; = a;0a;="a30a;.

e The quotient category of Cr by =¢ is isomorphic to C.
o funoalg = Io. That is, for all f: A —C B, fun(alg f) = f.

e algofun = I, in that for all a : A —°T B, alg(fun @) =° a.

Proof: Functoriality of alg and fun are straightforward. For instance:

(a’Ga)oy

(a’0oTaoé)oy

a’oTaoyoy sincedoy=~vo07y
a'oyoaoy by naturality of v
fun(a’) o fun(a).

fun(a’ 5 a)

A similar calculation shows that =° is a congruence.

The quotient of Cr by =° has the same objects as Cr (and therefore
the same objects as C), and the morphisms in the quotient category
from A to B are the =°-equivalence classes of morphisms from A to
B in Cr. Let us write [a] for the equivalence class of a. Clearly, the
map f — [alg(f)] is an isomorphism of hom-sets, showing that Cr /= is
isomorphic to C.

The facts that fun o alg = I and alg o fun =¢ I, are elementary conse-
quences of the definitions. a

We say that fﬁn(a) is the extensional morphism computed by a. Since
fun(alg f) = f, every extensional morphism f is computed by some (not nec-
essarily unique) intensional morphism.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

cra,B) ETE9) v, By ca,B) S TL9 e a By
fun fun alg alg
C(A,B)WC(A,B) C(A,B)—m-—C(A,B)

Figure 11. Naturality of fun and alg for a computational comonad: these
diagrams commute, for all f: A’ —=¢ Aand g: B —¢ B'.

These results show that every computational comonad can be used to produce
an intensional category that yields back the underlying extensional category
when we take the extensional quotient. Next we show that fun and alg are
natural transformations. Let Set be the category of sets and functions.

Definition 4.3 The two-variable hom-functor C(T'(—), —) from C°®* xC to Set
takes a pair (A, B) of objects to C(T' A, B) and takes a pair of morphisms (f, g)
with f: A’ =€ Aand g : B —° B' to C(Tf,g) : C(TA,B) — C(TA", B'),
where for all a : TA —=¢ B,

C(Tf,9)(a) =goaoTf.

Similarly, the two-variable hom-functor C(—, —) takes (A, B) to C(A4, B) and
(f,g) to C(f,g), where for all A : A =€ B,

C(f,9)(h)=goho f.

Proposition 4.4 Let (T,¢,6,v) be a computational comonad over a category
C. Then fun and alg, as defined in Proposition 4.2, are natural transforma-
tions:

fun : C(T(-),-) = C(—,—)
alg : C(—, =) = C(T(-),-).

BROOKES AND GEVA : COMPUTATIONAL COMONADS

That is, for all f : A' =€ A and g : B —°¢ B', the following identities hold:

funo C(T'f,g9) =C(f,g) o fun
C(Tf,g) o alg = alg o C(f,g).

Figure 11 expresses these properties in diagram form.
Proof: Straightforward, using naturality of 4 and e. O

We now show that the three example comonads introduced earlier can be
extended to become examples of computational comonads.

4.2 Examples.

1. For the increasing paths comonad Ti, let 4p : D — T1D be defined by
Apd = d“, for all d e D. Clearly 4p is continuous, and 7 is a natural
transformation. Moreover, the computational comonad laws hold, since
the lub of d* is d, and all prefixes of d* are equal to d“.

The functor fun maps each algorithm from Two X Two to Two into a
function from Two x Two to Two. In particular, fun(pb) = fun(lb) =
fun(rb) = fun(db) = b. Similarly, fun(pb,) = b for all n > 0, and
fun(b,) = b. In fact, b. = alg(b).

Figure 12 illustrates the result of taking the extensional quotient of
Figure 6. Boxes enclose equivalence classes of algorithms, arcs between
boxes represent the quotient ordering, and within each box we retain
the pointwise order to ease comparison with Figure 6. As expected,
the quotient figure is isomorphic to Figure 4 when we identify each
equivalence class with the function computed.

2. For the strictly increasing paths comonad, we again let yp : D — 12D
be 4pd = d“. Again this is a continuous function, and 7 is & natural
transformation. Again the computational comonad laws hold. Figure 13
shows the quotient of Figure 8 by extensional equivalence. Note that
fun(dL) = fun(IL) = fun(rLl) = fun(Ll) = L.

Again the quotient diagram is isomorphic to Figure 4.

3. For the timed data comonad, we obtain a suitable 7 by deciding what
cost to associate with a degenerate computation. For each k € VNat we
may take yid = (d,k) and obtain a natural transformation satisfying
the requirements of a computational comonad. Define funi to be the
functor whose action on algorithms is given by funi(a) = ao~, and let

BROOKES AND GEVA : COMPUTATIONAL COMONADS

poll

. / Pr

sl \ i sr
/N

Figure 12. Quotient of Figure 6 by extensional equivalence.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

poll

pl / \ pr
\ . /
7 X
Ib rb
' Y b/

sl sr

Figure 13. Quotient of Figure 8 by extensional equivalence.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

=¢, be the equivalence relation induced by 4x. For example, we have,
for each k = 0:

fung(b,) b ifk<n

ne if k> n.

Clearly, b, =% bpgr iff K #n + 1.
Again the Kleisli category quotients onto the underlying category under

the congruence induced by 7. Figure 14 shows the quotient of Figure 9
under the equivalence induced by Yn41.

5 Products and Exponentiation

5.1 Products

Now suppose that the underlying category C has products, and for each pair of
objects A; and A; there is a distinguished product, which we denote A; x A,
with 7; (i = 1,2) being the projections. It is easy to show that distinguished
product objects in C are also product objects in Cr, with projections in Cr
given by:

?; H A] x A.g —PCT A"
7?,' = €4;0 T'ﬂ',‘
= Wi0€4,xAz-

Pairing of morphisms in Cr is the pairing of morphisms in C, and the combi-
nation (T 7y, T 7;) plays a special rle in light of the following properties.

Proposition 5.1 IfC has products then o : T(—x—) = T(=)xT(—) defined
by:

cap:T(AxB)—-TAxTB
TAB = (TTF'[,T?I’Q)

is a natural transformation such that, for all objects A and B,

(ea X €eB)00AB = €axB
(6a X éB)ooap = orarBoToapodaxn
OABOYAxB = 74 X 7B

Proof: Naturality of o follows from the universal property of products and
the functoriality of T. The remaining properties are easy consequences
of naturality of ¢, §, and 4. Note the identity o o T (f,g) = (T'f,Tg).
In particular, o 0 To = (T? 1, T? 73). 0

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Tu
|
.
I

Ta+1

poll,

poll,

POIIﬂ+1

l. le

Iﬂ+1 _ M4

Figure 14. Quotient of Figure 9 by the equivalence induced by Yn41.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

5.2 Exponentiation

Now suppose that the underlying category C is cartesian closed. That is, we
assume that C has a distinguished terminal object and distinguished binary
products, and that for every pair of objects B and C' there is a distinguished
exponentiation object B — C satisfying the usual requirements: for all B
and C there is a morphism appg ¢ : (B — C) x B —=° C such that, for all
A and all morphisms f : A x B —¢ C there is a unique morphism curry(f) :
A =€ (B — C) satisfying appp ¢ o(curry(f) x idg) = f.

Equivalently, a category is cartesian closed if it has finite products and there
is a pair of natural isomorphisms

curry : C(— x B,C) = C(—,B = C)
uncurry : C(—,B = C) = C(— x B,C).

Here C(— x B, C) and C(—, B — C) are contravariant hom-functors from C°?
to the category Set, with the standard definitions [1]. This is the same as
requiring that curry(uncurry k) = h and uncurry(curry g) = g, together with
the following naturality conditions: for all f : A —~C A, g: A x B=°C,
and h: A’ =¢ (B = C),

curry(g o (f x id)) = (curryg) o f
uncurry(k) o (f x id) = uncurry(k o f).

It follows easily from these conditions that one can choose app = uncurry(id)
as a suitable application morphism.

We want to give some general conditions under which analogous properties
can be obtained for the Kleisli category Cr. Assuming that C is cartesian
closed, the obvious candidate in Cr for the exponential object-of B and C is
TB — C. Moreover, we know that there is a natural isomorphism between
Cr(A,TB — C) and C(TAxTB,C). Since Cr(Ax B, C) is C(T(Ax B),C), it
is clear that we must make some assumptions about the relationship between

T(A x B) and TA x TB.

If T(A x B) and T A x T'B are naturally isomorphic it is easy to show that Cr
is cartesian closed whenever C is. This is apparently a “Folk Theorem”. The
comonad T; has this property, and we gave in [4] a proof using this property
that the Kleisli category of T} is cartesian closed.

However, there are reasonable examples in which T' does not preserve prod-
ucts, including T and T3 as described earlier. Instead, we will make a weaker
assumption: that the comonad can be equipped with natural ways to move

BROOKES AND GEVA : COMPUTATIONAL COMONADS

back and forth between T(A x B) and T'A x T'B that interact sensibly with
the comonad operations ¢, §, and v. This can be conveniently summarized
by means of two natural transformations split and merge satisfying certain
combinational laws.

Definition 5.2 Let (T,¢,6,7) be a computational comonad. A computa-
tional pairing is a pair of natural transformations

split : T(— x =) = T(-) x T(-)
merge: T'(=) x T(=) = T(— x =)

such that, for all objects A and B, the following properties hold:

(ea x eB) o splity g = €axB

€AxB OMerge, p = €4 X €3

split, g 0YAxB = 74 X 1B

merge, 5 (74 X VB) = YaxB

(64 x éB) o splity g = splity, 75 0T split4 g 06axp
merger, 75 0(64 X 6p) = T'split 4 g 064xp 0 merge, p.

Naturality of split and merge requires that for f : 4 =€ A’ and g: B —¢ B/,

split 4 . oT'(f x g) = (T f x Tg) osplit, g
merge, g o(Tf x Tg) =T(f x g) o merge, 5.

We summarize these properties in dia.gra;rn form in Figure 15. T °

The properties listed above formalize the sense in which we require the split-
ting and merging operations to interact sensibly with ¢, §, and . In partic-
ular, the following properties follow immediately.

Corollary 5.3 Let (T,¢,6,7) be a computational comonad and let split and
merge form a computational pairing. Then for all A and B,

(ea x eg) osplity gomerge, 5 = (€4 X €B)
splity g o merge, go(va X v8) = (74 X 7B)
€axp omerge, posplit, g = €axB
mergeA'BosplitA,B 0YAxB = “YAxB-

We have already seen that o = (T 7y, T 73) qualifies as a suitable split oper-
ation (Proposition 5.1). Despite this fact, split (and merge) are not generally
uniquely determined by the computational pairing laws and we wish to permit
the use of comonads with “non-standard” choices of split. Moreover, natu-
rality of split and merge does not by itself imply the computational pairing
laws.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

(4 x B) TS X D4 ¢ B Tax BT X D74 TR
SplitA‘B splitA’,.B" mergeA’B mergeA:’B:
TAxTBmTA x TB T(AxB)Tf TT(A xB)
TAxTB TAxTH
€4 X €B YA X 7B
mergeA£ mel’geA’B
' ; '
T(AxB)—22__. AxB Ax B—I4%B _T(A x B)
splity g €A X €B YA X VB splity 5
TAxTB TAxTB
TAxTB SR TA x T*B
merge, 5 mergeéra,re
JAXB 2 TsplitA B d
T(A x B)—===—T%(A x B) +~T(TAxTB)
splity 5 splitr 4,78
TAxTB T*AxT*B

6,4)(63

BROOKES AND GEVA : COMPUTATIONAL COMONADS

5.3 Examples

1. Return again to the increasing path comonad T;. The natural transfor-
mation ¢ = (T} 71, Ty 72) is given by: o(u) = (An. 71(un), An. w2 (un)) -
This is actually an isomorphism, with inverse given by merge((s,t)) =
An. (Sn,ts) - Intuitively, each of these two operations works “in parallel”
on the two components.

Both o and merge are natural transformations, and they satisfy the
computational pairing laws, which state that:
e Merging and splitting commute with componentwise application
of functions.
e Merging and splitting respect lubs of sequences.
e Merging and splitting respect prefixes.

e Merging two degenerate computations produces a degenerate com-
putation, and splitting a degenerate computation produces a pair
of degenerate computations.

2. There are other intuitively sensible ways to split and merge in the in-
creasing paths comonad 7. We can define a form of (left-first) inter-
leaving by:

Imerge((s, t)) = An. (SrnfzbftnfzJ) :
For example, this gives:
Imerge(s0315%, tot1ty) = (o, to) (S1,%0) (S1,t1) (82,%1) (s2,2)“ .

To go with Imerge, we define a split that operates only on alternate
steps of a computation:

splity(u) = (An. m1(u2n), An. T2(uzn)) -

We then obtain the identity split, o Imerge = id.

It is easy to verify that Imerge and split, are natural transformations, and
that the computational pairing properties hold, making use of the equal-
ities |min(i,25)/2) = min(|¢/2],j) and [min(i,25)/2] = min([¢/2],J).

There is clearly also a right-first version of interleaving rmerge and this
also interacts sensibly with split, as given above.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

3. For the strictly increasing paths comonad, each of the split-merge com-
binations above adapts in the obvious way, modified so as to ensure
that the result of splitting a strictly increasing sequence of pairs is a
pair of strictly increasing sequences. Thus, for example,

o({L, L) (T, L)(T,T)*)
merge(LT, LTY)

(T L
(L, L)(T, T)".

In fact T5(A x B) and T>A x T, B are not generally isomorphic, because a
strictly increasing sequence of pairs does not necessarily increase strictly
in both components at each stage. Nevertheless, o and merge are still
natural transformations satisfying the requirements listed above for a
computational pairing, and we have the identity o o merge = id.

The (appropriately adjusted) Imerge and split, operations also form a
computational pairing, and split, o Imerge = id; similar properties hold
for rmerge and split,.

5.4 Pairing, currying and uncurrying on algorithms

Using the split operation of a computational pairing provides a way to com-
bine a pair of algorithms into an algorithm on pairs. If split is taken to be
o, this is the standard way to form the product of two morphisms in the
Kleisli category. We can also use split to define intensional analogues to the
contravariant hom-functors C(— x B,C) and C(—,B — C).

Definition 5.4 Let C be a category with finite products, let (T'¢,é,7). be
a computational comonad, and let split be a natural transformation from
T(-x=)toT —xT—. For f: A>T A andg: B —°r B’ we define
(f xg): (Ax A") =T (BxB')by fxg=/(f xg)osplit. °

Proposition 5.5 Let C be a category with finite products, let (T',¢,6,7) be a

computational comonad and let split and merge form a computational pairing.

~ Then there is a functor X from Cr xCr to Cr that maps a pair of objects (A, B)
to A x B and maps a pair of morphisms (a,b) to (a X b) = (a x b) o split.

Proof: To show that x maps identity morphisms to identity morphisms:

(i'&A X l?.'lg) = (CA X 63) osplit = eqxp = ianB.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

To show that X preserves composition, let a : A =T A’, b: B =T B/,
a': A' =t A" and ¥ : B' =T B". Then:
(a’ x)3 (a X b) ((a x ') o split) 3 ((a x b) o split)

(a’' x &) o splitoT'(a x b) o T'split 0é
(@’ x b') o (T'a x T'b) o split oT split 06
(a' x b') o (Ta x Tb) o (6 x §) o split
(
(
(o

(¢’ 0oTaoé) x (¥ o Tho §)) o split
(a 5 a) (¥ 3 b)) o split
a’da)x (Vo).

o

Definition 5.6 Let C be a cartesian closed category, let (T ¢, 6,7) be a com-
putational comonad, and let split and merge form a computational pairing.
The contravariant functor Cr(— % B, C) from Cr°? to Set is defined as follows.

e The functor maps an object A to Cr(A x B,C).
e The functor maps a morphism f : A —¢T A’ to the function

Ag.gd (f X idp) from Cr(A’ x B, C) to Cr(A x B,C).

Similarly, the contravariant functor Cr(—,TB — C) from Cr°® to Set, is
defined by:

e On objects the functor maps A to Cr(A,TB — C).

e On morphisms the functor maps f : A =°T A’ to the function Ah.h3 F
from Cr(A’,TB — C) to Cr(A,TB = C).

Proposition 5.7 Let (T,¢,6,7) be a computational comonad and let split
and merge be a computational pairing. Given a : T(A x B) —=¢ C and
b:TA =€ (TB — C), define '

curry(a) : TA —-° (TB — C) uncurry(b) : T(A x B) =€ C
curry(a) = curry(a o merge) uncurry(b) = uncurry(b) o split.

Then:

BROOKES AND GEVA : COMPUTATIONAL COMONADS

e curry and uncurry are natural transformations:

curry : Cr(—= x B,C) = Cp(—,TB = C)
uncurry : Cr(—,TB — C) = Cr(— X B, C).

e For alla: A x B —°r C, uncurry(curry(a)) =* a.

e For all f: A x B —° C, uncurry(curry(alg f)) =alg f.

Proof:

e Naturality of ciirry requires that curry(g 3 (f X idg)) = (ciirry g) 5 f, for
all f: A—°T A’ and g : A’ x B —°7 C. This follows from naturality of
currying in C and the properties of computational pairing:

curry(g 3 (f x id)) ctrry(g o T(f x €) o T split 06)

curry(g o T(f x €) o T split 06 o merge)
curry(g o T(f x €) o mergeo(d x 8))
curry(g o mergeo(T f x Te) o (6 x §))
curry(g o mergeo((Tf 0 8) x (Teo 8)))
curry(g o mergeo((T' f 0 §) x id))
curry(g o merge) o (T f o 6)
curry(g)oTfoé

curry(g) 3 f.

e Similarly, to show naturality of uncurry we need uncurry(h)d (f x id) =
uncurry(h 5 f), for all f: A =7 A’ and h: A’ =°7 (TB — C). Again
the proof is straightforward:

uncurry(k) & (f X id) uncurry(h) o split oT(f x €) o T split 0§
uncurry(h) o (T'f x Te) o split oT split 06
uncurry(h) o (T'f x Te) o (6 x §) o split
uncurry(h) o ((Tf 0 8) x (Teo §)) o split
uncurry(h) o ((T'f o 6) x id) o split
uncurry(h o T f 0 §) o split

uncurry(h 6 f) o split

uncurry(h S f).

o Let a: A x B —°7 C. Then

uncurry(curry(a o merge)) o split oy
(a o merge) o split oy

a o (merge o split o)

ao”,

uncurry(ctrry(a)) o v

showing that uncurry(currya) =° a.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

e Let f: Ax B —°C. Then

uncurry(curry(alg(f) o merge)) o split
alg(f) o mergeosplit

f o eo mergeosplit by Corollary 5.3
foe

alg f.

uncurry(curry(alg f))

O

We have shown that an intensional pairing produces a weak form of exponen-
tiation structure: we obtain notions of currying and uncurrying on algorithms
that are natural transformations but satisfy a weaker condition than isomor-
phism. We may rephrase these properties in terms of the existence of a notion
of “application” in the intensional category as follows.

Proposition 5.8 Let C be a cartesian closed category, (T'¢,6,7) be a com-
putational comonad and let split and merge be a computational pairing. For
all B and C there is an “application morphism”

{P-"PB‘C i [TB — C] X B '_’cT C
such that, foralla: Ax B =T C
aPPp,c O(curry(a) X idp) =° a.

Proof: Define appgc = uncurry(idrp—c) = uncurry(erg—c). As a corollary
of the naturality of uncurry (Proposition 5.7), we get:

sppo(b X id) = uncurry(id)5 (b id)
= uncurry(id G b)
= uncurry(b).

Thus, in particular, app 5(ctrry(a) X id) = uncurry(ciirry(a)) =° a.
Note that although ctirry(a) is not necessarily the only morphism A such

that app5(k X id) =° a, all such morphisms satisfy the condition that
uncurry(h) =° a. ' w

Thus, we have a weak form of cartesian closedness: instead of the usual
diagram for exponentiation we replace = by =° and we relax the uniqueness
condition. This is summarized in Figure 16.

Next we consider what happens if we make further assumptions on the rela-
tionship between split and merge.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Ax B g -C

Figure 16. When T has computational pairing this diagram in Cr commutes
up to extensional equivalence, for all a: A x B =°T C.

Proposition 5.9 Let C be a cartesian closed category and (T,€,6,7) be a
computational comonad with a computational pairing split and merge.

e If mergeosplit = id then uncurryo curry = id. '

e If split o merge = id then curry ouncurry = id.
As a corollary we get the following version of the “Folk Theorem”:

Corollary 5.10 If C is cartesian closed and (T,¢,6,7) is a computational
comonad over C, with a computational pairing such that mergeosplit = id
and split o merge = id, then the category Cr is cartesian closed.

Note the important fact that our definitions are parameterized by the choice
of split and merge. Once these are chosen, app, clirfy and uncutrry are deter-
mined uniquely. The Kleisli category itself is independent of split and merge;
what happens, however, is that each choice of these two natural transforma-
tions induces a (weak form of) exponentiation structure on this category. The
Kleisli category may possess many different notions of merging and splitting,
and therefore many different ways to curry, uncurry and apply algorithms.
This means that one may use the Kleisli category to give an interpretation to
a functional programming language containing several syntactically and se-
mantically distinct forms of application. This would be desirable, for instance,
if the language included both a strict and a non-strict form of application.

5.5 Eﬁcamples

1. The Kleisli category based on the increasing path comonad T} is carte-
sian closed, with exponentiation structure built from the standard split-
merge combination, which form an isomorphism.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Using the computational pairing Imerge and split,, we obtain intensional
forms of currying, uncurrying, and application which we will call curry,,
uncurry, and app;. This provides a weak form of exponentiation: curry,
and uncurry, are natural transformations, and for alla : A x B —fn C
we get

—

app; 5(crry;(a) X ‘a) =‘a.

Since split, o Imerge = id, it follows that -cirry,(uncutry,) = h. How-
ever, uncurry,(clirty, g) =¢ g, and equality may fail here. For example,

uncutry,(cirfy,pb) = uncurry,(curry;lb) = pb,

and uncurry,(ciirry, rb) is the least algorithm mapping the path
(L, T)(L, T)(T,T)* to T. This algorithm of course also computes
the function b.

Similar properties hold for the computation pairing rmerge and split,,
with the derived operations clirfy,, uncurry, and app,.

2. The strictly increasing paths comonad T, with computational pairing
o and merge, again has operations curry, uncurry and app that pro-
vide weak forms of exponentiation. As we remarked earlier, o and
merge are not isomorphisms. Instead, o o merge = id and for all
u € Ty(Ax B) the computation merge(o(u)) is pointwise above u. Hence,
curry(uncurry k) = h and uncurry(ciitty g) =* g. As an example, we have:

uncurry(ctrry Ib) = uncurry(ctrry rb) = uncurry(curry pb) = pb.

The Imerge and split, computational pairing also gives rise to a weak
form of exponentiation, as does the rmerge and split, computational
pairing.

6 Ordered categories

So far, although our principal examples were based on a cartesian closed
category of domains, we have not fully exploited the order structure. This
permitted us to state and prove results that hold in a more general category-
theoretic setting. Next we suppose that the underlying category is an ordered
category: each hom-set is equipped with a complete partial order, and compo-
sition is continuous. A functor T of ordered categories is required to respect
the ordering, in that for all f,g: A = B if f < g then Tf < Tg. Moreover,
T must also be continuous (in its action on morphisms). All of our examples
so far satisfy these conditions.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Suppose (T, ¢, $6,7) is a computational comonad over an ordered category C.
Then clearly Cr is again an ordered category. All of the results of the previous
sections go through in the ordered setting. In particular, the functors fun and
alg introduced earlier respect the ordering; and the proof of Proposition 4.2
can be adapted to show that the extensional quotient of the ordering on
Cr(A, B) is just the order on C(A, B).

We can also obtain some slightly stronger results by taking advantage of the
ordering. We omit most of the proofs, which may be easily obtained from the
results above, using monotonicity and continuity of composition.

Proposition 6.1 Let C be an ordered ccc and let (T,¢,6,7) be a computa-
tional comonad over C with a computational pairing.

If splito 'merge > id then curry o uncurry > id.

If split o merge < id then cilirfy o uncurry < id.

If mergeosplit > id then uncurry o curry > id.

If mergeosplit < id then unCurry o cuirry < id.

Next we introduce a simple generalization of the notion of cartesian closed
ordered category, obtained by relaxing the requirement that currying and
uncurrying form an isomorphism. Instead we allow currying and uncurrying
to form an adjunction in each homset, so that we have an example of a local
adjunction (see for example [9]) with additional properties. The relevance of
“lax” notions of adjunction such as these in computational settings (albeit
with different motivations) has been pointed out in different contexts by other
authors, for instance in [14].

Definition 6.2 An ordered category C is cartesian up-closed if and only if
it has finite products and for all pairs of objects B and C there is an object
B — C and a pair of lax natural transformations curry, uncurry between
C(— x B,C) and C(—, B — C) satisfying:

curry(uncurryh) < h
uncurry(curryg) > g
curry(g o (f xid)) < curry(g) o f
uncurry(h) o (f xid) > uncurry(ho f).

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Similarly, we say that C is cartesian down-closed iff it has finite products and
there is a pair of lax natural transformations curry, uncurry satisfying:

curry(uncurryh) > h
uncurry(curryg) < g
curry(g o (f xid)) 2 curry(g)o f
uncurry(h) o (f x id) < uncurry(ho f).

Definition 8.3 Let C be an ordered category with finite products, and let B
and C be objects of C.

e An up-ezponential for B and C is an object B — C of C together
with a morphism appgc : (B — C) x B —=°¢ C such that for every
f: Ax B —C C there is a least morphism curry(f) : A =€ (B — C)
satisfying:

app o(curry(f) x id) 2 f.

e A down-ezponential for B and C is an object B — C of C together
with a morphism appgc : (B — C) x B =€ C such that for every
f: Ax B =€ C there is a greatest morphism curry(f) : A —¢(B—=2C)
satisfying:

app o(curry(f) x id) < f.

The following result may be shown by adapting the usual proof that the two
alternative definitions of cartesian closed categories are equivalent.

Proposition 6.4 An ordered category C is cartesian up-closed iff it has finite
products and up-ezponentials.

An ordered category is cartesian down-closed iff it has finite products and
down-ezponentials.

Note that in general up-exponentials and down-exponentials need not be
unique (even up to isomorphism), since their definition relies on the choice of
computational pairing. However, if the same object B — C' and morphism
appp,c qualifies simultaneously as an up- and a down-exponential then it
forms the usual notion of exponentiation and the category is cartesian closed
in the usual sense.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

Proposition 6.5 Let C be a cartesian up-closed category and (T, ¢,6,7) be a
computational comonad with a computational pairing such that

split o merge < id

merge o split > id

(6 x &) o split < split oT split 06
mergeo(§ x §) 2 T split oé o merge.

Then Cr is cartesian up-closed.

Proof:
e Let a: Ax B—°T Cand b: A—°T (TB — C). Then:

uncurry(crfy a) = uncurry(curry(a o merge)) o split
; > a omergeosplit > a

curry(uncurry b) = curry(uncurry(b) o split o merge)
< curry(uncurry b) < b.

e To show that ciirfy is a lax natural transformation, let f : A —¢T A’
and g: A’ x B —=¢t C. Then:

curry(g 3 (f X id)) curry(g o T(f x €) o T split 06)
curry(g o T(f x €) o T split 06 o merge)
curry(g o T'(f x €) o mergeo(é x 4))

(
§
curryEgo mergeo(T f x Te) o (6 x §))
(
(
urry(g

curry(g o mergeo((T'f 0 8) x (Teo4)))
curry(g o mergeo((T f 0 é) x id))
curry(g o merge) o (T'f 0 §)

JoTfod

curry(g) 8 f.

([I VAN | | I | I VAN |

e To show that uncurry is a lax natural transformation, suppose that

f:A—=°T A'and h: A =7 (TB — C). Then

uncurry(h) 8 (f X id) = uncurry(h) o split oT'(f x €) o T split o6
> uncurry(h) o (T'f x Te€) o splitoT split oé
= uncurry(h) o (Tf x Te) o (6 x §) o split
= uncurry(h) o ((Tf o §) x (Teo 4)) o split
= uncurry(h) o ((T'f o 6) x id) o split
> uncurry(h o T f o §) o split
= uncurry(h 6 f) o split
= rry(h S f).

BROOKES AND GEVA : COMPUTATIONAL COMONADS

A similar result holds for a cartesian down-closed category with a computa-
tional pairing satisfying reversed inequalities.

7 Examples

We now return to the third comonad introduced earlier, after which we will
introduce briefly some related notions of computation on different categories
of domains and functions.

7.1 Timed data

In the timed data comonad T3, the standard split operation is:

split ((a, b) ,n) = ((a,n), (b,n)).

Given our interpretation of (d,n) as a computation yielding d at cost n, an
obvious choice for a merge operation is:

merge((a,m) , (b,n)) = ((a,b) ,max(m,n)).

Both of these operations are natural transformations, and we obtain the fol-
lowing properties:

split o merge C id

merge o split = id

(6 x &) o split = split oT3 split 06
mergeo(§ x &) 2 T3 split o6 o merge.

The underlying category is cartesian closed, hence also cartesian up-closed.
It follows from Proposition 6.5 that the Kleisli category of T3 is cartesian
up-closed.

7.2 Strict algorithms

The category of domains and strict continuous functions is not cartesian
closed, although the category does have products. For each pair of domains
D and D', the set of strict continuous functions D —, D’, ordered pointwise,
is again a domain. The usual uncurrying operation on functions preserves

BROOKES AND GEVA : COMPUTATIONAL COMONADS

strictness, but the usual currying does not. Instead, we may define a variant
form of currying by:

curry,: (Ax B—,C) = (A—, (B =, ()
curry,(f) = Az dy.(z=LVy =1 — 1, f(z,y))

When f is strict, curry,(f) is the best strict function approximating curry(f)
pointwise. For instance, let lor, ror and sor be the left-strict, right-strict, and

doubly-strict or-functions. Then
uncurry(curry, lor) = uncurry(curry, ror) = uncurry(curry, sor) = sor.

It is easy to check that curry, is a natural transformation (and so is uncurry).

Forall f: Ax B—,Candallg: A—, (B —,C), we have:

curry,(uncurryg) = g
uncurry(curry, f) C f.

Hence, the category of domains and strict continuous functions is cartesian
down-closed.

Let TyD be the set of increasing paths over D (not just the strict continuous
maps from VNat to D), ordered pointwise. The maps ¢, § and + are all strict,
as are all of the split and merge operations above. We may therefore use
the Kleisli construction to build a model of strict parallel algorithms. To
illustrate this model, note that all of the algorithms of Figure 6 also belong
in this category, with the exception of T, which is non-strict.

Since the underlying category is cartesian down-closed, each of the compu-
tational pairings discussed earlier for T} gives rise to a down-exponentiation
structure, so that the category of domains and strict algorithms is again
cartesian down-closed.

We may also adapt the T, and T3 comonads to this category.

7.3 Computation on effectively given domains

The category of effectively given domains and computable functions is carte-
sian closed. A domain is effectively given iff its finite elements are recursively
enumerable (hence, countable), it is decidable whether two finite elements
are consistent, and (an index for) the lub of two consistent finite elements is
decidable (as a function of their indices). An element of D is computable iff
the set of (indices of) its finite approximations is recursively enumerable.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

The functor T; can be adapted to this category, by defining 73D for an
effectively given domain D to be the computable increasing paths over D
(equivalently, the computable continuous functions from VNat to D, ordered
pointwise). All of the auxiliary operations (¢, §, v, and so on) are computable.
Hence we obtain a category of effectively given domains and computable algo-
rithms, and this category quotients onto the underlying category of effectively
given domains and computable functions. This algorithms category is again
cartesian closed.

The functor 75 maps effectively given domains to effectively given domains,
and again the auxiliary operations are computable. We therefore obtain a
category of effectively given domains and Ts-algorithms that quotients onto
the underlying category and is cartesian up-closed.

The functor T, preserves algebraicity but not w-algebraicity, since T2D may
have uncountably many finite elements. The T; comonad therefore does not
adapt to the category of effectively given domains and computable functions.

7.4 Computétion on pre-domains

We use the term pre-domain for a “bottomless” domain: a directed-complete,
bounded complete, algebraic partial order with no requirement that there be
a least element. The category of pre-domains and continuous functions is
cartesian closed.

Let TyD be the set of non-empty finite or infinite increasing sequences over
D, ordered by the usual prefix ordering. Clearly this forms a pre-domain,
and the finite elements are just the finite sequences. TyD is generally a pre-
domain rather than a domain, even if D has a least element, because the prefix
ordering does not relate sequences with different first elements. We make T'
into a functor by specifying that (as usual) T4 f applies f componentwise.

Again we let ¢ be the lub operation and let 6t be the sequence of (non-empty)
prefixes of t. Then (T4, ¢,d) forms a comonad.

We may regard a computation of length 1 as degenerate, and this corresponds
to defining the function v from D to TyD by vd = (d). Although this function
~ is not continuous, so that we cannot claim that T is a computational
comonad, we still obtain a congruence relation on algorithms by defining

a=*da += Vde D.a(d) = d'(d).
Note that for all f,g: A — B we have

(foe)=*(goe)=> f=g.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

It is then easy to modify the proof of Proposition 4.2 to show that the Kleisli
category of this comonad quotients onto the underlying category under =°.

We may define splitting and merging operations as follows. The standard
way to split is:

split({zo, Yo) - - - (Tk> Yk)) = (To.--Tk> Yo - - - Yk)
sPlit((Zn, Yn) o) = ((Zn)azos (.w-)?;a)l-

Let merge be the least continuous function satisfying:

merge(Zo... Tk, Yo - - - Ym) = (Z0,%0) - - - (Tns Yn) (n = min(m, k))
merge(Zo . . . Tk, (¥:)20) = (Zo, Yo) - - - (Tk, Yk)
merge({Z:)R20, Yo - - - Ym) = (Z0,Y0) - - - (Tm, Ymm)

merge((Zn)nrg » (¥n)nmo) = (Tns Yn)nzo -

Clearly, mergeosplit = id and splitomerge C id. These two operations are
obviously natural and satisfy the computational pairing properties, except
that € o merge C € x ¢. The Kleisli category is cartesian down-closed.

8 Conclusions

We have described a category-theoretic approach to intensional semantics,
based on the idea that a notion of computation or intensional behavior may be
modelled by means of a computational comonad, and that the Kleisli category
thus obtained can be viewed as an intensional model. The morphisms in
this category map computations to values, and from such a morphism one
may recover a map from values to values. One may define an equivalence
relation that identifies all algorithms that compute the same function, and
this equivalence relation can be used to collapse the Kleisli category onto the
underlying category.

We have identified a set of conditions under which the Kleisli category pos-
sesses exponentiations or weaker types of exponentiation, based on the exis-
tence of natural ways to pair computations. We described a series of examples
to illustrate the applicability of our definitions and results. In doing so, we
have placed our recent work [4] in a wider context.

Our work arose out of an attempt, begun in [3], to generalize an earlier
intensional model of Berry and Curien [6]. They defined a category of de-
terministic concrete data structures and sequential algorithms, showed that
this category is cartesian closed, and that it collapses onto the category of
deterministic concrete data structures and sequential functions under an ob-
vious notion of extensional equivalence. The sequential functions category

BROOKES AND GEVA : COMPUTATIONAL COMONADS

is not cartesian closed, and their construction of sequential algorithms was
not based on a comonad. The operational semantics implicit in their work
was coroutine-like, demand-driven, and lazy, but with the restriction that
computation should proceed sequentially, with at most one argument being
evaluated at a time. In our generalization of their model, we relax the se-
quentiality restriction so as to permit parallel computation, and we adopt an
operational semantics based on parallel coroutine-like lazy evaluation. The
query model of parallel algorithms between deterministic concrete data struc-
tures, described in [3], contains algorithms for non-sequential functions such
as parallel-or. However, the model’s construction was rather complex and
we were unable to formulate a suitable notion of composition for algorithms.
Instead, in [4] we presented a much more streamlined form of algorithm be-
tween Scott domains and for the first time we cast our construction in terms
of a comonad. Of the comonads introduced in this paper, T} corresponds to
the comonad used in [4]; T is closer in spirit to the query model of [3], but we
are able here to go considerably further. In [5] we show that the Berry-Curien
sequential algorithms may be embedded in the T; model in a manner that
respects operational behavior: the image of every sequential algorithm is a
parallel algorithm that operates sequentially. Our model can thus be used
to provide a semantics for the Berry-Curien language CDSO0 of sequential al-
gorithms. An extension of this to a parallel algorithmic language should be
fairly straightforward.

Moggi has developed an abstract view of programming languages in which a
notion of computation is modelled as a monad [12, 13]. Examples of notions of
computation as monads include: computation with side-effects, computation
with exceptions, partial computations, and non-deterministic computations.
In this view, the meaning of a program is taken as a function from values
to computations, and an intuitive operational semantics is that a program
from A to B takes an input of type A and returns an output computation.
This point of view is consistent with an input-driven lazy operational seman-
tics. Our “opposite” point of view based on comonads (which are, after all,
monads on the opposite category) is consistent with a demand-driven lazy
operational semantics, as discussed above. Moggi states in [12] that his view
of programs corresponds to call-by-value parameter passing, and he says that
there is an alternative view of “programs as functions from computations to
computations” corresponding to call-by-name. Our work shows that there is
also a third alternative: programs as functions from computations to values.

Common to these approaches is the realization that values should be distin-
guished from computations. Both approaches use an endofunctor T to em-
body this distinction, T A representing a datatype of computations over A.
Moggi shows that many such endofunctors arising in denotational semantics

BROOKES AND GEVA : COMPUTATIONAL COMONADS

can be usefully equipped with the extra structure needed to form a monad,
and we show that certain endofunctors embodying intensional semantics can
be usefully equipped with the structure of a comonad. The motivations and
the operational intuitions behind the monad approach and the comonad ap-
proach are different, and the two approaches should be regarded as orthogonal
or complementary. We plan to explore to what extent (and to what effect)
the two approaches can be combined. For instance, given a comonad T and
a monad P over the same category C one might obtain (assuming that T
and P satisfy certain properties) a category of (T, P)-algorithms, in which a
morphism from A to B is a morphism in C from T'A to PB.

We plan to investigate notions of computation in further domain-theoretic
settings. As noted above, we are already working on categories of algorithms
on (generalized) concrete data structures [5]. It would be interesting to see
if the Berry-Curien sequential algorithms category could be embedded in the
Kleisli category of a suitable comonad over a sequential functions category,
but no cartesian closed category based on sequential functions is yet known.
We intend to investigate notions of computation on the category of dI-domains
and stable functions [2], and on the category of qualitative domains and linear
functions [7].

Acknowledgements

The diagrams in this paper were drawn using macros designed by John
Reynolds.

References

[1] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-
Hall International, 1990.

[2] G. Berry. Stable models of typed A-calculi. In Proc. 5* Coll. on Au-
tomata, Languages and Programming, number 62 in Lecture Notes in
Computer Science, pages 72-89. Springer- Verlag, July 1978.

[3] S. Brookes and S. Geva. Towards a theory of parallel algorithms on
concrete data structures. In Semantics for Concurrency, Leicester 1990,
pages 116-136. Springer Verlag, 1990.

[4] S. Brookes and S. Geva. A cartesian closed category of parallel algorithms
between Scott domains. Technical Report CMU-CS-91-159, Carnegie
Mellon University, School of Computer Science, 1991. Submitted for

publication.

BROOKES AND GEVA : COMPUTATIONAL COMONADS

[5] S. Brookes and S. Geva. Continuous functions and parallel algorithms on
concrete data structures. Technical Report CMU-CS-91-160, Carnegie
Mellon University, School of Computer Science, 1991. To appear in the
Proceedings of MFPS'91.

[6] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Func-
tional Programming. Research Notes in Theoretical Computer Science.
Pitman, 1986.

(7] J.-Y. Girard. Proofs and Types. Cambridge University Press, 1989.

[8] C. Gunter and D. Scott. Semantic domains. In Handbook of Theoreti-
cal Computer Science, Volume B: Formal Models and Semantics. MIT
Press/Elsevier, 1990.

[9] C. B.Jay. Local adjunctions. Journal of Pure and Applied Logic, 53:227-
238, 1988.

[10] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel pro-
cesses. In Information Processing 1977, pages 993-998. North Holland,
1977.

[11] S. Mac Lane. Categories for the Working Mathematician. Springer-
Verlag, 1971.

[12] E. Moggi. Computational lambda-calculus and monads. In Fourth An-
nual Symposium on Logic in Computer Science. IEEE Computer Society
Press, June 1989.

[13] E. Moggi. Notions of computation and monads. Information and Com-
putation, 1991.

[14] R. A. G. Seely. Modeling computations: A 2-categorical framework.
In Symposium on Logic in Computer Science. IEEE Computer Society
Press, June 1987.

