
Acme: An Architecture Description Interchange Language

David Garlan� Robert Monroe� David Wile��

Computer Science Department� USC/Inf. Sciences Institute��

Carnegie Mellon University 4676 Admiralty Way
Pittsburgh, PA 15217 USA Marina del Rey, CA 90292 USA

Proceedings of CASCON'97, November, 1997.

Abstract

Numerous architectural description languages
(ADLs) have been developed, each providing
complementary capabilities for architectural
development and analysis. Unfortunately, each
ADL and supporting toolset operates in isola-
tion, making it di�cult to integrate those tools
and share architectural descriptions. Acme is
being developed as a joint e�ort of the software
architecture research community as a com-
mon interchange format for architecture de-
sign tools. Acme provides a structural frame-
work for characterizing architectures, together
with annotation facilities for additional ADL-
speci�c information. This scheme permits sub-
sets of ADL tools to share architectural infor-
mation that is jointly understood, while tol-
erating the presence of information that falls
outside their common vocabulary. In this pa-
per we describe Acme's key features, rationale,
and technical innovations.

1 Introduction

The software architecture of a system de�nes
its high-level structure, exposing its gross or-
ganization as a collection of interacting com-
ponents. A well-de�ned architecture allows an
engineer to reason about system properties at
a high level of abstraction. Typical proper-
ties of concern include protocols of interaction,
bandwidths and latencies, locations of central

data stores, and anticipated dimensions of evo-
lution [7, 8, 13].

Architectural design has always played a
strong role in determining the success of com-
plex software-based systems: the choice of an
appropriate architecture can lead to a prod-
uct that satis�es its requirements and is eas-
ily modi�ed as new requirements present them-
selves, while an inappropriate architecture can
be disastrous.

Despite its importance to software systems
engineers, the practice of architectural design
has been largely ad hoc, informal, and id-
iosyncratic. As a result, architectural designs
are often poorly understood by developers; ar-
chitectural choices are based more on default
than solid engineering principles; architectural
designs cannot be analyzed for consistency
or completeness; architectural constraints as-
sumed in the initial design are not enforced as
a system evolves; and there are virtually no
tools to help the architectural designers with
their tasks.

In response to these problems a number of
researchers in industry and academia have pro-
posed formal notations for representing and
analyzing architectural designs. Generically
referred to as \Architecture Description Lan-
guages" (ADLs), these notations usually pro-
vide both a conceptual framework and a con-
crete syntax for characterizing software archi-
tectures. They also typically provide tools for
parsing, unparsing, displaying, compiling, ana-

1

lyzing, or simulating architectural descriptions
written in their associated language.
Examples of ADLs include Aesop, Adage,

Meta-H, C2, Rapide, SADL, UniCon, and
Wright [5, 3, 2, 11, 10, 12, 14, 1]. Although all
of these languages are concerned with architec-
tural design, each provides certain distinctive
capabilities: Aesop supports the use of archi-
tectural styles; Adage supports the description
of architectural frameworks for avionics navi-
gation and guidance; Meta-H provides speci�c
guidance for designers of real-time avionics con-
trol software; C2 supports the description of
user interface systems using a message-based
style; Rapide allows architectural designs to be
simulated, and has tools for analyzing the re-
sults of those simulations; SADL provides a for-
mal basis for architectural re�nement; UniCon
has a high-level compiler for architectural de-
signs that support a mixture of heterogeneous
component and connector types; Wright sup-
ports the speci�cation and analysis of interac-
tions between architectural components.
The proliferation of ADLs and their support-

ing toolsets1 is both a blessing and a curse. On
the positive side, di�erent ADLs have explored
di�erent facets of the overall architectural de-
sign problem. By exposing di�erent features of
architectural design and ways to exploit those
features, collectively they are helping to deepen
our understanding of the roles that architec-
tural description can play in software develop-
ment. At this early stage in the development
of a discipline of software architecture, research
exploration of multiple approaches to architec-
tural description is both appropriate and nec-
essary.
On the negative side, however, each ADL

typically operates in a stand-alone fashion,
making it di�cult to combine facilities of one
ADL with those of another. Furthermore, there
are many common aspects of architectural de-
sign support that are reimplemented afresh for
each ADL. Examples include graphical tools
for visualizing and manipulating architectural
structures, facilities for storing architectural
designs, and certain domain-independent forms
of analysis (such as checking for cycles, or the

1In the remainder of this paper we will simply use
the term \ADL" to refer to both the language and its
supporting toolset.

existence of dangling connections). Such gratu-
itous redundancy is clearly a waste of resources
for individual researchers as well as the commu-
nity as a whole.

Finally, for many practitioners, deeper se-
mantic di�erences between di�erent ADLs are
a second-order issue. First and foremost they
need a way to describe their architectural struc-
tures at all|any way that allows them to
record system structures at an appropriate
level of abstraction will do. Currently, however,
adopting an existing ADL requires a substan-
tial investment to install the ADL tools and
learn to use them e�ectively, along with a sig-
ni�cant \lock-in" to the selected ADL.

One way to ameliorate these problems would
be to provide an interchange language for soft-
ware architecture. Ideally, such a language
would permit the integration of di�erent tools
by providing a common form for interchanging
architectural descriptions. It could also serve
as a basis for generic, ADL-neutral structural
analyses, allowing tool writers to develop ar-
chitectural analysis tools that are compatible
with multiple ADL's. Further, it could clar-
ify the relationship between di�erent ADLs and
the analyses that they provide.

Acme is an architecture description language
with precisely those goals. It is being devel-
oped as a joint e�ort of the software architec-
ture research community to provide a common
intermediate representation for a wide variety
of architecture tools. Acme is based on the
premise that there is su�cient commonality in
the requirements and capabilities of ADLs that
meaningful ADL-independent information can
be shared. Acme attempts to embody those
commonalities while also allowing the incor-
poration of ADL-speci�c information, so that
auxiliary information can be retained. This
scheme permits subsets of ADL tools to share
whatever architectural information is jointly
understood by those tools, while tolerating the
presence of information that falls outside their
common vocabulary.

In this paper we describe the main features of
Acme, its rationale, and technical innovations.
While Acme is still too new to tell whether it
will succeed as a community-wide tool for ar-
chitectural interchange, we believe it is impor-
tant to expose its language design and philos-

2

ophy to the broader software engineering com-
munity at this stage for feedback and critical
discussion. To do this we will focus primar-
ily on the key design choices made by the lan-
guage.

2 Language Rationale

2.1 Goals

The design of a language should re
ect its in-
tended purpose. If, for example, the primary
purpose of a language is to support formal anal-
ysis, then minimality of features and semantic
simplicity are likely top-level concerns. If, on
the other hand, the primary purpose of a lan-
guage is to support a domain-speci�c design ac-
tivity (such as for control systems in chemical
plants), then closely matching the engineers'
natural design vocabulary is crucial. It is im-
portant, therefore, to be clear about the in-
tended purposes of Acme.
The primary purpose of Acme is to provide

an interchange format for architectural devel-
opment tools and environments. As such, the
language should make it possible to integrate
a broad variety of separately-developed ADL
tools by providing an intermediate form for ex-
changing architectural information.
In addition to its primary goal of inter-

change, Acme was designed with the following
secondary goals in mind. These goals are listed
in decreasing order of importance.

� To provide a representational scheme that

will permit the development of new tools

for analyzing and visualizing architectural

structures. The language should provide
an architectural vocabulary that makes it
straightforward for tool writers to map
their intuitions about architectural struc-
tures into the forms expressible in the lan-
guage.

� To provide a foundation for developing

new, possibly domain-speci�c, ADLs. The
language should not preempt the ability
to build on its core capabilities with addi-
tional constructs and semantics.

� To serve as a vehicle for creating conven-

tions and standards for architectural infor-

mation. The language should make it easy

for groups of ADL developers to standard-
ize aspects of architectural speci�cation
that are not explicitly included in Acme

� To provide expressive descriptions that are

easy for humans to read and write. The
language should allow compact, direct ex-
pression of architectural structures and id-
ioms.

While these goals are complementary, taken
individually they lead to quite di�erent choices
in design. In particular, the primary goal of
supporting interchange of software architecture
descriptions between di�erent ADLs argues for
a simple, easy-to-parse language, while the sec-
ondary goal of ease of reading and writing
for humans argues for expressive language fea-
tures. In the remainder of this paper we will see
how Acme attempts to achieve the main goal
of architectural description interchange while
accommodating the secondary goals.

2.2 Reconciling Standardization
and Diversity

The existence of multiple languages arises in
numerous other domains including document
formatting, programming, graphical encodings,
and hypertext. As with ADLs, such diversity
creates problems for users of these languages.
A number of approaches have been used to cope
with problems of language heterogeneity.

1. Pick one: Let the community or mar-
ketplace decide on a single dominant lan-
guage, and coerce future tool development
to occur around that language.

2. Design a \union" language: Design a
language that incorporates all of the fea-
tures of all of the languages, and thereby
allow users to express anything that they
could have expressed in any of the individ-
ual languages.

3. Design an \intersection" language:

Pick a least common denominator lan-
guage that includes the aspects of archi-
tectural description that are shared by all
ADLs.

4. Give up: Admit that language diversity
is simply too large to try to �nd any co-
ordinated solution at present. This usu-
ally results in a large number of pairwise

3

(or sometimes n-way) conversions to han-
dle speci�c instances of language interop-
erability.

With respect to ADLs, none of the tech-
niques is particularly appealing. As we noted
earlier, the �rst alternative is inappropriate.
Given the relative immaturity of our under-
standing about architectural modelling and
analysis, it would be foolhardy to legislate a
single �xed language at this time. Moreover,
each of the existing languages can do some
things well, but may be weak in other respects.
The second alternative|a union language|is
likewise unrealistic. Not only are the capabili-
ties of di�erent ADLs signi�cantly di�erent at a
semantic level (hence making language synthe-
sis di�cult), but it is not yet clear what kinds
of capabilities one would ideally want in a such
a language. The third alternative|an inter-
section language|is not likely to be successful
either. The range of constructs provided by dif-
ferent ADLs is su�ciently broad that it would
be di�cult to �nd a single semantic core to
which the capabilities could be translated.
This would suggest that the only alternative

is the fourth: give up, and live with a prolifer-
ation of specialized inter-ADL solutions. How-
ever, all is not lost. To understand why, con-
sider the following two observations about ar-
chitecture description languages.
First, an examination of existing ADLs re-

veals that there is, in fact, considerable agree-
ment about the role of structure in architec-
tural description. One of the results of the
First International Workshop on Architectures
for Software Systems [4] was that virtually all
ADLs take as their starting point the need to
express an architectural design as a hierarchi-
cal collection of interacting components. On
top of this structural skeleton di�erent ADLs
then add various kinds of additional informa-
tion, such as run-time semantics, code frag-
ments, protocols of interaction, design ratio-
nale, resource consumption, topological invari-
ants, and processor allocations. In some cases
this additional information could in principle
be understood and manipulated by tools for
some other ADL. (For example several tools
could share a common interpretation of the
visual information for displaying the architec-
ture.)

Second, although there is little beyond the
use of architectural structure about which
all ADLs agree, signi�cant subsets of exist-
ing ADLs do agree on certain kinds of extra-
structural information. For example, both
Rapide and Wright represent interactions in
terms of events. Both Aesop and SADL are
concerned with the expression of stylistic in-
variants. Aesop, UniCon, and Meta-H all pro-
vide capabilities for expressing properties that
permit real-time schedulability analysis.

These two observations suggest that a plausi-
ble path towards integration of ADL facilities is
to design a language that centers on the shared
structural core of architectural description, but
that also permits the inclusion of other aspects
of architectural description that may be rele-
vant to one or more ADL. In this way all ADLs
can communicate structural aspects of an ar-
chitecture in a uniform manner, while permit-
ting variability about other aspects of an archi-
tectural design. To the extent that subsets of
ADL tools can agree on those additional as-
pects, they can also take advantage of that
shared information. Over time, one can well
imagine that as the software architecture com-
munity develops a better understanding of the
value of certain classes of architectural infor-
mation, representation conventions will emerge
that can be used by the interchange language.
This is the essence of Acme. The language

provides a �xed vocabulary (or ontology) for
representing architectural structure. Addition-
ally it provides an open semantic framework

in which architectural structures can be anno-
tated with ADL-speci�c properties. In this way
Acme achieves the bene�ts of both an intersec-
tion and a union language: the shared struc-
tural core represents an intersection of the ex-
pressive capabilities of most ADLs, while the
use of annotations accommodates the union of
ADL-speci�c concerns.

3 Acme

We now describe Acme, highlighting its key fea-
tures with a small illustrative example.2 These

2We will stress the main ideas behind the language
design. Additional details and examples can be found
in [6].

4

key features are:

1. an architectural ontology consisting of
seven basic architectural design elements;

2. a
exible annotation mechanism support-
ing association of non-structural infor-
mation using externally de�ned sublan-
guages;

3. a template mechanism for abstracting
common, reusable architectural idioms
and styles; and

4. an open semantic framework for reasoning
about architectural descriptions.

3.1 Acme Architectural Design
Element Types

Acme is built on a core ontology of seven
types of entities for architectural representa-
tion: components, connectors, systems, ports,

roles, representations, and rep-maps. These are
illustrated in Figures 3 and 4.

Of the seven types, the most basic elements
of architectural description are components,
connectors, and systems.

� Components represent the primary compu-
tational elements and data stores of a sys-
tem. Intuitively, they correspond to the
boxes in box-and-line descriptions of soft-
ware architectures. Typical examples of
components include such things as clients,
servers, �lters, objects, blackboards, and
databases.

� Connectors represent interactions among
components. Computationally speaking,
connectors mediate the communication
and coordination activities among compo-
nents. Informally they provide the \glue"
for architectural designs, and intuitively,
they correspond to the lines in box-and-
line descriptions. Examples include simple
forms of interaction, such as pipes, proce-
dure call, and event broadcast. But con-
nectors may also represent more complex
interactions, such as a client-server proto-
col or a SQL link between a database and
an application.

� Systems represent con�gurations of com-
ponents and connectors.

Client Server
RPC

Figure 1: Simple Client-Server Diagram

System simple_cs = {

Component client = { Port send-requestt }

Component server = { Port receive-request }

Connector rpc = { Roles {caller, callee} }

Attachments : {

client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

}

Figure 2: Simple Client-Server System in Acme

Components' interfaces are de�ned by a set
of ports. Each port identi�es a point of inter-
action between the component and its environ-
ment. A component may provide multiple in-
terfaces by using di�erent types of ports. A
port can represent an interface as simple as a
single procedure signature, or more complex in-
terfaces, such as a collection of procedure calls
that must be invoked in certain speci�ed or-
ders, or an event multi-cast interface point.
Connectors also have interfaces that are de-

�ned by a set of roles. Each role of a connec-
tor de�nes a participant of the interaction rep-
resented by the connector. Binary connectors
have two roles such as the caller and callee roles
of an RPC connector, the reading and writing

roles of a pipe, or the sender and receiver roles
of a message passing connector. Other kinds of
connectors may have more than two roles. For
example an event broadcast connector might
have a single event-announcer role and an ar-
bitrary number of event-receiver roles.
As a simple illustrative example, Figure 1

shows a trivial architectural drawing contain-
ing a client and server component, connected
by an RPC connector. Figure 2 contains its
Acme description. The client component is de-

5

clared to have a single send-request port, and
the server has a single receive-request port. The
connector has two roles designated caller and
callee. The topology of this system is declared
by listing a set of attachments.
Acme supports the hierarchical description

of architectures. Speci�cally, any component
or connector can be represented by one or
more detailed, lower-level descriptions. (See
Figure 4.) Each such description is termed a
representation in Acme. The use of multiple
representations allows Acme to encode mul-
tiple views of architectural entities (although
there is nothing built into Acme that supports
resolution of inter-view correspondences). It
also supports the description of encapsulation
boundaries, as well as multiple re�nement lev-
els.
When a component or connector has an ar-

chitectural representation there must be some
way to indicate the correspondence between the
internal system representation and the external
interface of the component or connector that is
being represented. A rep-map (short for \rep-
resentation map") de�nes this correspondence.
In the simplest case a rep-map provides only an
association between internal ports and exter-
nal ports (or, for connectors, internal roles and
external roles).3 In other cases the map may
be considerably more complex. For those cases
the rep-map is essentially a tool-interpretable
placeholder|similar to the use of properties
described in the following section.

3.2 Acme Properties

The seven classes of design element outlined
above are su�cient for de�ning the structure of
an architecture as a hierarchical graph of com-
ponents and connectors.
But there is clearly more to architectural de-

scription than structure. As discussed earlier,
currently there is little consensus about exactly
what should be added to the structural infor-
mation: each ADL typically has its own set
of auxiliary information that determines such
things as the run-time semantics of the sys-

3Note that rep-maps are not connectors: connec-
tors de�ne paths of interaction, while rep-maps iden-
tify an abstraction relationshipbetween sets of interface
points.

tem, detailed typing information (such as types
of data communicated between components),
protocols of interaction, scheduling constraints,
and information about resource consumption.

To accommodate the wide variety of auxil-
iary information Acme supports annotation of
architectural structure with lists of properties.
Each property has a name, an optional type,
and a value. Any of the seven kinds of Acme
architectural design entities can be annotated.
Figure 4 shows several properties attached to a
hypothetical architecture.

From Acme's point of view the properties are
uninterpreted values. Properties become useful
only when a tool makes use of them for analysis,
translation, and manipulation. In Acme the
\type" of a property indicates a \sublanguage"
with which the property is speci�ed. Acme
itself prede�nes simple types such as integer,
string, and boolean. Other types must be in-
terpreted by tools: these tools use the \name"
and \type" indicator to �gure out whether the
value is one that they can process. The default
behavior of a tool that does not understand a
speci�c property or property type should be to
leave it uninterpreted but preserve it for use
by other tools. This is facilitated by requiring
standard property delimiter syntax so that a
tool can know the extent of a property without
having to interpret its contents.

Figure 5 shows the simple client-server sys-
tem elaborated with several properties. For
example, several of the properties indicate
how the elements relate to constructs in tar-
get ADLs|such as Aesop and UniCon styles.
Likewise, the \protocol" property of the RPC
connector is declared to be in the \Wright"
language and would only be meaningful to a
tool that knows how to process that language.
(For simplicity we have elided the speci�cation:
see [1] for details.)

Of course, in order for properties to be use-
ful when interchanged between di�erent ADLs,
there must be a commonunderstanding of their
meaning. As we have noted, Acme does not
explicitly de�ne those meanings, but it does
allow for the shared use of properties when
those meanings do exist. We anticipate that
over time Acme will serve as a vehicle for con-
ventionalization of properties that are useful to
more than one ADL.

6

Component Connector
System

PortRole

Figure 3: Elements of an Acme Description

Client Server

Performance
Data

Throughput =
 5 kbps
max_connect =
 10
...

Source Code

...
while(data)
 read(response);
...

Visualization
Spec.

shape = rect.
width = 100
height = 50
color = blue

Properties

Representations

Small-memory
Representation

High-Performance
Representation

Small-mem-RM : RepMap High-Perf-RM : RepMap

Figure 4: Representations and Properties of a Component

7

System simple_cs = {

Component client = {

Port send-request;

Properties { Aesop-style : style-id = client-server;

UniCon-style : style-id = cs;

source-code : external = "CODE-LIB/client.c" }}

Component server = {

Port receive-request;

Properties { idempotence : boolean = true;

max-concurrent-clients : integer = 1;

source-code : external = "CODE-LIB/server.c" }}

Connector rpc = {

Roles {caller, callee}

Properties { synchronous : boolean = true;

max-roles : integer = 2;

protocol : Wright = "..." }}

Attachments {

client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

}

Figure 5: Client-Server System with Properties in Acme

Several property sublanguages are currently
being developed. One is a standard for spec-
ifying visualization properties to be used by
graphical editors to display architectural de-
scriptions. Another sublanguage is being de-
veloped to describe temporal constraints on an
architectural description. Details of these sub-
languages are beyond the scope of this report,
but can be found in [6].

3.3 Acme Templates and Style
De�nition

The Acme features described thus far are suf-
�cient to de�ne an architectural instance, and,
in fact, form the basis for the core capabilities
of Acme parsing and unparsing tools. As a rep-
resentation that is good for humans to read and
write, however, these features leave much to be
desired. Speci�cally, they provide no facilities
for abstracting architectural structure. As a re-
sult, common structures in complex system de-

scriptions need to be repeatedly speci�ed. Con-
sider, for example, extending the simple client-
server system described in Figure 5 to include
multiple clients and multiple servers. Although
there is signi�cant common structure underly-
ing each of the clients and servers in the design,
the language facilities presented thus far would
require the architect to explicitly specify this
structure for each design element.

To address this problem the Acme language
includes templates, a typed, parametrized
macro facility for speci�cation of recurring pat-
terns. These patterns are used (or instantiated)
by applying them to the appropriate types of
parameters. Templates de�ne syntactic struc-
tures that can be expanded in place to produce
new declarations. They are quite
exible, per-
mitting the de�nition of attachments as well as
individual components and connectors.

The utility of templates is further extended
when they are grouped into collections of ar-
chitectural styles. In Acme, a style de�nes a

8

set of related templates that make up the com-
mon vocabulary of a family of systems. Styles
provide a mechanism for capturing and reusing
common structures and idioms in architectural
design.
Figure 6 illustrates the use of a client-server

style, which de�nes client , server and rpc tem-
plates. This example extends the simple client-
server example of Figure 5 by turning the
client and server speci�cations into templates,
and declaring a system instance with multi-
ple clients and multiple servers. As illustrated,
the client and server templates are straight-
forward constructs that create a new client or
server component with the set of ports passed
as an actual parameter. The rpc template is
slightly more sophisticated than the client and
server templates in that it not only declares an
rpc connector but also attaches a client to a
server. The \de�ning(conn:Connector)" clause
indicates that a unique identi�er conn needs
to be generated each time this template is ex-
panded. As a result of the de�ning clause it is
possible to refer to the newly created connector
within the template's body, as is required for
the template to attach the new connector to the
passed in components. Use of this style leads
to concise descriptions of architectures and per-
mits the explicit delineation of reusable archi-
tectural structures.
Although Acme is not intended to be a full-

edged ADL, the addition of templates and
styles greatly enhance the readability and ab-
straction capabilities of the language. Both
templates and styles can, however, be elimi-
nated by direct expansion. This permits Acme
tools to translate any Acme description into
the more primitive core language for straight-
forward interchange. As a result, Acme is able
to satisfy the secondary goals of readability and
support for abstraction without compromising
Acme's primary goal of supporting the inter-
change of software architecture descriptions be-
tween heterogeneous ADL's.

3.4 Acme's Open Semantic
Framework

Acme is primarily concerned with the archi-
tectural structure of systems, and hence does
not embody speci�c computational semantics

for architectures. Rather, Acme relies on an
open semantic framework that provides a ba-
sic structural semantics while allowing speci�c
ADLs to associate computational or run-time
behavior with architectures using the property
construct.
The open semantic framework provides a

straightforward mapping of the structural as-
pects of the language into a logical formalism
based on relations and constraints. In this
framework, an Acme speci�cation represents a
derived predicate, called its prescription. This
predicate can be reasoned about using logic or
it can be compared for �delity with real world
artifacts that the speci�cation is intended to
describe.
To illustrate, consider the simple client-

server example architecture speci�cation of
Figures 1 and 2, where a client is linked to a
server through a single connector. This system
has the following prescription:

exists client, server, rpc |

component(client) ^

component(server) ^

connector(rpc) ^

attached(client.send-request,

rpc.caller) ^

attached(server.receive-request,

rpc.callee)

These predicates can be reasoned about
using standard �rst-order logical machinery.
They can also be used as the formal speci�-
cation of an implementation. (In this case,
it requires that one be able to �nd the arti-
facts client and server that purport to be com-
ponents, a connector artifact rpc, and attach-
ments that are speci�ed by the predicate.)
This simple translation scheme is, however,

not quite su�cient. Two implicit aspects of
the speci�cation also need to be included in
the prescription: the �rst is the closed world
assumption which states that all components,
connectors, ports and roles have been identi�ed
by the existential variables in the speci�cation,
all attachments have been speci�ed, and that
no more exist; Second, the existential variables
must refer to distinct entities. With these ad-
ditions, the example's prescription reads:

exists client, server, rpc |

component(client) ^

9

Style client-server = {

Component Template client(rpc-call-ports : Ports) = {

Ports rpc-call-ports;

Properties { Aesop-style : style-id = client-server;

Unicon-style : style-id = cs;

source-code : external = "CODE-LIB/client.c" }}

Component Template server(rpc-receive-ports : Ports) = {

Ports rpc-receive-ports;

Properties { Aesop-style : style-id = client-server;

Unicon-style : style-id = cs; ... }}

Template rpc(caller_port, callee_port : Port) defining (conn : Connector) =

{ conn = Connector {

Roles {caller, callee}

Properties { synchronous : boolean = true;

max-roles : integer = 2; }

protocol : Wright = "..." }}

Attachments { conn.caller to caller_port;

conn.callee to callee_port; }}

}

System complex_cs : client-server = {

c1 = client(send-request); c2 = client(send-request);

c3 = client(send-request); s1 = server(receive-request);

s2 = server(receive-request);

rpc(c1.send-request, s1.receive-request);

rpc(c2.send-request, s1.receive-request);

rpc(c3.send-request, s2.receive-request);

}

Figure 6: Client-Server System Using Templates and Style

component(server) ^

connector(rpc) ^

attached(client.send-request,

rpc.caller) ^

attached(server.receive-request,

rpc.callee) ^

client != server ^

server != rpc ^

client != rpc ^

(for all y:component (y) =>

y = client | y = server) ^

(for all y:connector(y) => y = rpc) ^

(for all p,q: attached(p,q) =>

(p=client.send-request ^

q=rpc.caller)

| (p=server.receive-request ^

q=rpc.callee))

In addition to basic structural information,
properties also need to be handled. Property
names correspond to predicates that take the
entity to which the property applies as an ar-
gument and return the value of that property
name for the given entity. The values of prop-
erties are treated as primitive atoms, without
their own semantics. So, for example,

Component client = {

Port send-request;

Properties {

Aesop-style : style-id = client-server;

UniCon-style : style-id = cs} }

adds to the prescription the clauses:

10

Aesop-style(client) = client-server ^

Unicon-style(client) = cs

Although the value of a property is consid-
ered an atomic entity in terms of Acme's struc-
tural semantics, tools that manipulate and an-
alyze Acme descriptions can interpret the prop-
erty values as needed. An example of this ap-
proach is the protocol property of the RPC con-
nector speci�ed in the \Wright" sublanguage in
example 5.

Connector rpc = {

Roles {caller, callee}

Property protocol : Wright = "..."; }

Tools that don't understand the meaning of
the Wright sublanguage can ignore the value
of this property, processing it as an uninter-
preted string. Tools that do understand the
Wright sublanguage can interpret the value of
the protocol speci�cation to discover more de-
tailed ADL-speci�c semantics of the connector.

4 Discussion

Returning to the language design goals enu-
merated earlier, we can now see how Acme at-
tempts to reconcile the competing goals for the
language.

Acme addresses its primary goal|the need
for an ADL interchange format|by providing
an extremely simple basis for architectural rep-
resentation. Essentially, any tool that can han-
dle the seven basic architectural element types
(components, connectors, etc.) can interact
with other architectural tools. The simplic-
ity of the structural core of Acme (i.e. Acme
without templates and styles) is re
ected in
the fact that its BNF occupies only a single
page. For most ADLs it is trivial to write a
parser and an unparser for that core language.
Moreover, any architectural description using
the more expressive capabilities of templates
can be automatically translated into the sim-
pler core language. Of course, the more a given
tool can take advantage of property annota-
tions, the more it can do with the descriptions
(in the form of analysis, code generation, trans-
formation, etc.).

Despite its simplicity, however, Acme pro-
vides a non-trivial basis for architectural rep-
resentation and analysis|addressing the sec-
ond goal. Three features contribute to this.
First is the use of explicit connectors. This
permits new architectural glue to be de�ned,
and elevates Acme above typical module in-
terconnection languages in which only a small
set of connector types (usually procedure call
and shared variables) are supported. Second is
the use of multiple representations. As noted
earlier, this permits the encoding of multiple
views, re�nement relations, and simple encap-
sulation schemes. Third is the use of templates
and styles for encapsulating reusable patterns
and idioms.

With respect to analysis, it is worth com-
menting here on Acme's type system. Acme
provides a �xed set of types, including the
seven basic architectural types (component,
connector, etc.) and simple property types (in-
teger, boolean, string). Within this set Acme
supports a strong typing discipline. (For ex-
ample, the actual and formal parameters of a
template must agree.) However, Acme does
not treat templates as type constructors them-
selves. So, for example, a template that cre-
ates a pipe connector does not actually intro-
duce a new type of connector|rather it pro-
vides shorthand for creating a standard con-
nector, endowed with pipe features (e.g., input
and output roles).

The decision to use this relatively weak type
system was based primarily on methodological
considerations. In general, for architectural de-
scription it is more important that the parts
have the right structure (and properties) than
that they are declared using a particular set of
forms. So for example, if I create an architec-
tural description in which all of the connectors
\look like" pipes, I should be able to use it in
all of the contexts that I could have used the
same description declared with a pipe construc-
tor template. This increases the
exibility of
the language, but at the cost of requiring anal-
ysis tools to do the checking that a type system
would otherwise have provided for free.

The third goal for Acme|providing a foun-
dation for new ADL development|is sup-
ported in three ways. First, the core constructs
of Acme provide a baseline for architectural de-

11

scription that are a good starting point for al-
most any ADL. Second, the template mecha-
nism permits the packaging of common syntac-
tic forms; speci�c ADLs can be de�ned simply
by �xing a set of template libraries (or styles)
and then restricting developers to those forms.
Third, Acme's open semantic framework does
not preempt the development of more detailed
ADL-speci�c semantics. By binding very few
decisions about the computational semantics of
an Acme description, language designers who
build new ADLs on top of Acme can supply
those ADLs with whatever semantic model is
appropriate for the extended language.

Acme's fourth goal is to serve as a vehicle for
conventionalization about standards for archi-
tectural information. This is supported by the
property mechanism, which permits the use of
new sublanguages for property types and val-
ues. Although the success of this approach will
depend on the willingness of the architectural
community to build consensus around common
properties that many ADLs are capable of han-
dling, early indications are that this is already
happening.

It is worth emphasizing that this goal sets
Acme apart from most other language design
e�orts. Typically a language is designed as a
fully-formed, complete artifact. It is then pre-
sented to a community of users, who will either
adopt it or not. Acme is di�erent. It recognizes
that architectural representation is an evolv-
ing, multi-faced target. Rather than attempt-
ing to completely pin the target down, Acme
instead provides the context in which interested
parties can participate in developing standards
and conventions for representing and analyz-
ing architectural information centered around
a shared core of basic concepts.

The �nal goal for Acme is to provide an ex-
pressive notation for architects. While expres-
siveness is invariably a subjective quality, Acme
has attempted to address the issue by adopting
a rich set of base architectural types, by pro-
viding a
exible template encapsulation mech-
anism, and by allowing the de�nition of new
property sublanguages.

5 Example

To illustrate how Acme can be used to sup-
port architectural interchange, we brie
y de-
scribe our experience integrating Wright and
Rapide using Acme.4

Wright is an ADL that allows one to specify
and analyze the abstract behavior of architec-
tures [1]. Components and connectors behav-
iors are speci�ed using a event/process notation
based on CSP [9]. In particular, connector se-
mantics are de�ned by a protocol that speci�es
the behavior of participating components. The
Wright toolset allows one to use a commercial
model checking technology to statically check
properties such as: (a) whether a component
interface (also speci�ed by a process) is consis-
tent with the connector to which it is attached;
(b) whether a connector is internally consistent;
and (c) whether a con�guration of components
and connectors is complete (in the sense that
there are su�cient connections to satisfy the
interface requirements of the components).

Rapide is an ADL that allows one to spec-
ify systems in terms of partially ordered sets of
events [10]. Component computations are trig-
gered by received events, and in turn trigger
other computations by sending events to other
components. The Rapide toolset permits simu-
lation of such descriptions, animation of those
simulations, and analysis of the resulting trace
graphs to check for anomalous behavior.

Rapide and Wright are similar in several re-
spects. Both are targeted at modelling ab-
stract behavior of architectural designs, both
use the notion of events to de�ne behaviors,
and both share a basic structural model of in-
terconnected, communicating components.

But they also di�er in signi�cant ways. First,
from a user's point of view the two languages
o�er di�erent, but complementary capabili-
ties for analysis: Wright supports static anal-
ysis using model checking technology, while
Rapide supports dynamic analysis using sim-
ulation technology. Second, notationally the
formalisms used to characterize event behav-
ior are di�erent: Wright adopts the functional

4A complete description of this work is beyond the
scope and space limitations of this paper. Here we sum-
marize the salient features to illuminate the bene�ts
and limitations of Acme in practice.

12

Native
Wright

ACME
Annotated

With
Wright

Properties

ACME
Annotated

With
Wright

and
Rapide

Properties

Native
Rapide

Wright to Rapide
Semantic Conversion Tool

(Operates on ACME)

ACME to Rapide
Translator

Wright to ACME
Translator

Figure 7: Wright-to-Rapide Translation via Acme

style of CSP, while Rapide uses an imperative
model. Third, the two languages di�er in their
treatment of connectors. Rapide provides a
small, �xed set of primitive connectors, while
Wright permits the description of new types of
connectors. Fourth, Rapide supports dynamic
recon�guration of architectures, while Wright
focuses on static con�gurations.

As developers of the Wright toolset we
wanted to take advantage of Rapide tools to
add simulation and animation capabilities for
our architectural descriptions. To do this
we used Acme as an interchange format be-
tween the two toolsets. As illustrated in Fig-
ure 7, Wright descriptions (developed using
our Wright tools) are shipped to Rapide tools
via Acme interchange in three steps. First,
Wright descriptions are translated into Acme.
Next, a Wright-Rapide translator traverses the
Acme representation to produce a new one
that includes Rapide speci�cations. The re-
sulting Acme description is then translated into
Rapide text, which can be processed by Rapide
tools.

The �rst and third steps are straightforward.
Wright architectural structure maps easily into
the Acme ontology described earlier. Speci�-
cations of component and connector behavior
are also easily mapped into annotations of the
structural graph. Similarly, Acme descriptions
annotated with Rapide speci�cations are eas-

ily unparsed to native Rapide text. In both of
these steps Acme libraries provide basic pars-
ing and unparsing routines that greatly sim-
plify the process.
The hard work occurs in the middle step.

The key challenge was to bridge the semantic
gap between Wright and Rapide. There were
two main aspects of this. The �rst was to map
from the functional style of Wright to the im-
perative style of Rapide. This turned out to be
straightforward, using standard program trans-
formation techniques.
The second, and more substantive aspect was

to deal with the problem that connectors are
not �rst class in Rapide, but are in Wright.
We considered two approaches. The �rst was
to limit the translation to those Wright speci-
�cations that use the connector types under-
stood by Rapide. The second was to map
non-trivial connectors inWright to components
in Rapide. We decided to adopt the second
approach, since it would permit a larger set
of Wright speci�cations to be mapped in to
Rapide.5 Thus the Wright-Rapide translator
�rst converts each non-trivial connector into a

5The downside is that the original Wright descrip-
tion and the resultingRapide descriptionno longer have
isomorphic structure, complicating the mapping of re-
sults of Rapide tools to the original descriptions. Note
also that the richer capabilities of Rapide to describe
dynamic architectures was not an issue since we were
only interested in one-way translation.

13

component, and uses simple event-binding con-
nectors to connect the parts. It then transforms
each Wright semantic annotation into a Rapide
semantic annotation.
Acme provided two key bene�ts compared to

a direct, non-Acme based, translation between
Wright and Rapide. First, it substantially sim-
pli�ed the handling of the structural aspects of
the architectural description and translation.
This made it straightforward to map Wright
structures into Acme, and also to transform
the original descriptions into (non-isomorphic)
Rapide structures. Second, it had the im-
portant side e�ect of augmenting the Wright
toolset with a set of Acme-based tools. Once
Wright is translated into Acme we can use
Acme tools for graphical browsing, conversion
to web documents, and persistent storage.

6 Current Status, On-going

Work

Work to date on Acme has focused on devel-
oping a coherent language that satis�es the re-
quirements of a diverse set of stakeholders and
goals. We have completed the design of the
initial release of the Acme language. Over the
past two years the preliminary language design
has been discussed at several meetings of re-
searchers and practitioners, who have provided
critical feedback and guidance. This is the �rst
written account of the language to appear at a
conference.
Actual use of Acme has taken two forms.

The �rst has been the exploration of language
capabilities through case studies of system ar-
chitectures. The most complex of these was
an architecture for a missile command sys-
tem, involving about a dozen pages of Acme.
The Second has been a set of case studies
in which we use Acme to support the inter-
change of architectural designs between vari-
ous ADLs. Currently, we are able to transfer
designs via Acme between UniCon and Aesop,
as well as fromWright to Rapide. Tools to sup-
port more sophisticated interchange between
Rapide, Wright, and SADL are in development.
Although our experience with inter-ADL ex-
change is not yet broad enough to declare Acme
a success as an interchange language, based on

our initial experience with the �ve ADLs listed
above, the prognosis looks good.
There are currently a number of Acme-based

tools available. These tools include (a) an
Acme-Web visualization tool that converts a
textual Acme description into a \World-Wide-
Weblet" that can be viewed using standard web
browsers6; (b) a system that animates pipe-
and-�lter architectures described with Acme;
(c) a web-based Acme repository for templates,
styles, and architectural descriptions: and (d)
an \expander" tool that converts architectural
descriptions using templates and styles into a
simple \core" description (without templates)
that can be more readily interchanged between
tools.
Current work on Acme is centered around

three activities. First, we are extending our
tools to provide better capabilities for analysis
of Acme descriptions and working with other
ADL developers to create tools that expand
the set of ADLs that can translate to and from
Acme. Second, we are continuing our e�orts
to develop community-based consensus around
common attributes. In particular, we hope to
develop a standard for characterizing trace be-
havior that will allow broad-based reuse of ar-
chitectural \animation" tools.
Third, we are exploring richer semantic mod-

els along two major dimensions: constraint
logic families and property families. Along the
�rst dimension we are exploring temporal logic
to express dynamic aspects of architectural evo-
lution. In order to specify properties of en-
tire architecture families|styles, re�nements,
or dynamic architectures|the closed world and
uniqueness assumptions mentioned earlier will
need to be relaxed.
The second dimension of exploration is to

enable better semantic discrimination of types
of properties. In general, an Acme speci�ca-
tion's prescription is never an end in itself, but
rather forms the hypothesis (the justi�cation,
really) that some other, more important predi-
cates hold. For example, a derivative property
from the combination of \Aesop-style(client) =
client-server" and cycle-freeness might be that
certain kinds of deadlock are impossible. We

6Examples and information about the tool can be
found through the URL:
http://www.cs.cmu.edu/~able/acme-web/

14

need to be able to distinguish such derived
predicates from those that are stated axiomat-
ically about an architectural speci�cation.

Acknowledgements

The Wright-Rapide translation was largely car-
ried out by Zhenyu Wang, whom we grate-
fully acknowledge. The research reported here
was sponsored by the Wright Laboratory, Aero-
nautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research
Projects Agency (ARPA) under grants F33615-
93-1-1330 and N66001-95-C-8623; and by Na-
tional Science Foundation under Grant CCR-
9357792 and a Graduate Research Fellowship.
Views and conclusions contained in this docu-
ment are those of the authors and should not
be interpreted as representing the o�cial poli-
cies, either expressed or implied, of Wright Lab-
oratory, the US Department of Defense, the
United States Government, or the National Sci-
ence Foundation. The US Government is au-
thorized to reproduce and distribute reprints
for Government purposes, notwithstanding any
copyright notation thereon.

References

[1] Robert Allen and David Garlan. Formal-
izing architectural connection. In Proceed-

ings of the 16th International Conference on

Software Engineering, pages 71{80, Sorrento,
Italy, May 1994.

[2] Pam Binns and Steve Vestal. Formal real-
time architecture speci�cation and analysis.
In Tenth IEEE Workshop on Real-Time Op-

erating Systems and Software, New York, NY,
May 1993.

[3] L. Coglianese and R. Szymanski. DSSA-
ADAGE: An Environment for Architecture-
based Avionics Development. In Proceedings

of AGARD'93, May 1993.

[4] David Garlan, editor. Proceedings of the First
International Workshop on Architectures for

Software Systems, Seattle, WA, April 1995.
Published as CMU Technical Report CMU-
CS-95-151, April 1995.

[5] David Garlan, Robert Allen, and John
Ockerbloom. Exploiting style in architectural
design environments. In Proceedings of SIG-

SOFT'94: The Second ACM SIGSOFT Sym-

posium on the Foundations of Software Engi-

neering, pages 179{185. ACM Press, Decem-
ber 1994.

[6] David Garlan, Bob Monroe, and David
Wile. ACME: An interchange language
for software architecture. Technical Re-
port CMU-CS-95-219, Carnegie Mellon Uni-
versity, 1997. Available in draft form at
http://www.cs.cmu.edu/~acme.

[7] David Garlan and Dewayne Perry. Introduc-
tion to the special issue on software architec-
ture. IEEE Transactions on Software Engi-

neering, 21(4), April 1995.

[8] David Garlan and Mary Shaw. An introduc-
tion to software architecture. In V. Ambri-
ola and G. Tortora, editors, Advances in Soft-

ware Engineering and Knowledge Engineer-

ing, pages 1{39, Singapore, 1993. World Sci-
enti�c Publishing Company. Also appears as
SCS and SEI technical reports: CMU-CS-94-
166, CMU/SEI-94-TR-21, ESC-TR-94-021.

[9] C.A.R. Hoare. Communicating Sequential

Processes. Prentice Hall, 1985.

[10] David C Luckham, Lary M. Augustin, John J.
Kenney, James Veera, Doug Bryan, and Wal-
ter Mann. Speci�cation and analysis of sys-
tem architecture using Rapide. IEEE Trans-

actions on Software Engineering, Special Is-

sue on Software Architecture, 21(4):336{355,
April 1995.

[11] Nenad Medvidovic, Peyman Oreizy, Jason E.
Robbins, and Richard N. Taylor. Using
object-oriented typing to support architec-
tural design in the C2 style. In SIGSOFT'96:

Proceedings of the Fourth ACM Symposium

on the Foundations of Software Engineering.
ACM Press, October 1996.

[12] M. Moriconi, X. Qian, and R. Riemenschnei-
der. Correct architecture re�nement. IEEE

Transactions on Software Engineering, Special

Issue on Software Architecture, 21(4):356{372,
April 1995.

[13] Dewayne E. Perry and Alexander L. Wolf.
Foundations for the study of software archi-
tecture. ACM SIGSOFT Software Engineer-

ing Notes, 17(4):40{52, October 1992.

[14] Mary Shaw, Robert DeLine, Daniel V. Klein,
Theodore L. Ross, David M. Young, and Gre-
gory Zelesnik. Abstractions for software ar-
chitecture and tools to support them. IEEE

Transactions on Software Engineering, Special

Issue on Software Architecture, 21(4):314{335,
April 1995.

15

