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Abstract

In many assembly tasks, it is necessary to insure the stability of a subcollection of
contacting objects. To achieve stability, it is often necessary to introduce fixture elements
(also called “fingers” in some work) to help hold objects in place. In this paper, the
complexity of stabilizing multiple contacting bodies with the fewest number of fixture
elements possible is considered. Standard fixture elements of the type explored in previous
single-object grasping work are considered, along with two generalized fixture element
variants. The types of stability considered are: form-closure (complete immobility of the
assembly); stability with respect to a specific external force and torque on each body; and
stability in the neighborhood of a specific external force and torque on each body. The
major result is that for most of the combinations of fixture element varieties, and types of
stability considered, achieving an optimal solution (that is, finding a smallest set of fixture
elements yielding stability) idNP-hard. However, for many fixturing problems it seems
likely that suboptimal, yet acceptably small solutions can be found in polynomial time, and
some candidate algorithms are presented.



1 Introduction

Stability of bodies is an important consideration in planning an assembly sequence. While
the problem of synthesizing stable grasps fasiagle object has received considerable
attention[9, 10, 13, 18, 16, 12], stabilization of multiple bodies has only recently been a
topic of interest[19, 14]. In the single-object case, the emphasis has been on synthesizing a
robust, stable grasp. Several different types of stability can be considerfednAclosure
of an object is a grasp that completely immobilizes the object; equivalently, the object
will remain motionless under any applied external forces and torque. A less restrictive
form of stability requires the grasp to balance only a particular external force and torque.
Other forms of stability involving friction have been considered, but we will defer frictional
considerations to future work.

In this paper, we take on the task of stabilizing a collection of contacting rigid bodies
without friction. We will assume that we are given a collectiorfigfures elementahich
are sufficient to stabilize the entire assemblyor brevity, we shorten the phrase “fixture
element” to merely “fixture.” The actual definition of a fixture is deferred to section 2 for the
moment, because we consider several variations of fixturing in this paper. Figure 1 shows
one of the fixture variations considered. In general, the set of fixtures available is assumed
to be a potentially very large collection; for example, the fixtures might be generated by
discretizing all exterior surfaces of the objects with fixture locations. Further, we imagine
that every fixture has some nonnegative cost associated with it, and that we would like to
select an inexpensive subcollection of fixtures that stabilizes the assembly. For example,
the cost of a fixture might depend on:

e Reachability.A fixture’s cost might indicate the relative difficulty in actually estab-
lishing the fixture at that specific point in space. Certain fixtures would then be given
a high cost because they occurred on regions of objects which were difficult to reach.

e Fragility. There may be reasons to prefer not to fixture particular bodies in the
assembly unless absolutely necessary. This could be indicated by making fixtures
that occur on those objects expensive.

e Constant costEvery fixture might be equally expensive. If we simply scale the cost
so that each fixture costs a unit amount, then a subcollection’s cost is simply its size.

In this paper, we are concerned with the last, and simplest, cost function—selecting
the smallest possible fixture set that achieves stability (figure 1). A lower bound for the
complexity of selecting a minimal size stabilizing fixture set immediately establishes lower
bounds for more general cost functions.

A very different line of attack would be to generalize previous works on optimal grasps.
For example, Kirkpatriclet al[8] descibes the measure of stability of a grasp based on
a geometric interpretation of Steinitz’ theorem[16, 5]. Trinkle[18] similarly proposes a
stability measure that can be computed in terms of a linear program, and then extends

1This means of course thaiceptionalobjects, as defined by Mishet al[16] are restricted from our
consideration, since they can never be stabilized by a fixture set in a frictionless environment.
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gravity gravity

Figure 1: (a) An assembly and its set of potential fixtures. (b) The smallest set of fixtures
possible that stabilizes the assembly due to gravity, assuming objectery massive.

The seemingly odd fixturing on obje& is because objedh slides down and leftward,
attempting to force objed to rotate counterclockwise.

this work to measure and synthesize grasps (using, hopefully, a small number of fixtures)
for multi-body assemblies. Similarly, Markenscoff and Papadimitriou[13] and Li and
Sastry[10] also discuss what constitutes a good grasp for single-object assemblies, given
a specific task in mind. We believe that these are all good criterion, and should be extended
to the case of multi-body assemblies. However, before addressing these considerations,
we believe that the issue of tmeimberof fixtures used to stabilize an assembly must be
addressed. For single-object assemblies, this is often not a large concern, but for multi-body
assemblies, the size of the fixture set is clearly a factor to be considered. Although it is not
clear that small fixture sets are in general good fixture sets, the existence, and complexity of
finding fixture sets of a specific size seems a reasonable starting point in considering multi-
body assemblies. Clearly, the size of the fixture set could be an important consideration
when there are multiple fixturing sets yielding equally optimal grasps; in this case, one
would probably be interested in the smallest such set. Accordingly, our goal in this paper
Is to establish lower-bounds on the complexity of finding minimal fixture sets.

In this paper, we define three varieties of fixturing, and consider three different types of
stability. Sections 5, 6 and 7 show that itNg>-hard to find a minimal stabilizing fixture
set for eight of the resulting nine combinations of fixturing and stability. In the ninth case,
section 8 shows that a minimal stabilizing set can be found in polynomial time if the contact
graph of the assembly is acyclic, but we have not found a lower bound if the graph is
cyclic. Polynomial-time algorithms yielding suboptimal, but hopefully small fixture sets,
are consider in section 8.
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2 Contacts and Fixtures

In this paper, we restrict our consideration to polyhedral objects. Thus, the contact regions
between objects are always polygons (or degenerate polyddsiause we do not con-
sider friction, in discussing stability it is sufficient to assume that contact forces arise only
at the vertices of the contact region[17]. Thus, we assume that contact between objects can
be characterized in terms of only finitely many contact points. At each contact, a surface
normal is assumed to be well-defined. Vertex-to-vertex contacts and other degenerate
contact geometries are not considered; Palmer[17] discusses the complexity issues that arise
when normals are ill-defined.

For illustrative purposes, we will mostly consider planar systems atbjects. All of
the results and algorithms in this paper are trivially extended to three-dimensional systems.
We will denote matrices and vectors using boldface type;itiheomponent of a vector
b is the scalam;, written in regular type. The symbd@ denotes on appropriately sized
vector or matrix of zeros. The notatidn> 0 indicates thab, > 0 for all i. Given vectors
b1, by, ..., bs € R, ther x smatrix whosedth column isb; is written as [b; b, ... b;].
Given matriceA € R"™**andB € R™, the notation A | B] denotes the x (s+t) matrix
whose firsts columns are the columns éf, and whose lagtcolumns are the columns 8t

Letn € R? be a force acting on a body at some pgine R? in a global coordinate
system. The generalized forgec R® on the body due ta is

q=(n,(p—c)xn)

wherec € R? denotes the body’s center of mass. If the net generalized force acting on body
i isq; € R3, the generalized force for the entire collection of theodies is denoted by the
vectorQ € R, whereQ = (qy,...,0s). We shall refer to botlyy € R®* andQ € R® as
“forces”; which sort of quantity we are referring to should be clear from the context.

2.1 Contacts

Let the total number of contact points between bodies in an assembly be déhptat
suppose that thigh contact occurs between bodreendsat pointp, with the surface normal
n atp oriented as show in figure 2a. The generalized forde@dimacting on body is in the
direction

d=(n,(p—c)xn)
while the force on bodg s in the direction

ds=—(n,(p —Cs) x n).

2Actually, objects with curved surfaces can also be considered, as long as the resulting contact regions are
polygonal. An example of a disallowed situation would be a cylinder resting upright on a plane, so that the
contact region is a disk in the plane. Baraff[2] discusses the difficulties that arise in considering nonpolygonal
contact regions.
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Figure 2: (a) A contact between two objects in the assembly. (b) Contact between an object
and an immovable obstacle.

The direction of the generalized force on the entire collection of objects fromthtlcentact

is therefore
r—1 (s—=1)-r n—s
— —— ——
u=(0,...,0,d,,0,...,0,ds,0,...,0)

where0 € R®.
The actual forc&); due to thath contact has the form

Qi = A

where)\; is a nonnegative scalar. The nonnegativity\pfrises from the restriction that
contact forces be compressive.

Itis also necessary to represent predetermined mobility constraints; for example, parts of
an assembly might be resting on an immovable table. We will handle this by assuming that
contact points can occur between some bodyd some immovable obstacle (figure 2b).
The immovable obstacle is not considered one ofthedies in our collection. In this case,
the force directiony; has the form

u=(0,...,0,d.0,...,0) (1)

and, as before; = \iu;.
The net generalized force due to contact is simply the sum

)\1U1 SR )\NcuNc

where all the\;’s are nonnegative. For notational ease, we define the matixR3Ne
as

U=[uiuz ... uy] (2)
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Figure 3: (a) A regular fixture. (b) A clamp, acting on a single object. If the clamp is
selected, the object is completely immobilized. (c) A clamp acting on two different objects
r ands, which are in contact. Selecting this clamp removes many, but not all degrees of
freedom from the two objects.

Any attainable net contact force can then be written in the form

Ui

where each component of A € R™ is nonnegative.

2.2 Fixtures

In stabilizing assemblies, we will consider three varieties of fixtures. In previous single-
object fixturing work, a fixture has been defined in terms of a supporting, immobile finger
that touches an object at a specific point. We will call this sort of fixturegalar fixture

A regular fixture on body at locationp produces a generalized force on the assembly in

the direction
r—-1 n—r

v=(0,...,0,d,0,...,0) (3)

whered = (n, (p — ¢) x n) andn is the inwards pointing surface-normal of bodgt p

(figure 3a). We assume that fixtures generate only compressive forces, so that the fixture
force generated has the forav for some nonnegative scalar Regular fixtures, and

the single-object contact occurring in figure 2b appear to produce identical sorts of forces.
Note however that the force due to contact in figure 2b is always available to us, whereas
the fixture forcenv is available only if we have decided to select that particular fixture in
stabilizing our assembly.

The force vectofQ = av generated by a regular fixture is very sparse, since a regular
fixture produces a force on only a single body. For multi-body systems, we might consider
problems in which a single fixture could act on more than one body at a time. Accordingly,
we offer the notion of generalized fixtureWe will define a generalized fixture as a force
that acts compressively on multiple bodies, but but in a uniform manner; that is, the force
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due to a single fixture of this type has the form
Q=av

wherea > 0 andv is an arbitrary vector ifR®". Note that the forces generated by a single
generalized fixture occupy a one-dimensional subspaB&ofGeneralized fixtures might
arise from a gripping mechanism designed to always impart an equal force to a number of
different bodies, at different points and different directions. It is not clear to us that this
notion of a generalized fixture has any practical correspondence to real-world problems.
However, the complexity bounds obtained in section 5 for generalized fixturing furnish
valuable insights into regular fixturing of single-object assemblies.

A completely different variety of fixture arises by grouping a number of regular fixture
together. Consider a set bfegular fixtures, with théh such fixture generating a general-
ized force in the direction; € R, with eachv; being sparse, as in equation (3). We can
group thek fixtures together into a generalized fixture, which can then generate forces of
the form

A1Vy 4+ - 4 AV

where the)’s are all nonnegative. Thus, the set of forces produced by this single fixture
spans ak-dimensional space (assuming the vectarhroughvy are linearly independent).
Unlike regular fixtures, the cost of using &lfixtures is unit (even if some of those fixtures
turn out to be superfluous). We will call such a fixturelamp. A clamp may act on a single
object (figure 3b), or on two or more objects (figure 3c).

The reason for this terminology is because this generalization does in fact capture
the concept of stabilizing an assembly by inserting mechanical clamps. Imagine that we
have available to us gripping mechanisms which can be attached to a single object and
achieve form-closure (complete immobilization of that object). If we were interested in the
minimum number of such mechanisms (that is, the minimum number of clamps) necessary
to attain stability, we would count each clamp as having unit cost, no matter how many
degrees of freedom the clamp actually eliminated. Note that the definition we have given
for a clamp allows a clamp to apply to two or more objects, as in figure 3c; However, our
complexity proofs concerning clamps are based on fixture groups that do in fact act on only
a single body, as in figure 3b. Thus, we will show that the complexity of fixturing with
clamps, as we have defined them, holds even if each clamp affects only a single body.

2.3 Fixture Forces

Given a set ofN; potential fixtures (either regular or generalized), we will denote the
direction of the force due to thigh fixture asv; € R3". If all the fixtures are used in
stabilizing the assembly, attainable fixture forces have the form

a1V, + -+ OszVNf
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where eacly is nonnegative. Accordingly, we define the mawixc R3™Nr by writing
VZ[V1V2...VNf]. (4)
Attainable fixture forces, using the entire set of fixtures, have the form

Vo

wherea € RV is a vector satisfyingx > O.

We will be concerned with studying the forces attainable using only a subset of
all the fixtures. Let us denote a subset of the entire fixture collection as an index set
FC {12, ...,Ns}. Givenan index sek, if i € F we say that the fixture s&tcontains the
ith fixture. For a given fixture s&t, only those fixtures in the set can contribute to the total
fixture force acting on the assembly. Lfgtbe theith element ofF, letk = |F|, and define
the matrixVe € Rk py

VE = [Vf1 A7 ka]. (5)

(Without loss of generality, we may assume tliat< f, < --- < fx.) The fixture forces
attainable using only the fixture sétcan then be written as

V|:O£

where nowa € R anda > 0.

For clamps, almost the same notation can be used—the difference is essentially book-
keeping. In the case of fixturing with clamps, the maktixs the matrix one would obtain
if each clamp was treated as a set of unrelated regular fixtures. Thus, if the number of
regular fixtures grouped to form tii clamp isci and there areclamps,V containsy"i_, ¢
columns. Given a selectidhof clamps, the matri¥/r is obtained in a similar manner; the
regular fixtures comprising all the selected clamps are treated as completely unrelated, and
used to form the columns &f-. Note that the number of columns ¥ may depend on

the specific seff, sinceVe will have
|F|

Z Cr,
i=1

columns.

Having defined the ways in which the fixture and contact forces can combine, we can
proceed to introduce the various types of stability considered in this paper. Following that,
we will consider the complexity of finding fixture seksof minimum size that achieve
stability for a given assembly.
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3 Types of Stability

In this paper, we consider three different types of stability. We present them in the order of
least restrictive to most restrictive; that is, each successive notion of stability subsumes its
predecessors. We describe the stability of the assembly given that a particularFsobset

the available fixtures has been selected to help stabilize the assembly. For completeness,
we give a formal definition of each type of stability, although these ideas are certainly not
new[12, 16].

3.1 Directional Stability

The first type of stability we consider is stability of the assembly with respect to a given
generalized external ford@.,. We will call this type of stabilitydirectional stability

DEFINITION .  An assembly with a fixture set F has directional stability with respect to
an applied forceQey if the contact and fixture forces that arise in respons&tg; sum to
exactly—Qeyxp, resulting in a net force of zero on the assembly.

Since our assemblies are frictionless and have well-defined contact normals at each
contact point, the acceleration of an assembly in response to a given applied force is
unique[7, 4]. In particular, for any choice ., directional stability is easily determinéd.

A simple result is that for a frictionless assemblies, if it is possible to attain contact and
fixture forces which sum te-Qey, then in fact the contact and fixture forces will sum to
—Qexd4, 1].% If this is the case, then the applied fore€).,: is completely canceled, the net
force on each body is zero, and no part of the assembly moves. Directional stability with
respect to a giveQey iS therefore easily determined by seeing if the linear program

possesses a soluti@nand\. If this linear program has no solution, then the assembly is
unstable and will begin moving under the applied fotxsg;; in this case, the actual motion
can be determined by solving a quadratic program[11, 1].

Unfortunately, directional stability admits situations which we would consider to be
inherently unstable. Consider the assembly in figure 4a consisting of a single Abject
contact with an immovable horizontal surface. Potential fixtures are indicated in the figure.
If the external force applied to the system acts straight down épadinen the assembly is
directionally stable if we choose = §); that is, if no fixtures are chosen. However, the
slightest perturbation of the external force to one side or the other renders the assembly
directionally unstable, given the choiée = (). A more extreme example is shown in
figure 4b. In this case, given the fixture $et= { 2}, the assembly is directionally stable

SpPalmer[17]'s result that determining stability of frictionless systemshard does not apply because of
our assumption of well-defined contact normals.

4This is not to say that the forces at individual contacts and fixtures are well-determined: typically, these
forces will be indeterminate. The net effect of the forces on bodies however, will always be well-defined.
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Figure 4: (a) The assembly is stable without any fixtures, but only if the external force is
directed straight down. (b) The center of mass of the object lies directly above the central
fixture. The assembly is stable using only fixture 2, but if gravity, or the object is perturbed
slightly, fixtures 1 and 3 are required.

with respect to a downward applied force through the center of mass. Now however, either
a perturbation in the applied fore@ a perturbation in objedB’s configuration (either a
rotation or translation) renders the assembly directionally unstable.

3.2 Robust Directional Stability

In the next section, we will prove lower bound results with respect to directional stability. It
can be reasonably argued that if these proofs depend on configurations such as figure 4b (that
is, configurations where even the smallest perturbations alter the stability of the system),
then the complexity bound obtained is too contrived to be useful. To counter this, we offer

a second, less restrictive measure of stability caitdalist directional stability

DEFINITION .  Given an applied forc€ey, We will say a system with a fixture set F has
robust directional stability with respect Qe if the assembly is directionally stable for all
external forces in some neighborhoodQ@f,.. More precisely, for each directioth € R*",
there must exist a positive scalasuch that the assembly is directionally stable with respect
to the forceQey + €d.

An assembly which has robust directional stability can endure perturbatioQg,pf
without becoming unstable. Thus, in figure 4b, the fixtureFset { 2 } induces directional
stability, but the seF = {1,2,3} is required for robust directional stability. Note that
the definition of robust directional stability says nothing about how large a perturbation
in Qext Can be before stability is lost (figure 5). Our proofs concerning robust directional
stability will show that minimal fixture sets yielding robust directional stability f2hard
to compute, even if the assembly can undergo large perturbati@hswithout becoming
unstable.
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Figure 5: The assembly has robust directional stability without any fixtures. The amount
of perturbation in the external force required to make the assembly unstable can be made
arbitrarily small by letting the anglé be arbitrarily close to 180

Note that the definition of robust directional stability clearly subsumes the notion of
mere directional stability. As a practical matter, determining if an assembly with fixture set
F has robust stability is no harder than seeing if the assembly is merely directionally stable.
Borrowing from Mishraet al[16]'s work on form-closure, we prove the following:

THEOREM 3.1 Given an assembly with fixture set F, the assembly has robust directional
stability with respect t@ey; if and only if

1. The set of vectorfuy, ..., Un, Vfy, -+ Vi b spansRk®" (equivalently, the compos-
ite matrix[ U | Vg ] has rank3n) and

2. There exist strictly positive vectossand A such thatUX + VE a + Qey = O.

PROOF. Consider an assembly with fixture $esatisfying the conditions of the theorem
for a given external forc®.,. Letd € R be an arbitrary vector. We must show that there
existse > 0 such that the assembly is directionally stable with respe@toed. From the
first condition, there exists a solutiern, and s such that

[U|vF1<az>=—d,

UXs+Veras+d=0

or equivalently, such that

althoughas and s will not necessarily be positive. From the second condition, there exist
vectorsA anda satisfying

UN+VEa+ Qex=0, A>0 and o> 0.

Robotics Institute 10 CMU-RI-TR-94-08



Then for some sufficiently smadl> 0,
A+ers>0 and a+eas>0
and
UXA+eXs) + Ve (a+eas) + (Qext+ed) = (UXN+ Ve + Qext) + e(UAs+ Ve as+d) = 0.

Thus, the assembly is directionally stable with respe@te ed.

Conversely, consider an assembly with robust directional stability, with respect to a
force Qex, and let\y and g be nonnegative vectors such thdky + VFag = —Qex. TO
show that the first condition of the theorem holds det R be an arbitrary vector. Since
the assembly is robustly stable, there exists 0 such that

UX + Vet = —(Qexi + €b).

But then
Ui + V|: a = —(UAO + V|: op + Eb)

SOU(A + Ag) + Ve (a + ap) = —¢b, or equivalently,

L+

€

-1
7(a+ao)

Sinceb was arbitrary, ranf U | Ve ]) = 3n. To show that the second condition holds, let
e denote the vectog = 1 for all i; the dimension ok will vary according to its use. Let
y € R® be defined by = Ue + Ve e. Then for some > 0, there exist nonnegative and

« satisfying

[U [ VE] =b.

UXN+ Vea = —(Qext+ €Y) = — (Qext + €(Ue+ VEe))

which yields
UA+ee) + Ve(a + €€) + Qext = 0.

Sincee > 0 andeis strictly positive, both\ + ee anda + ee are strictly positive as well,
and condition 2 is seen to holdl

Based on this theorem, robust directional stability is also easily determined. First, the
rank of the matrix U | Vg ] must be determined (say, by employing an SVD decompo-
sition, or Gaussian elimination). Assuming that the matrix has rankoBe can employ
linear programming to determine if the second condition of theorem 3.1 holds. Although
the strict positivity constraints oA anda cannot be directly enforced in a linear program,
we can work around this restriction; clearly, the magnitud€gjf; has no bearing on the
problem. Let us arbitrarily constrain all components)ofind o to be one or larger, by
requiring\ > eanda > e. Lettingsdenote an unknown scalar, strictly positive vectars
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anda satisfyingUX + Va + Qexe = 0 exist if and only if the linear program
UN+Vea+Qe=0, A > ¢ a>e and s>1 (7)

possesses a solution faf, A ands.

One can also show that if an assembly has robust directional stability, then there must
exist a lower bound on theés needed in the above definition, assuming a bound od’the
That is, there exists a positive scatasuch that the assembly is directionally stable with
respect tdQex + €d for all d € R3 such that||d|| = 1 (under any vector-norm). This
follows from convexity: if an assembly is directionally stable with respe®¢q+ d; and
alsoQeyx + d, then the assembly is directionally stable with respect to

Qext+ t(d2 - dl)

for any 0 < t < 1. This result furnishes a practical way to determine if an assembly will
be stable over an entire range of applied forces. Given & séexternal force vectors,

if the assembly is directionally stable with respect to each force vector in the convex hull
of S then the assembly is directionally stable with respect to every force vec®fand
robustly stable for any force vector in the interior of the convex hulbof

3.3 Form-closure

The last form of stability we consider ferm-closure where the contact and fixture forces
are sufficient to balance any and all external forces.

DEFINITION . An assembly with a fixture set F has form-closure (or is form-closed) if the
contact and fixture forces that arise in response to an external fQigesum to exactly
_Qext, for a” Qext G RSn

Form-closure of an assembly means that the assembly is completely immobile, and will
not move in response to any force. Clearly, form-closure implies both direction stability
and robust directional stability with respect to all external fofcéllowing the form of
theorem 3.1, and from Misht al[16]'s work, the following theorem is easily proved:

THEOREM 3.2 Given an assembly with fixture set F, the assembly is form-closed if and
only if

1. The set of vectorfuy, . . ., Un,, Vy,, - - -, Vy,., } SPansR* and

2. There exist strictly positive vectossand A such thatUX + Vea = 0.

SNote that finding a fixture set inducing form-closure is at least as hard as finding a fixture set inducing
directional or robust directional stability. However, one cannot immediately say anything about the relative
difficulty of finding minimalfixture sets for the three different types of stability. In fact, we suspect that finding
a minimal set of regular fixtures inducing form-closureeiasierthan finding a minimal set that produces
directional or robust directional stability.
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Once again, form-closure is easily detected by checking the rank of the mitfinfg ],
and then seeing if the linear program

UA+Vea=0, A>e and a>e (8)

has a solution.

Having formally defined these notions of stability, we can now consider the complexity
of finding minimal stabilizing fixture sets. Following this, we will consider algorithms for
finding minimal stabilizing sets.
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4 Size Bounds orF

For form-closure, work by Mishrat al[16] and Markenscofét al[12] establishes that a
single planar object always requires at least four fixtures. However, never more than six
fixtures are required for form-closure. For three-dimensional objects, those bounds are re-
spectively seven and twelve. These bounds are obtained from the theorems o Gdwagh
and Steinitz[16, 5].

In particular, Steinitz’ theorem establishes thaZ if- R¥ and a poinb € R¥is in the
interior of the convex hull o, then there exists a subsetC Z with at most X elements
such thab is interior to the convex hull oK. In matrix-parlance, this means that if

[U|V]<2>=b

for some strictly positive vectaf), a) € RN*Nr then there exists a matriM containing
6n or fewer of theN; + N; columns of [U | V] such that

Mx =b

for some strictly positive vectox.

We can apply this result to planar multi-body assemblies. If we batebe the origin,
0, this gives us the result that never more thaBr?= 6n contacts and fixtures are necessary
for form-closure. Similarly, if we takb to be a specific external for€@ € R®", then again,
never more thanrbcontacts and fixtures are required for robust directional stability with
respect to any external force. For directional stability, the upper bound is much lower; a
basic theorem of linear programming is that if there extssatisfying

Mx =b and x>0

whereM € R"™* then there exists a solutionwith at mostr nonzero elements. The

maximum number of contacts and fixtures needed for directional stability is therefore 3
In the other direction, both form-closure and robust directional stability require a fixture

setF such that the matrix | Vg ] has rank 8, and thus at leastrBcolumns. Because

of this, both types of stability require a total of at leastc®ntacts and fixtures. For form-

closure, this lower bound is improved te 3- 1: if the matrix [U | Vg ] has rank & and

exactly 31 columns, it is nonsingular and the equation

[U|Ve]ly=0

has only the single nonpositive solutign= 0.
These lower bounds give us a lower bound on the size of the fixture set alone. Since
both form-closure and robust stability require rdnl | Ve ]) = 3n, we obtain

3n=rank[U | Vg ]) < rankU) + rank Vg)
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Figure 6: An object with only translational freedom in contact with an immovable obstacle.
The directions of the forces iR? generated by the fixtures are shown, as is the direction

of the force generated by the contact. To positively sum these vectors to zero, vectors 1, 2
and 3 must all be used.

or equivalently rankVg ) > 3n — rankU). Thus, at least
3n — rankU)

fixtures are required to achieve form-closure. It is tempting to think that contacts always
help to decrease the number of fixtures needed for form-closure (or for robust directional
stability, if the contacts are “underneath” an object) but this is not always so. For simplicity,
consider a single object with only translational freedom, as show in figure 6. Without any
contact, three fixtures would be required for form-closure. But even though contact occurs,
all three fixtures are still required for form-closure. The direction of the contact and fixture
forces inR? are shown next to the object. Clearly, the only strictly positive sum of the
vectors that is zero requires using vectors 1, 2, and 3. The use of vector C is not required.

Although we will see that finding a minimal fixture setis in general hard, it is not difficult
at all to find a fixture of size B or less that imparts form-closure. We present such an
algorithm below. Let us assume a predicate funcpiositive-spa(M, b) that takes a matrix
M and a vectob and returns a value &FRUEIf and only if there exists a vectot such
that

Mx = b and x>0.

Note thatx is required to be strictly positive. As discussed in sectiopditive-sparcan

be implemented as a linear program. The following algorithm returns a fixture deibsst
achieves form-closure (assuming such a subset exists):

Robotics Institute 15 CMU-RI-TR-94-08



Algorithm prune-fixtures
F={12...,Ns}
fori=1to N;
do
F=F-{i}
S=[U| V]
if rank(S) = 3n and positive-spa(s, 0) = TRUE
F=F
done
return F

Assuming that a fixture sdt imparting form-closure exists, the fixture set found by
prune-fixture-seis guaranteed to be of size6r less. The correctness of the algorithm is
a consequence of Steinitz’ theorem. If the sellpEontacts and al; fixtures can achieve
form-closure, then no more tham 6f the fixtures are required for form-closure. Initially,
the fixture setF contains all the fixtures, sb imparts form-closure. As the algorithm
progresses, fixtureis removed fromF only if it is demonstrated that theh fixture is
not required for form-closure. Thus, as longrasontains more thanréelements, Steinitz’
theorem applies and there must exist some elemehttbat can be removed. As a result,
the final sef returned must of sizertor less.

Clearly, the same algorithm can be used to find a senhafrdess fixtures that yields
robust directional stability with respect to an external foQg. The exact same algorithm
is used, except that

positive-spa(s, 0)

is replaced by

positive-spafsS, —Qexi)-

An algorithm that finds a fixture set of siz@ 8r less for directional stability is also easily
obtained. Assuming directional stability with respect to a fa@eg is possible, the simplex
algorithm, applied to the linear program

A
o

[U|V]< >=—Qext=o and (*)zo, (9)

(87

yields a solutior{\, «) with at most 3 positive elements. The fixture detefined by

F={i | ai#0) (10)

has at most8elements, and yields directional stability with respedig.

Robotics Institute 16 CMU-RI-TR-94-08



5 Complexity of Minimal Generalized Fixturing

We now turn our attention to the complexity of minimal fixturing. For generalized fix-
tures (as we have chosen to define them), there is no restriction on the fixture vectors
{vi, ..., vjr; }, and hence no restriction on the matvix Because of this, complexity results
concerning generalized fixturing are simply obtained. Note that for a single rigid body,
regular and generalized fixtures are essentially the same, since any arbitrary force direction
v in eitherR? (for a planar solid) oR® (for a three-dimensional solid) can be obtained from

a single fixture’. Thus, the problem of selecting a minimal set of regular fixtures for a single
rigid body (either for form-closure, robust directional stability or directional stability) can

be considered a generalized fixturing problem (albeit of very low dimension).

Since the largest minimal fixture set for a planar object will always be no larger than
six, a minimal fixturing set can found by an exhaustive search in @fi¢°). For a three-
dimensional object, an exhaustive search could require @Qgkb*?) time. Although these
complexity bounds are polynomial, a smaller upper bound would clearly be better (espe-
cially in fixturing three-dimensional objects). The result of this section that generalized
fixturing is NP-hard suggests that minimal fixturing of a single object requires, in the worst
case, exhaustive search to obtain a minimal set (assuming of courBe#hdP). Although
generalized fixturing may not be physically motivated enough to be a useful measure for
multi-body fixturing, it is useful at least in pointing out that minimal single-object fixturing
algorithms are likely to have worst-case performances equivalent to exhaustive search.

For brevity, we will make the following assumptions in all our complexity proofs
concerning regular and generalized fixturing:

e The contact set for an assembly is indicated by the mbkrixs described in section 2.

e The set of fixtures we can select from in trying to impart stability is indicated by the
matrix V, as described in section 2.

e The assembly in question can be stabilized by selectihthe fixtures indicated by
V, so that there is in fact at least one minimal fixtureS&thich imparts stability.

Note that given a choic€ of a fixture set, any of the three types of stability previously
described can be tested for by solving a linear program and computing the rank of matrix.
Since both linear programming and computing the rank of a matrix are polynomial time
problems, it is clear that all the varieties of minimal fixturing we consider aiRn

5.1 Generalized Fixtures and Directional Stability

The simplest complexity result to obtain is that finding a minimal size fixtur€ gaparting
directional stability iNP-hard.

THEOREM 5.1 Given a vectoQ. and a set of generalized fixtures, finding a minimal
subset of those fixtures that yields directional stability with respeQd@(assuming such
a set exists) is NP-hard.

5The exception being that a pure torque cannot be obtained by a single regular fixture.
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PROOF. The proofinvolves a restriction to assemblies with no contact (thus our assertion
that optimal fixturing of a single object is likely to require exhaustive search). Garey and
Johnson[6, section A6, problem MP5] establishes that the following variation of linear
programming isNP-complete:

Given a matrixM, ann-vectorb, and an integek < n, does there exist a vector
x with no more thark nonzero components satisfying

Mx =b and x> 07

This linear programming variation is trivially reducible to our stability problem. Given
amatrixM € R3Mand a vectob € R®*, we can produce an assemblydfodies, none of
which contact, and set oh generalized fixtures such thdt= M.’ We choose an external
force Qexy = —b to act on the assembly. Since there is no contact, a fixture geglds
directional stability if and only if

has a solutiorx. Clearly then, finding a minimdt is equivalent to finding a vectaex with
the least number of nonzero elements such that

Va = —Qeg=0 and a>0.

Since this problem isIP-hard, we conclude that finding a minimal set of generalized fixtures
yielding directional stability isNP-hard as well. O

A proof of the complexity of obtaining robust directional stability with a minimal
number of general fixtures will follow from a study of regular fixturing, in section 6.

5.2 Generalized Fixtures and Form-Closure

For form-closure of an assembly without contact, we are interested in the following prob-
lem: what is the smallest sétsuch that ranR/g ) = 3n and

Vpa:O

possesses a strictly positive soluti@ As in the above proof, given any mathk € R3™™,

we can produce an assemblyrdfodies without contact, and a generalized sehfiktures
such thav = M. Thus, finding a minimal set of generalized fixtures yielding form-closure
is equivalent in complexity to the following problem, which we gadisitive minimal span

"Note that the assumption of generalized fixtures is key here. If we are limited to regular fixtures, for most
matricesM, we cannot design a fixture set such thfat: M.
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THEOREM 5.2 LetM be an rx s matrix with r < s such thatankM) = randMx = 0
for some strictly positive vectot. Given an integer kK> r, determining if there exists an
index set GC { 1,2, ... s} of size k such that

1. ranKM¢) =rand

2. Mcy = 0 for some vectoy > 0

is NP-completé:®

PROOF. To begin, itis clear that the problem is NP since givenC, the matrixM ¢ can

be tested to see if it satisfies the conditions of the theorem in polynomial time by linear
programming and a computation of the rank\bg. To show that the problem NP-hard,

we use a reduction from the followingP-complete problem, known as tmeinimum set
coverproblem:

LetAbe aseA = {aj,a, ... a }ofrelements. Lef; throughA be subsets
of A. Does there exist &-element subseZ C {A;, Ay, ... As} such that
UZGZ Z= A9

Given A and the subset8; throughA, the reduction is simple. We will construct a
matrix M of sizer x (r + s) such thatA can be covered bl of the A; subsets if and only
if there exists aK + s)-element index se€ satisfying the conditions of theorem 5.2. We
constructM as follows: letM be written in the form

M=[mim, ... ms]

where eachn; is a column vector of length The firsts columns ofM, that is,m, through
ms, consist entirely of zeroes and ones. FoKk] < s, let theith component om; equal
one ifa; € Aj and zero otherwis®. The lastr columns form a negated identity matrix; that
is,

-1 0 0
0 -1 0

Msy1 = . ) Msy2 = . ) e Msyr = : )
0 0 -1

8Note that the inequality ow in this theorem is strict.

%We would not be surprised to find that a proof of this theorem already exists in the literature. (Actually,
we were surprisedotto find a proof already in the literature!) If any of the referees know of a reference for
this proof, we would be happy to eliminate the proof of this theorem and simply cite the reference instead.

10As an example, fos = 6, A; = { ap, a3, as} andA; = {ay, ag, a4}, we would have

0 1

m; = and my, =

OrRrORPE
OORrRrRO
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We must show thah can be covered by a union kbf the Ai’s if and only if there exists a
(k + s)-element index set satisfying the second condition of theorem 5.2.

Suppose thah can be covered by theelement collectiof An,, A, ..., Ay }. Thenif
weletC={ny,ny, ..., n,r+1r+2 ... r+s}, we claimthaMc satisfies the conditions
of theorem 5.2. First, sinc€ contains the indices + 1 throughr + s, M¢c’s rightmostr
columns form the negated identity matrix, establishing that (Ehk= r. Second, sincé&
is covered by the collectiofiA,, An,, ..., A, }, the vector

Y = Mp + Mp, + -+ Mp,

satisfiesy; > 1 for all i, sincey; indicates the number of times appears in the collection
{An, A, --., Ay, }, and this collection coverA. Lettingl denote thes x sidentity matrix
ande € R¥ be the vectog = 1 for all i, we obtain

e e
Mc<y> = [mp My ... My | —I]<y>

My, +Mp, + -4+ My, —ly
y-y=0

where the vectofe, y) is strictly positive.

Conversely, suppogseis an index set of sizk-+ ssuch thaM ¢ satisfies the conditions
of the theorem. Since rafld¢c) = r andM¢ has onlyr rows, no row ofM¢ can contain
all zeroes. Thus, for each4d i < r, Mc must include at least one column BF whose
ith component is nonzero. But in order to satidyyy = 0 with y strictly positive, for
each 1< i < r, the matrixM¢ must contain at leagtvo columns ofM, both of whose
ith components are nonzero. Furthermore, for dathese two components must be of
opposite sign. Since for each<d i < r the matrixM ¢ must contain a column whosth
element is negative and since the only columnd/ofvith negative entries are columns
s+ 1 throughs + r, clearlyM ¢ must contain the lastcolumns ofM, It must be then that
{s+1,s+2,...,s+r} C C. SinceC containk + r elementsC must therefore have the
form

C={n,ny....,n,S+1,8+2 ...5+r}

where then’s are all less thas + 1. ThenM ¢ can be written in the form

MC:[mnl mn2 mnk | _l]

SinceC satisfies the second condition of the theorem, there exist strictly positive vectors
andy such that

X X
Mc(y):[mnlmnz ... My, | _|]<y> :[mnlmnz mnk]x_y:o’

or equivalently,

Robotics Institute 20 CMU-RI-TR-94-08



Since every component gfis nonzero, every component of the vector
lenl +---+ kan,<

is nonzero as well. Hence, for eachkli < r, there must exist X j < k such that theth
component ofn,, is nonzero as well. By the construction of the vectorsthroughms, the
set

{AnlaAﬂza R Ank}

must therefore covek. We conclude that positive minimal spanningNB-complete. O
This leads us directly to

THEOREM 5.3 Given a set of generalized fixtures, finding a minimal subset of those fixtures
that yields form-closure (assuming such a set exists) is NP-hard.

PROOF. The proof follows immediately from theorem 5.21
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6 Complexity of Minimal Regular Fixturing

Complexity bounds for generalized fixturing could be obtained by considering linear pro-
grams augmented with combinatorial constraints. For regular fixtures, this approach cannot
be used because regular fixtures yield matriceg wfith a very specific structure. Instead,
we will produce actual assemblies, whose minimal fixturing sets will correspond with
the solution of a minimum set-covering problem. We will make use ofNRecomplete
problem of minimum set cover used in section 5 to establish complexity bounds. Given
a set of elementé& = {a;,a,, ..., & } and subsetéy, A, ..., As of A, we will con-
struct an assembly that can be stabilized wtfixtures if and only if there exists a set

Z C {A, A ... As} such thatZ| = kandUJ,,z = A. Without loss of generality, we
assume that each subggtcontains three elements; this restricted form of minimum set
cover is stilINP-hard.

THEOREM 6.1 Given a vectoQey, and a set of regular fixtures, finding a minimal subset
of those fixtures that yields directional stability with respectlg; (assuming such a set
exists) is NP-hard.

PROOF. The proof is by reduction of the minimum set covering problem. Given the set
A={a,a, ..., &}, and subsetd, A, ..., Asof A, we construct an assembly of- s
objects. Objects 1 throughcorrespond to the elements ofA. Contact constraints with
immovable obstacles prevent the firsbbjects from any motion other than a translation
straight down (figure 7). The external for€y: acting on the system tries to accelerate
each of these objects downwards. For each<li < r, we will saya is coveredwhen we
have prevented objecfrom moving downwards.

Objectr + j, for 1 < j < s, corresponds to the subs&t These objects are also
constrained so that they can only move vertically. The set of fixtures for the assembly
consists okfixtures. If thejth fixture is selected then object-j is prevented from moving
downwards (figure 7). However, no external force (or rather, an external force of zero) acts
on objects + 1 throughr +s. Thus, not all of theseobjects necessarily need to be fixtures;
in particular, if object + j is not used to support any of the firsbbjects, object + j can
remain unfixtured.

Each object + j touches three other of the firsiobjects: ifA; = { as, a, a, }, then
objectr + j contacts objects, t andu. For example, the contacts on objects 1 and
r + 2 in figure 8 indicate tha#, = { a;, &, a4} andA, = { &, as, & }. Selecting fixture
j prevents object + j from moving downwards, thus covering objedor all i such that
a € A. Conversely, if for some < r, none of the fixturegsatisfyinga, € A are selected,
then the external force will cause objedb move downwards, consequently causing all
such object$ to move downwards as well.

Clearly then, a fixture sdt that yields directional stability with respect to the chosen
Qextinduces a covering s& by defining

Z={A | jeF}
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Figure 7: Objects 1 throughcan only move downwards; a downwards external force acts
on each of these objects. Objects- 1 throughr + s can move downwards but are not
subjected to an external force. An object j can be prevented from moving by selecting
fixturej.
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Figure 8: Contact between objact- j and object occurs if and only ifg; € A;.

Conversely, a covering sétinduces a fixture set yielding directional stabitityy defin-
ing
F={i | AeZ} (11)

Since minimum covering isIP-hard, we conclude that finding a minimal fixture set yielding
directional stability isNP-hard as well.O

As it stands, this result is somewhat unsatisfactory, in the sense that the external force
Qext Is somewhat unnatural. Essentially, the firgsibjects are acted upon by gravity, but
objectsr + 1 throughr + sare weightless. Because of this, the stability achieved is unstable
with respect to perturbations @jey. Suppose for example, that we choose a fixturing set
yielding stability that does not include fixture 1. Then objeetl remains motionless only
because the external force on it is zeroQify is perturbed so that even an infinitesimal
downwards force acts on objact- 1, the object will move downwards.

However, we can modify the construction of figure 8 so that minimum covering sets
Z correspond to minimal fixture seksthat yield robust directional stability. In particular,
the external force acting on the modified system will be an ordinary gravity field. A set
of fixtures yielding stability will do so for relatively large external force variations (for

1A subtle point in this construction concerns the behavior of unfixtured objects. SugpmseersA, and
F is defined by equation (11). L& ¢ Z, soj ¢ F and object + j is unfixtured. Could some objette A
exert a force on objeat + j, causing a downwards motion? The answer to this is “no.” SiiceversA,
objectj is covered and cannot move. If objéaxerted a force on object+ j, objectr + j would move away
(downwards), breaking contact with objdctThe contact force at a point where contact is broken however
must be zero[7].
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Figure 9: A downwards force on objeictesults in a horizontal force on object- j. The
external gravity force acting on object- j has no effect, as long as gravity points exactly
downwards.

example, if gravity acts straight down on one object, but is inclinedwih respect to
another object).

THEOREM 6.2 Given a vectoQey and a set of regular fixtures, finding a minimal subset
of those fixtures that yields robust directional stability with resped®i@ (assuming such
a set exists) is NP-hard.

PROOF. The proof consists of modifying the construction in theorem 6.1 so that a minimal
covering se¥ yields a minimal fixture st that is robustly stable with respect to a uniform
gravity force. The modification is made in two steps.

Let Qextbe an external force acting downwards on each object with strength proportional
to an object’s mass. Inthe assemblies of theorem 6.1, contact occurred betweenanigect
objectr +] if & € A;. We modify the constraints on objects- 1 throughr + s so that each
object can now move only horizontally. The fixtures are positioned so that selecting fixture
j prevents objeat+j from moving to the left. Contact between objeicandr +j is modified
as shownin figure 9. In order for objadb move downwards, object-j must move to the
left. Clearly, selecting fixturg prevents objectfrom moving downwards. Note however
that if fixturej is unselected, the external force acting on obje&tj induces no motion of
objectr +j.

This modification does not change the fact that iNiz-hard to pick a minimal fixture
set yielding directional stability. This first modification overcomes the objection that the
external force chosen for the previous proof was somewhat unnatural. Still, given a covering
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Figure 10: The constraints on objact- j are altered so that perturbations in the gravity
direction have no immediate effect on object j.

setZ, the corresponding only induces directional stability; any unfixtured object | is
stable only because the external force points exactly straight down.

A second maodification fixes this. In figure 10, the motion constraint on objecf is
altered so that the object can only move to the left and up (if unfixtured). If we assume that
objects 1 through are massive compares with objects 1 throughr + s, then a fixture
set which fails to cover some objdack r does not yield stability. However, a fixture get
that yields directional stability also yields robust directional stability. To see this, suppose
objectr + j is unfixtured. Perturbations on the forces acting on fixtured objects are of no
account. In order for objeat + j to move, the external force acting on that object must
be inclined a sizeable amount with respect to the negative vertical axis in order to cause
a motion. Thus, a minimal covering sétyields a minimal fixture seF yielding robust
directional stability. O

THEOREM 6.3 Given a vectorQe, and a set of generalized fixtures, finding a minimal
subset of those fixtures that yields robust directional stability with respégtigassuming
such a set exists) is NP-hard.

PROOF. The proof follows from theorem 6.2 by restrictiom

Unfortunately, we cannot follow theorems 6.1 and 6.2 with a proof that finding a set
of minimal fixtures yielding form-closure isIP-hard; nor can we show that such a fixture
set can be found in polynomial time. We will show however that if an assembly’s contact
graph (a graph where nodes are object, and edges indicate contact between pairs of objects)
is acyclic, a minimal fixture set is easily obtained in polynomial time. The complexity
of the more general case of assemblies with cyclic contact graphs eludes us. Our strong
suspicion however is that finding minimal sets of regular fixtures yielding form-closure is
not NP-hard. Before considering contact graphs, we consider the complexity of fixturing
with clamps.
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7 Complexity of Minimal Fixturing with Clamps

Recall that clamps, which are groupings of regular fixtures, give us the ability to form-
close a single object with unit cost. If we consider assemblies where selecting a clamp
causes a particular body to be immobilized, we see that determining a set of bodies that
when immobilized yields stability of the entire assembly is a clamp-fixturing problem.
Accordingly, we can show that fixturing with clampaN®-hard by constructing assemblies
where it iSNP-hard to determine the smallest number of objects whose immobilization
yields stability for the entire structure.

The first two theorems concerning fixturing with clamps are trivial modifications to the
assemblies constructed in figures 8 and 10.

THEOREM 7.1 Given a vectoQey and a set of clamps, finding a minimal subset of those
clamps that yields robust directional stability with respectQg: (assuming such a set
exists) is NP-hard.

PROOF. Consider the assembly of figure 8. Let us replace each fiktuith a clamp that
form-closes body + j when selected. Each such clamp has no more or less effect when
selected than the original regular fixture. Thus, finding a minimal set of clamps required
for directional stability is just as hard as finding a minimal set of regular fixtures.

THEOREM 7.2 Given a vectoQey, and a set of clamps, finding a minimal subset of those
clamps that yields rboust directional stability with respectQg,; (assuming such a set
exists) is NP-hard.

PROOF. The argument of the previous proof applies to the assembly of figure10.

Although we have not obtained a result concerning regular fixturing and form-closure,
we can say something about the complexity of minimal fixturing with clamps for form-
closure. Our proof will involve a reduction from the followingP-complete problem]6,
section Al, problem GT 7]:

Let G = (N, E) be a directed graph with node d¢tand edge seE, and let

k < |N|. Let the in- and out-degree of every node be two or less. Does there
exist a subset of nodéé C N with |N'| = k such that\’ contains at least one
vertex from every directed cycle @?

To perform the reduction, we will take a directed graph all of whose nodes have both in-
and out-degree of two or less, and build a corresponding assembly. The assembly will be
form-closed by immobilizind objects if and only if a subsé&{ of sizek exists that contains
at least one vertex of every directed cycle of the graph.
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Figure 11: (a) Starting from its initial position, node objéctan never slide to the left.
Similarly, the the connecting rod® and C can never slide to the left. Objegéts input
connecting rods can slide forward (to the right) only if objacian. (b) If objecAis given a
push from an input connecting rod, and obj€aannot move, objed can move by sliding
to the right and up. Conversely, i could not move buC could, objectA would slide to
the right and down. If neithe nor C can move, the cannot move either, preventidgs
input connecting rods from moving as well.

The basic building block of the assembly is shown in figure 11. We will call objeat
node objectand objectdB and C connecting rods.A node object corresponds to a node
of the graph. Connecting rods represent edges, and run from the “output” side of a node
(the right side), to the “input” side (the left side) of some other node. In figure 11, the only
freedom of motion for the connecting rods is to slide horizontally to the right. We will say
this is a “forward” motion of the connecting rod. Connecting rods are always prevented
from moving “backward” (to the left) from their initial position because of their spurs.

When can objedslide forward? Suppose that rBds prevented from moving forward.
Then objectA could slide rightward and dowanly if the rod C is free to slide forward.
Similarly, objectA can slight to the right and up only if roB is free to slide forward. If
neither of the rod8 andC can move, objecA is prevented from moving as well. (Clearly,
under no circumstances can objéctlide to the left.)
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The construction of figure 11 is replicated for each node of a graph. The assembly
corresponding to the graph

A

o
@\\/@

is shown in figure 12. Consider object 1 in this assembly: as in figure 11, object 1 can
slide forward if and only if one or more of its connecting “output” rods can slide forward.
(Connecting rods can be made to turn corners corners as shown in the upper-left detail of
figure 12. Similarly, nonplanar graphs can be formed by having a connecting rod cross over
another rod by turning a corner out of the plane of the paper, and later turning back into the
plane of the paper. For clarity, the spurs on the connecting rods preventing any “backwards”
movement by the rods are not shown in figure 12.) Since object 1's connecting rods contact
objects 2 and 4, object 1 can move if and only if one or both of objects 2 and 4 are free to
move.

In order to perform the reduction, we want a node object be able to move if and
only if one or more of the node objects it is connected to can move. For example, object
1 can move if and only if object 2 or object 4 can move. Object 5 is connected to only
one other node object, so an extra constraint is placed object 5, preventing it from moving
downwards at all. Clearly, object 5 can move if and only if object 3 can move. Since object
3 is connected tmo other node objects, it is constrained to have no motion at all. Nodes
with zero or onancoming edgdésuch as nodes 5 and 2) need no special treatment.

Thus, given a directed gragh= (N, E) let us construct an assembly. The assembly will
have|N| node objects of the type shown in figure 11, dBfdconnecting rod mechanisms.
(We will describe the set of clamps shortly.) A connecting rod mechanism is placed between
node objects andj for each directed edg@,j) € E, with the connector running “out”
from objecti and “into” objectj. For each node in the graph with no outputs, additional
constraints are added on the node object that immediately prevent it from moving (as
illustrated by node 3 in figure 12). For each node with only one output, an additional
constraint is placed on the node obje¢as illustrated by node 5 in figure 12). The final
assembly thus has the property that node objeah move if and only if for somé, j) € E,
node objecf can move as well. Note that this implies that if nades no outgoing edges,
node object can never move.
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Figure 12: The assembly corresponding to the five node graph on page 29. Connecting
rods can bend around corners as shown in the detail in the upper left: assumibgaod

move to the right, moving rod\ to the right causes roB to move downwards, causing

rod C to move to the right. Nonplanar graphs (requiring edges to “cross over” each other)

are modeled by having connecting rods turn corners taking them out of the plane of the
assembly.
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THEOREM 7.3 Given a graph G= (V,E), there is a movable node object in the con-
structed assembly if and only if there exists movable node objeats, n. . n, such that
(ni,ni;1) € Efori < kand(ng,ny) € E.

PROOF. The forward direction of the proof is obvious from the construction of the as-
sembly: assuming the hypothesized higtn,, . . . n, of movable objects, each of thenode
objects in the list can be moved forward some small amount, if all the movements occur
simultaneously.

Conversely, suppose that node objectn the assembly is movable. By construction,
a node object is movable if and only if it is connected to another movable node object
Then there must exist a movable node objgcsuch thatn;, n;) € E. But in order forn,
to be movable, it too must be connected to some movable ngdech thatn,, n.) € E.
Clearly, this argument can be continued, generating a list of movable mpd®sns, . . .;
but since there are only finitely many nodes, at some point we will encounter a movable
objectn; such thaty; is already on the list. Then the subsequence;. 4, ... n;is a list of
movable node object satisfying the conditions of the theorem.

Using theorem 7.3, we can establish the complexity of establishing form-closure with a
minimal set of clamps.

THEOREM 7.4 Given a set of clamps, finding a minimal subset of those clamps that yields
form-closure (assuming such a set exists), is NP-hard.

PROOF. Given a directed grap8 = (N, E), we construct the corresponding assembly of
theorem 7.3. In additioiN| clamps are added. Thi#h clamp, when selected, form-closes
node object.
Given a setN' that contains at least one vertex from every directed cycl&,ithe
corresponding set of clamps
F={i | neN}

induces form-closure. This follows from theorem 7.3: the connecting rods cannot move
unless some node object can move, and a movable node object implies a movable cycle
of node objects. However, since at least one node object in every possible cycle of node
objects is clamped, no object can move. By the same argument, a set of ¢lanthging
form-closure yields a set

N={n | ieF}

containing at least one vertex of every cycle in the graph. As a result, minimalNsets
containing a vertex from each cycle correspond to minimallSgielding form-closure.O
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8 Algorithms

So far, we have shown that for all but one of the fixturing/stability combinations considered,
finding minimal fixture setidNP-hard. The only exception has been minimal regular fixtur-
ing for form-closure. AlthougiNP-hardness results can often be cause for disappointment,
from the standpoint of implementing algorithms, we do not believe this is the case here.

8.1 Degeneracy

From the theorems of Cardgbdory, and Steinitz, we know that form-closure requires
between &+ 1 and 6 fixtures and contacts. The pruning algorithm presented in section 4 is
a simple polynomial-time algorithm for finding a stabilizing set of not more thain@ures.
However, @ is the worst-case behavior of the algorithm—the algorithm may manage to
prune the set of fixtures to well belom6Characterizing the performance of the algorithm
would require a characterization of the set of assemblies one wants to fixture; clearly, this
is an application dependent question. However, there is a simple insight into the lower and
upper ranges ofr8+ 1 and & contacts and fixtures required to form-close an assembly. A
similar insight applies to robust directional stability.

DEFINITION . A set of vectors Z {m;,m,, ..., m;} C R"is said to be degenerate if
there exists a subset of size n or less vectors of Z that are linearly dependent. Otherwise, Z
is said to be nondegenerate.

THEOREM 8.1 LetZ= {m;,m,, ..., m;} C R" be a nondegenerate set of vectors. Then
if the origin, 0, lies in the interior of the convex hull of Z, there exists a subset X such
that|X| = n+ 1 and the origin lies in the interior of the convex hull of X.

PROOF. The proof is geometric in nature. Giveh let us consider the boundary of the
convex hull ofZ. SinceZ is nondegenerate, its convex hull occupies sortgmensional
volume of R". Thus, the convex hull oZ is a convexn-dimensional polyhedron iR".
Examining the boundary of this polyhedron, it is clear that each facet of this polyhedron is
embedded in somen(— 1)-dimensional hyperplane &". Given a poinp € R", if p lies

on the boundary of the convex hull gf then eithep is interior to a facet, op lies on the
boundary of a facet. Since each vertex of the polyhedron is a poiatiinp lies on the
boundary of a facet, thgmis a linear combination afi— 1 or fewer points oZ. Otherwise,

p is interior to a facet ang may be written as a strictly positive linear combinationnof
linearly independent points iA.

With this in mind, the proof is simple: givem,, consider the directed ray emanating
from m; and passing through the origin (figure 13). Not countimgtself (which might lie
on the boundary of the convex hull gj, no point on the ray between; andO lies on the
boundary of the convex hull, sin€as interior to the convex hull. Lgt be the intersection
point of the ray and the convex hull boundary. By constructipr; —tmy, wheret is a
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Figure 13: The geometric intuition for the proof. Since the set is nondegenerate, starting at
any point and traversing through the origin, a pginihterior to a face of the convex hull is
reached.

positive scalar. I is not interior to some facet of the convex hull boundary, thdaa a
linear combination oh— 1 or fewer points oZ. But sincep +tm; = 0, we would haven or
fewer points ofZ that are linearly dependent. This would contradict the nondegeneracy of
Z. Therefore, it must be thatis a strictly linear combination af points ofZ. Then since
p + tm; = Owith t > O, there exists a strictly positive setof+ 1 points ofZ that sum to
zero. We conclude that some subsehef 1 points ofZ exists such that the origin lies in
the interior of its convex hull.oO

The implication of this theorem is that if the contact and fixture set is nondegenerate,
the pruning algorithm in section 4 will always find a minimal fixture set. Testing a set of
fixtures and contacts for nondegeneracy involves seeing if there exists a nonzeraxvector
with n or fewer components such that

Mx =0

whereM = [U | V]. Unfortunately, this problem isiP-complete[15, 3]. Note however
that the converse of the theorem is false: even if the fixture and contact force direction
vectors form a degenerate set, it still might be possible to form-close the assembly with
only 3n + 1 fixtures and contacts. Our intuition then is that if the fixture and contact force
direction vectors are not highly degenerate (that is, if most sets @fr 3ew vectors are
linearly independent), then the algorithpnune-fixtures§rom section 4 is likely to come
close to finding an optimal solution. The degree to which fixture and contact sets for an
assembly are degenerate is of course an application-dependent issue.

8.2 A Bottom-up Approach to Fixturing

The pruning algorithnprune-fixtureoperates from the top-down: the algorithm starts by

initially selecting all the fixtures, then sees which fixtures can be eliminated, subject to the
condition that stability is still possible. Theorem 8.1 suggests that a bottom-up strategy
could be employed as well: in practice, it might be much faster to start with no fixtures
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selected, and then continually select fixtures until stability is achieved (or umtiktires
have been selected, in which case the algorithm halts and the top-down pruning approach
is used instead). A bottom-up algorithm would have the basic form:

Algorithm select-fixtures

F=10

while |F| < 6n

do
leti ¢ F minimize scoreF, i)
F=Fu{i}
S=[U | Ve]
if rank(S) = 3n and positive-spafS, 0) = TRUE

return F
done
return ERROR

The algorithmselect-fixtureattempts to find a set ofréor less fixtures that establish
form-closure. IfF grows to have more tham@&lements, the algorithm returns an error; in
this case, there is no point in continuing, since the pruning algorithm can be used instead
to guarantee a fixture set of siza 6ér less, assuming form-closure can be established at
all. (As a further refinement, the set returned dstect-fixturesould be pruned by the
prune-fixturesalgorithm, since fixtures that are added iRtonight not be needed later for
the form-closure.) The question in a bottom-up approach is is how to go about selecting the
next fixture—what function should we choose sworgF, i)?

Since theorem 8.1 shows us that it is degeneracy which prevents us from achieving
optimal fixture sets, we need to avoid choosing linearly dependent fixture sets. Accordingly,
we want to add fixtures into our set that yield forces that are as orthogonal as possible to
the current set of fixture/contact-force directidAsThus, a simple choice facoremight
be to measure the deviation of orthogonality between a potential fixture and the current set
of fixtures and contacts. One possibility is

scorgF,i) = (u)z + i <u>2 (12)

ice \villllvill ) = il lfugl

A fixture with a force direction exactly orthogonal to all the other fixtures and contact force
directions is given a score of zero.

Note that both the bottom-up and top-down algorithms can be used to find fixture sets
that stabilize an assembly over some range of external forces. As we noted in section 3.2,
an assembly with robust directional stability might be stable only over some very small

2pctually, this is not exactly true. We would really like to distribute the directions of the vectors chosen as
evenly as possible. In a two-dimensional space, we require at least three contact/fixture-force directions for
form-closure. The optimal spread of three vectors in two dimensions is to have the vectors exattpas0
In ann-dimensional spacea + 1 vectors are evenly spread with angular separatiorrtgn. As n grows
large, the desired angle between vectors approactes8@ve can simply say that in general, we want to pick
new fixtures so that they are as orthogonal as possible to all the previously determined fixture/contact-force
directions.
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range of external forces. However, if an assembly with a fixture set is stabile with respect
to some externa; and alsoQ,, then the assembly is stable with respect to any convex
combination ofQ; andQ,. For example, suppose we want an assembly to be stable with
respect to gravity, even if gravity is perturbed by up to Ifmm vertical. For a planar
system, we would need the assembly to be stable with respect to two external forces: gravity
perturbed by positive P5and gravity perturbed by 15°. (For a three-dimensional system,

the gravity range could be described by four external forces.) In the top-down approach,
fixtures are pruned only if their removal allows directional stability with respect to these
two external forces. In the bottom-up approach, fixtures are added until the assembly is
stable with respect to both external forces.

8.3 Form-closure of Acyclic Assemblies by Regular Fixturing

The one result we have not obtained a complexity measure for is minimal regular fixturing
for form-closure. We conclude this paper by showing that the problem has a polynomial-
time algorithm, given a restriction in the contact graph of the assembly:

DEFINITION .  Given an assembly with n objects, the contact graph for the assembly is an
undirected graph G= (N, E) with |[N| = n. An edg€i, j) occurs in the graph if objects i
and j contact each other.

We would like to show that if an assembly has an acyclic contact graph, that we can
minimally fixture the assembly for form-closure by treating each object of the assembly
separately. In essence, while fixturing objectve will temporarily pretend that all the
other objects are already form-closed, and select a set of minimal fixtuFe sett form-
closes object under this pretense. Remarkably, the Bet (J; F; will turn out to form-
close the entire assembly. Since the number of fixtures required to form-close ioisject
not increased if we temporarily pretend that all other objects are frgggnis a lower
bound on the number of fixtures required to form-close ohijedten all the objects have
the potential to move. Thus, K does indeed induce form-closure, it will be minimal.

The key step in our proof will involve “splitting” a contact between two objects; that is,
the contact is ignored, and in its place, a pair of constraints is added (figure 14). That is, in
figure 14b, we imagine that objects 1 and 2 no longer touch, but that object 1 touches some
immovable obstacle, as does object 2. In making this (temporary) alteration, and splitting
the contact ap into two separate constraints, we are allowing the contact force between
objects 1 and 2 to be unbalanced. Thatis, in figure 14a, a force of theXiorsapplied to
object 1, and a force of An is applied to object 2, due to contact. After splitting the contact,

a force A;n might be applied to object 1, and a foree\,n might be applied to object 2.

Thus, we will need to show that even though we have treated each contact between objects
as two seperate constraints (as in figure 14b), the forces that actually arise at the contact
point will be the same as would occur if the contact really was split.

Given the original assembly shown in figure 15a, we would split the contact between
objects 1 and 2 as shown in figure 15b. We then separately fixture object 1 by itself, ignoring
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@ (b)

Figure 14: (a) Contact between two movable objects. The contact force exepeut st
equally and oppositely on both objects. (b) The contact is replaced by a pair of contacts
with immovable obstacles. Now the force due to contagqt ah the two objects can be of
different strengths.

its contact with object 2 but making use of the constraint on object 1 induced by the splitting.
As the example in figure 15b shows, object 1 requires only 2 fixtures for form-closure. Next,
we separately fixture the assembly consisting of objects 2 througgdenoted in figure 15b

(the fixtures are not shown in this figure). Again, we ignore the contact between objects 1
and 2 and instead make use of the constraint induced by the splitting. The final fixture set
produced is simply the union of the two fixture sets.

THEOREM 8.2 Given an assembly of n planar objects with an acyclic contact graph, and
such that a pair of objects has at most one mutual contact géimminimal set of regular
fixtures yielding form-closure can be found irird;®) time.

PROOF. The proof is by induction on the number of contact points. Clearly, an assembly
with n objects and no contact points can be minimally fixtured for form-closure by applying
an exhaustive search algorithm separately to each object. Given a\sategfular fixtures,
the maximum time to minimally fixture objects O(N°). All n objects can be minimally
fixtured for form-closure in at mo®(nN;®) time.

Let us assume that the the theorem applies for assembliesnaitimtacts, and consider
an assembly witim + 1 contacts. Since the contact graph of the assembly is acyclic, there
must be some object that contacts only one other object. (Note that contact with immovable
obstacles has no effect on the contact graph; hence in figure 15a, object 1 is said to contact
only one other object, namely object 2.) Without loss of generality, let us assume that
object 1 contacts object 2, and no other objects. We shall label this contact as contact

Let us split the assembly, as shown in figure 15a. Separately fixturing object 1 requires
at mostO(N,®) time. Likewise, separately fixturing the assembly consisting of objects 2

BWe believe that the theorem applies even if a pair of objects contact each other at multiple points.
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Figure 15: (a) An assembly witin + 1 contact points. Object 1 touches object 2, and
an immovable obstacle. (b) The assembly is split, and in the new assembly, object 1 is
fixtured. Due to the contact constraints on object 1, only two fixtures are required for form-
closure. Objects 2 througtare fixtured as a separate group (fixtures for these objects are
not drawn).

throughn, ignoring contacim + 1 but taking the new constraint on object 2 into account
requiresO((n — 1)N;°) time, by inductive assumption. We claim that the union of the
fixtures chosen for the two separate problems will in fact yield form-closure for the entire
assembly. As discussed above, if this is so, then the union of the fixtures is also a minimal
fixturing set.

Let the matrix of contact force directions for the original, unsplit problem be written
as

U=[U; | Uz | Uny1]

whereun,,; denotes the direction of force due mo+ 1st contactU; denotes all other
contact forces that effect object 1, ddgdenotes all other contact forces that effect objects
2 throughn. Note that the first three rows &f, are zero, sincé), denotes only contact
forces not involving object 1. Similarly, abut the first three rows ob; are zero. The
vectorun, 1 has the form

u= (d]_, dz, 0,0,.. )

whered; andd, denote the direction ifR® of the generalized contact force acting on
objects 1 and 2 respectively.

In the first step, we choose a set of fixtufesthat minimally form-close object 1 by
itself. LetV,; = Vg,. Similarly, define the fixture matri¥; by V, = Vg,. whereFg is
the minimal fixture set chosen to minimally form-close objects 2 thraughhe matrixV,
like Uy, only describes forces involving object 1, so all but the first three rows,cdre
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zero. Similarly, the first three rows df, are zero as well.

We claim that=, U Fg induces form-closure on the entire assembly. The contact matrix
for the original, unsplit assembly has the folin= [U; | U, | um.1], the contact matrix
U’ for the split assembly has the form

U'=[Us | Uz | ua | Ug]

where
Ua = (dl, 0,0,.. ) and Ug = (0, d2, 0,.. )

Now consider the assembly with contamtt- 1 split, as in figure 15b. Sindé, achieved
form closure on a single object (namely, object 1), the composite mdthx|[ua | V1]
must have rank 3. Similarlf;g form-closed the other— 1 objects, so the composite matrix
[Uz | ug | V2] hasrank 83n— 1). Sinceum,1 = Ua + Ug, this implies that

rank[U; | Uz | Umy1 | Vi | V2] =rank[U | Ve ] = 30
Thus,Fa U Fg satisfies the first condition of theorem 3.2.

The fixture sefFa U Fg also satisfies the second condition of theorem 3.2. Since the
fixture setd=, andFg form-close all the objects in the split assembly, by definition

rank[U' | Ve,r,] = 30

and there exist strictly positive vectoksanda: such that
U+ VFAUpBa =0. (13)

Let us partition\ anda by writing o = (a1, az) and = (Xg, X2, A1, A2) whereA; and )\,
are scalars. Then from equation (13), we can write

U1X1 + UsXs + UpA1 + UgAo + Viavg + Voo, = 0. (14)

Since all but the first three rows bf;, V1, andua are zero, and the first three rows\df,
V, andu, are zero, equation (14) is separable. Thus,

UiX1 + Uar1 +Via; =0

and
UoXo 4+ UgAo + Voo = 0. (15)
Since), is strictly positive, we can write
)\2 )\2 )\2 )\2 )\2
—U —SUaA + —V =—=U Ao+ —=V =0. 16
N 1X1 + )\1UA 1+ N 1001 N 1X1 + UpaA2 + W 1001 (16)
Adding equations (15) and (16), we obtain

A A
)\fZU]_Xl + UsXs + Uads + Ughy + )\—Zvlal + Voo, = 0.
1 1
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But sinceum,1 = Ua + Ug, We can expressaz + UgAz 8SUm, 12, Which yields

Xlﬁ A2
)\1 Qg

[Ui | Uz | Umya] X, +[V1] V2] A1 | =0.
A *2

SinceU =[U; | Uz | Upya] andVe, s = [ V1 | V2], this yields

Xl)\_ o &
Ul O | +Veur| M | =0 (17)
2 oy
A2

Since\; and \, are positive scalars, and, X,, a; and a, are strictly positive vectors,
the vectorgxy, A2/ A1, X2, A2) and (a1 A2/ A1, aip) are strictly positive as well. Thus, equa-
tion (17) establishes th&f, U Fg satisfies the second condition of theorem 3.2. We conclude
thatFa U Fg does indeed induce form-closure. Since the two fixturing steps require at most
O(N®) andO((n — 1)N;°) time, the entire algorithm requires at m&mN;®) time. O

The theorem applies directly to assemblies without any cycles. However, given an
assembly with only a small number of cycles, one could “break” the cycles using the
following approach: suppose that an assembly has a single cycle in its contact graph, and
the removal of some nodegrom the graph eliminates that cycle. If fixtures acting solely
on objecti are introduced to form close objecttreating objeci as if it had no contact
with any other object in the assembly, then thereafter, objexcn immovable obstacle.
Treating object as such, the new assembly is acyclic and can be quickly fixtured. Clearly,
this approach can be used only as long as the number of cycles in the graph is small.
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9 Conclusion

We have defined three varieties of fixturing for multi-body frictionless assemblies with
contact. We have explored the complexity of finding smallest sets of fixtures inducing
various types of stability on the assemblies. For the most part, finding minimal fixture sets
is shown to beNP-hard. This establishes that under the model where each fixture has some
preassigned cost, minimal-cost fixturing is mostliy-hard as well. Based on the theorems

of Caratleodory, and Steinitz, simple polynomial-time algorithms have been presented for
finding small, but not necessarily optimal fixture sets. Finally, a characterization of when
lower bounds on fixturing sets can be realized is given in the guise of geometric degeneracy
in the force-space of the contacts and fixtures.

Much work remains however; choosing to minimize the number of fixtures is only one
of the many ways to optimize fixture design. For some applications, a minimal set of fixtures
may not necessarily be a good set of fixtures in practice. Following the lines of research on
single-object grasping, there are many factors to consider: for example, one might want to
consider the magnitude of forces exerted by the fixtures and contacts, to avoid situations in
which the fixture set theoretically yields stability, but only by exerting an enormous force
on an object. (This can arise if a pair of fixtures point in almost exactly opposite directions.)
Clearly, for some applications, the assumption of frictionless contact is too restrictive, and
attention needs to be given to the tangential friction forces arising at contacts and fixtures.
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