Constrained Dynamics

Andrew Witkin
Carnegie Mellon University
Beyond Points and Springs

• You can make just about anything out of point masses and springs, *in principle*.
• In practice, you can make anything you want as long as it’s jello.
• Constraints will buy us:
 – Rigid links instead of goopy springs.
 – Ways to make interesting contraptions.
A bead on a wire

- Desired Behavior:
 - The bead can slide freely along the circle.
 - It can never come off, however hard we pull.

- Question:
 - How does the bead move under applied forces?
Penalty Constraints

• Why not use a spring to hold the bead on the wire?

• Problem:
 – Weak springs ⇒ goopy constraints
 – Strong springs ⇒ neptune express!

• A classic stiff system.
The basic trick ($f = mv$ version)

- 1st order world.
- **Legal velocity:** tangent to circle ($N \cdot v = 0$).
- *Project* applied force f onto tangent: $f' = f + f_c$
- Added normal-direction force f_c: *constraint force*.
- No tug-of-war, no stiffness.

$$f_c = -\frac{f \cdot N}{N \cdot N}N \quad f' = f + f_c$$
\[\mathbf{f} = m \mathbf{a} \]

- Same idea, but…
- *Curvature* (\(\kappa \)) has to match.
- \(\kappa \) depends on both \(a \) and \(v \):
 - the faster you’re going, the faster you have to turn.
- Calculate \(f_c \) to yield a legal *combination* of \(a \) and \(v \).
- Blechh!
Now for the Algebra ...

- Fortunately, there’s a general recipe for calculating the constraint force.
- First, a single constrained particle.
- Then, generalize to constrained particle systems.
Representing Constraints

I. Implicit:
\[C(\mathbf{x}) = |\mathbf{x}| - r = 0 \]

II. Parametric:
\[\mathbf{x} = r [\cos \theta, \sin \theta] \]
Maintaining Constraints Differentially

- Start with legal position and velocity.
- Use constraint forces to ensure legal curvature.

\[
\begin{align*}
C &= 0 & \text{legal position} \\
\dot{C} &= 0 & \text{legal velocity} \\
\ddot{C} &= 0 & \text{legal curvature}
\end{align*}
\]
Constraint Gradient

\[N = \frac{\partial C}{\partial x} \]

Implicit:
\[C(x) = |x| - r = 0 \]

Differentiating \(C \) gives a normal vector.
This is the direction our constraint force will point in.
Constraint Forces

Constraint force: gradient vector times a scalar, λ.

Just one unknown to solve for.

Assumption: constraint is passive—no energy gain or loss.
Constraint Force Derivation

\[C(x(t)) \]

\[\dot{C} = N \cdot \dot{x} \]

\[\ddot{C} = \frac{\partial}{\partial t} [N \cdot \dot{x}] \]

\[= \ddot{N} \cdot x + N \cdot \ddot{x} \]

\[\dot{x} = \frac{f + f_c}{m} \]

\[f_c = \lambda N \]

Set \(\dot{C} = 0 \), solve for \(\lambda \):

\[\lambda = -m \frac{\ddot{N} \cdot \dot{x} - N \cdot f}{N \cdot N} \]

Constraint force is \(\lambda N \).

Notation: \(N = \frac{\partial C}{\partial x} \), \(\dot{N} = \frac{\partial^2 C}{\partial x \partial t} \)
Example: Point-on-circle

\[C = |x| - r \]
\[N = \frac{\partial C}{\partial x} = \frac{x}{|x|} \]
\[\dot{N} = \frac{\partial^2 C}{\partial x \partial t} = \frac{1}{|x|} \left[\dot{x} - \frac{x \cdot \dot{x}}{x \cdot x} \right] \]

Write down the constraint equation.
Take the derivatives.
Substitute into generic template, simplify.

\[\lambda = -m \frac{\dot{N} \cdot \dot{x}}{N \cdot N} - \frac{N \cdot f}{N \cdot N} = \left[m \frac{(x \cdot \dot{x})^2}{x \cdot x} - m(x \cdot \dot{x}) - x \cdot f \right] \frac{1}{|x|} \]
Drift and Feedback

- In principle, clamping \dot{C} at zero is enough.
- Two problems:
 - Constraints might not be met initially.
 - Numerical errors can accumulate.
- A feedback term handles both problems:

\[
\ddot{C} = -\alpha C - \beta \dot{C}, \text{ instead of } \dot{C} = 0
\]

α and β are magic constants.
Tinkertoy

- Now we know how to simulate a bead on a wire.
- Next: a constrained particle system.
 - E.g. constrain particle/particle distance to make rigid links.
- Same idea, but…
Constrained particle systems

- Particle system: a point in state space.
- Multiple constraints:
 - each is a function $C_i(x_1,x_2,\ldots)$
 - Legal state: $C_i = 0, \forall i$.
 - Simultaneous projection.
 - Constraint force: linear combination of constraint gradients.
- Matrix equation.
Compact Particle System Notation

\[\ddot{q} = WQ \]

\(q \): 3n-long state vector.

\(Q \): 3n-long force vector.

\(M \): 3n x 3n diagonal mass matrix.

\(W \): M-inverse (element-wise reciprocal)
Particle System Constraint Equations

Matrix equation for λ

$$[JWJ^T]\lambda = -\dot{\mathbf{J}}\mathbf{q} - [JW]Q$$

Constrained Acceleration

$$\ddot{\mathbf{q}} = W\mathbf{Q} + J^T\lambda$$

More Notation

$$\begin{align*}
\mathbf{C} &= [C_1, C_2, \ldots, C_m] \\
\lambda &= [\lambda_1, \lambda_2, \ldots, \lambda_m] \\
\mathbf{J} &= \frac{\partial \mathbf{C}}{\partial \mathbf{q}} \\
\dot{\mathbf{J}} &= \frac{\partial^2 \mathbf{C}}{\partial \mathbf{q} \partial t}
\end{align*}$$

Derivation: just like bead-on-wire.
How do you implement all this?

- We have a global matrix equation.
- We want to build models on the fly, just like masses and springs.
- Approach:
 - Each constraint adds its own piece to the equation.
Matrix Block Structure

- Each constraint contributes one or more **blocks** to the matrix.
- Sparsity: many empty blocks.
- Modularity: let each constraint compute its own blocks.
- Constraint and particle indices determine block locations.
Global and Local
Distance Constraint

\[C = \left| x_1 - x_2 \right| - r \]
Constrained Particle Systems

- Particles
- Time
- Forces
- Constants

X
V
F
m

... X
V
F
m

... F
C
C
C
C

Added Stuff
Modified Deriv Eval Loop

1. Clear Force Accumulators
2. Apply forces
3. Compute and apply Constraint Forces
4. Return to solver

Added Step:

1. Compute and apply Constraint Forces
Constraint Force Eval

• After computing ordinary forces:
 – Loop over constraints, assemble global matrices and vectors.
 – Call matrix solver to get λ, multiply by J^T to get constraint force.
 – Add constraint force to particle force accumulators.
Impress your Friends

• The requirement that constraints not add or remove energy is called the *Principle of Virtual Work*.

• The λ's are called *Lagrange Multipliers*.

• The derivative matrix, J, is called the *Jacobian Matrix*.
A whole other way to do it.

I. Implicit:
\[C(x) = |x| - r = 0 \]

II. Parametric:
\[x = r \begin{bmatrix} \cos \theta, \sin \theta \end{bmatrix} \]
Parametric Constraints

\[x = r \left[\cos \theta, \sin \theta \right] \]

- Constraint is always met exactly.
- One DOF: \(\theta \).
- Solve for \(\dot{\theta} \).
Parametric bead-on-wire \((f = mv)\)

\(x\) is not an independent variable.

First step—get rid of it:

\[
\dot{x} = \frac{f + f_c}{m}
\]

\[
f = mv \text{ (constrained)}
\]

\[
\dot{x} = T\dot{\theta}
\]

\[
T\dot{\theta} = \frac{f + f_c}{m}
\]

chain rule

combine
For our next trick...

As before, assume f_c points in the normal direction, so

$$T \cdot f_c = 0$$

We can nuke f_c by dotting T into both sides:

$$T \dot{\theta} = \frac{f + f_c}{m} \quad \text{from last slide}$$

$$T \cdot T \dot{\theta} = \frac{T \cdot f + T \cdot f_c}{m} \quad \text{blam!}$$

$$\dot{\theta} = \frac{1}{m} \frac{T \cdot f}{T \cdot T} \quad \text{rearrange.}$$
Parametric Constraints: Summary

- Generalizations: $f = ma$, particle systems
 - Like implicit case (see notes.)
- Big advantages:
 - Fewer DOF’s.
 - Constraints are always met.
- Big disadvantages:
 - Hard to formulate constraints.
 - No easy way to combine constraints.
- Official name: Lagrangian dynamics.
Things to try at home:

- A bead on a wire (implicit, parametric)
- A double pendulum.
- A *triple* pendulum.
- Simple interactive tinkertoys.