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1.0 Introduction

The disparity between what we can model and visualize on a computer versus what we can
physically simulate has become quite large. We have become fairly adept at creating high-quality
images of complex models, but our ability to perform realistic physical simulation on these models
lags far behind our ability to visualize them. In computer graphics and robotics applications, a
major concern is modeling systems of objects’ motions over time. For the most part, we wish to
simulate objects’ motions as realistically as is practical for a particular application. In particular,
since most physical objects are impenetrable, it is important that our simulations correctly handle
the issues of collision and contact between objects accurately.

In this paper we survey the problems of simulating rigid-body motion with non-interpenetration
constraints and consider current solution techniques. For many computer graphics and robotics
applications the abstraction of a perfectly rigid body (though physically unobtainable) perfectly
characterizes the problems’ degrees of freedom that are of interest to us and is in general an excellent
approximation of the sorts of objects we wish to simulate.

Physical simulation with non-interpenetration constraints is important for the following rea-
sons:

� By using physical simulation, we can more easily understand and visualize complicated
mechanical systems and processes.

� Physical simulation can be used to perform experiments and test hypothesis in situations
for which real-world experiments would be difficult, costly, or impractical to perform.
Examples include testing robot-motion planning algorithms, or performing virtual physical
experiments for educational and instructive purposes.

� A simulated physical environment can be used as a natural, intuitive means of interacting
with many design and modeling tasks. The ability to interactively move 3D objects
compliantly and without interpenetration could greatly simply many computer-aided design
and layout systems.

� Realistic simulation, in conjunction with some degree of control, is an extremely powerful
method for creating realistic computer animation.

In this survey, we concentrate on solution methods and analysis of the simulation problem rather
than on the application of solution methods to particular problems.
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2.0 Simulations and Impenetrability Constraints

The ability to perform realistic physical simulation requires being able to model the phenomena
of collision and contact between objects. In this section, we describe the various steps necessary
to perform such simulations by considering a very simple example problem.

2.1 Sample Problem

The problem we consider is simulating the dynamics of a point-mass particle in three-space (R3).
The particle’s positionx at timet is a functionx(t). Likewise, the velocityv of the particle at time
t is v(t), and the particle is assumed to have unit mass. An arbitrary external forceF(t) acts on the
particle at timet.

2.1.1 Unconstrained Motion

When there are no constraints on the particle’s motion (that is, no obstacles for the particle
to encounter), the motion of the particle is simple. Using Newton’sF = ma, the differential
equation

�x(t) = F(t) (1)

describes the particle’s motion. Given initial conditions (values at time zero forx(0) and
_x(0) = v(0)) this sort of equation is easily solved using numerical methods. The extension and
solution of equation (1) for a collection of rigid bodies is straightforward[5][19].

2.1.2 Equality-constrained Motion

Now suppose thatS is a surface inR3, and supposed the particle is constrained to always lie on
S. Let S be modeled implicitly by a scalar functionC; that is, a pointp lies onS if and only if
C(p) = 0. UsingC, the constraint on the particle can be written

C(x(t)) = 0: (2)

Since this constraint can be written as an equality, this is an example of anequality-constrained
dynamics problem (figure 1a). Equality-constrained dynamics problems have been studied ex-
tensively. Jointed figures (robot arms, mechanisms) are the most common examples of dynamic
simulations with equality constraints. Simulations of jointed figures are often conceptualized in
terms of this simple particle/surface problem through the use of configuration space[25].
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Figure 1. A particle and a constraint surface. (a) The particle, constrained byC(x(t)) = 0, must remain on the

surfaceS. (b) To satisfy the constraintC(x(t)) � 0, the particle may lie on or “above” the surfaceS, but may not

move “below” the surface.

S

x(t)

x(t)

S
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2.1.3 Inequality-constrained Motion

Now suppose that the constraint of the previous problem is relaxed, so that the particle is
constrained to lie either on or “above”S (figure 1b). If pointsp lying aboveSsatisfyC(p) > 0,
then the constraint that the particle lie on or aboveScan be written

C(x(t)) � 0: (3)

Since the constraint requires an inequality, this is an example of aninequality-constraineddynamics
problem.

The inequality-constrained dynamics problem is a superset of the unconstrained and the equality-
constrained dynamics problems and is the most difficult problem of the three. The inequality-
constrained dynamics problem subsumes the unconstrained dynamics problem: if at timet the
particle satisfiesC(x(t)) > 0, then for some period of time followingt, the motion of the particle
can be regarded as unconstrained. Similarly, the equality constrained problem is a special case of
the inequality constrained problem—the equality constraintC(x(t)) = 0 can be replaced by the
constraintsC(x(t)) � 0 and�C(x(t)) � 0.

Likewise, jointed mechanisms are a subset of the systems that can be simulated with inequality
constraints. A jointed mechanism can be thought of as a simulation where contact between objects
is never broken. Thus, simulation systems which can handle impenetrability constraints can
automatically simulate jointed mechanisms as well, and can even combine jointed mechanisms
with non-interpenetration constraints.
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2.2 Simulation Steps

Lets consider the various steps that are necessary for inequality-constrained simulations. After
describing each of these steps we will consider various approaches for implementing these compu-
tations during simulation.

2.2.1 Collision/Contact Detection

Simulating an inequality-constrained dynamics problem requires that we are able to detect
collisions and contact. Numerical solution methods for equation (1) take discrete steps forward
in time. Having determined a positionx(t0) and a velocityv(t0) for the particle at some timet0, and
given the forces acting att0, the solver computes valuesx(t0 + �t) andv(t0 + �t). However, the
numerical solver has no knowledge of the constraint placed onx by the presence of the surfaceS.
Suppose at timet0, the particle was just above the surface, and had a velocity towards the surface.
Depending on the stepsize�t, x(t0 + �t) may lie below the surface. In this case, the simulator
must recognize the fact thatx(t0+�t) represents an illegal position, and then search for the instant
betweent0 andt0 +�t that contact first occurred. This is the problem of collision detection.

For any timet that the particle is in contact with the surface, the simulator must detect this,
and note that contact occurs between the particle and the surface at the pointx(t). For this simple
example, the entire collision/contact detection problem is clearly trivial since nothing more than
evaluatingC(x(t)) is necessary, but for systems with complicated shapes, the problem is much more
difficult. Note that once the particle comes in contact with the surface, it is necessary to ensure that
the particle is not allowed to move below the surface. This is in contrast to equality-constrained
systems, where collision/contact detection is not an issue, and it is not necessary to determine which
constraints need to be enforced and which don’t (since each constraint is always enforced).

2.2.2 Constraint Forces and Impulses

Suppose that at timet0 the particle is in contact with the surface. If the particle has a velocity
toward the surface then a collision has occurred. Treating the objects as perfectly rigid, we introduce
an impulsive force between the particle and the surface, that produces an immediate change in the
particle’s velocity. Without friction, such an impulse is computed very simply[19], and there is
little more to say about the problem. Frictional collisions however are much more complicated.

Additionally, we must consider the case when objects are in contact, but are not colliding.
Suppose that the particle at timet0 has a velocity neither toward nor away from the surface.
Depending on the external forceF(t) acting on the particle, and the velocity and curvature of the
surface, we may need to add a constraint force between the particle and the surface to maintain
the inequality constraintC(x(t)) � 0. For example, if gravity attempts to accelerate the particle
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Figure 2. (a) For both the equality- and inequality-constrained cases, an external forceFexternalacting downwards

on the particle is countered by a constraint forceFC, acting in a direction normal to the surfaceSat x(t). (b) An

external force that attempts to push the particle upwards off the surface gives rise to a constraint forceFC only

for the constraint C(x(t)) = 0. For the constraint C(x(t)) � 0, no constraint force acts and the particle moves

upwards off the surfaceS.

S
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FC

Fexternal

S
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downward, an upward constraint force must act to prevent that. Even if there is no external force
acting, if the surface is curved, and the particle has a nonzero velocity, a constraint force may still
be necessary to keep the particle from moving downward through the surface.

In the equality-constrained problem the constraint force (or constraint forces, for a system with
multiple constraints) are easily formulated for and solved. However, in the inequality-constrained
case, care must be taken in specifying the correct behavior of constraint forces. For example, if
an external force acts to push the particle downward (figure 2a), then in both the equality- and
inequality-constrained cases, an upward pointing constraint force acts on the particle. However, if
an external force acts to push the particle upward (figure 2b), then only in the equality-constrained
case would a constraint force act downward to prevent the particle from moving away from the
surface. In the inequality-constrained case, we do not wish constraint forces to be able to “glue”
objects together; we wish to allow the particle to move away from the surface.

For the simple particle/surface problem, determining when constraints should release is trivial,
since there is only one contact point. However for more complicated configurations such as
figure 3, it is not immediately obvious which constraints should release and which should not.
A determination of which contacts will break can be made by solving a nonlinear system of
simultaneous equations.
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Figure 3. A stack of overbalanced bricks. The ten contact points in this structure are marked with circles. It is

not immediately obvious at which points contact will break.

2.2.3 Friction Forces

Constraint forces act to prevent interpenetration and are conservative; that is, they act normal to
the contact surface and perform no net work. In contrast, if we wish to model the effect of friction,
we will need to compute friction forces. Friction forces act tangentially to the contact surface to
prevent or oppose sliding between objects at contact points. The Coulomb friction model specifies
a relationship between the constraint force and the friction force. The relationship of these forces
at each contact point depends on whether or not bodies are currently sliding relative to one another
or are at relative rest.

3.0 Collision/contact determination

The two problems of collision detection and contact point determination are very similar, and
can really be considered a single problem, which we shall call thecollision/contact determination
problem. There is an immense amount of literature concerning this problem, but the majority of
collision/contact determination algorithms fall into one of two groups. First, the collision/contact
determination problem from timet0 to t1 can be viewed as a single, continuous function of time.
Given this viewpoint, the basic problem to be solved is “at what time, and where, do bodies first
come into contact?” Second, the problem can be considered discretely, at a sequence of time values
t0 < t0 +�t1 < t0 +�t2 < � � � < t0 +�tn < t1. In this viewpoint, the basic problem is “given the
positions of bodies at timet0 +�ti, where do bodies interpenetrate and contact each other?”

6



Eurographics ’93 State of the Art Reports Non-penetrating Rigid Body Simulation

3.1 Continuum Methods

The first approach, which could be called the “continuum view”, presupposes a specified motion
of bodies over some time interval. Examples include Canny[8], who describes an algorithm for
determining the first collision between rigid polyhedral objects with constant angular velocity.
Using the constant angular velocity assumption, Canny reduces the problem of determining the
first instant of collision to the problem of finding roots of (relatively low order) polynomials.
Gilbert and Hong[17] relax the problem of collision detection to include arbitrary trajectories of
rigid convex polyhedra. Since no closed-form solution exists for the time at which the the first
intersection occurs, an iterative numerical method is used to determine this time. Their algorithm
is based in part on previous work by Gilbert, Johnson, and Keerthi[18]. Von Herzen, Barr, and
Zatz[43] describe an algorithm that determines the first collision between parametrically defined
time-dependent curved surfaces. In this work, the motion of the bodies is not necessarily rigid
(that is, the actual shape of the surfaces may vary over time). Very recently, “interval analysis”
has attracted considerable attention in the computer graphics community as a method to deal with
collision detection problems. (The method used by Von Herzen, Barr, and Zatz can in fact be
considered a special case of interval analysis methods.) Duff[12] describes a collision detection
method using interval analysis that handles rigid-body motion of implicit curved surfaces, but with
restrictions on the motion path. Snyder[39] and Snyder[40] use interval analysis to find the first
time of collision between both parametric and implicit time-dependent curved surfaces. The latter
work treats the case when contact occurs over a region or curve.

However, algorithms of the above nature cannot be used togloballysolve the collision detection
problem of the simulation problem described in section 2.1. All of the above algorithms presuppose
a specified motion path for the bodies over time; however, such a path is exactly what the simulator
is trying to compute. Continuum view algorithms can however be used over suitably short intervals
to guarantee that collisions between objects are not missed.

Consider for example the particle/surface problem in section 2.1. Numerical methods for solving
equation (1) advance the state of the particle from an initial timet0 to a later timet0+�t. Suppose
that we find that both the state att0 and the state att0+�t are legal states. This does not guarantee
that the particle did not contact (and even dip below) the surface at some time betweent0 andt0+�t.
To guarantee that the particle did not collide with the surface over the interval�t, we must consider
theentiremotion path during this interval. But as we have observed, we do not in general know
this path (since we are still trying to determine if any collisions occurred), and it is unlikely that
the actual path, even if free from collisions, could be described in such a manner as is needed by
continuum methods.

Von Herzen, Barr and Zatz[43], and Snyder[40] use their continuum methods to solve this
problem by considering the properties of the numerical differential equation solver used to solve
equation (1) (or its rigid-body equivalent). Typically, the evolution of a system from timet0 to
t0 + �t is modeled as a polynomial function oft. If the polynomial model is of sufficiently high
degree and the interval�t is sufficiently small, the projected state at timet0 +�t differs from the
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actual state by a small amount. The projected state is thus considered to be an acceptable numerical
solution to the problem. Since the accuracy of the simulation depends directly on the numerical
method used to solve equation (1), it is argued that one might as well regard the polynomial
trajectory of the system between timet0 and t0 + �t as the “true” trajectory, and check for any
collisions along this polynomial trajectory. The continuum methods of Von Herzen, Barr and Zatz,
and Snyder can work directly with a polynomial representation of the motion path betweent0 and
t0 +�t and verify that it is either free of collisions, or find the first point and time of collision. If
a collision is found at timetc, a new motion path is computed from timetc to some future point
in time, and the entire repeats itself. Continuum methods which cannot handle polynomial paths
might be used by linearizing the polynomial motion between timet0 andt0+�t into smaller linear
segments.

3.2 Discrete Methods

The second approach, which could be described as the “discrete view,” involves the geometric
analysis of bodies at a fixed instant of time. The goal under this approach is to produce algorithms
that solve a single, static instance of a problem with optimal asymptotic time complexity. Work of
this sort includes an approximatelyO(n logn) algorithm by Cameron and Culley[7] for computing
the distance between two convex polyhedra withn vertices. Gilbert, Johnson, and Keerthi[18]
describe an algorithm for computing the minimum distance between convex polyhedra withn
vertices; the algorithm appears to have a running time somewhat larger thanO(n) but smaller
thanO(n logn). Related work by Gilbert and Foo[16] extends the algorithm to handle smooth
convex shapes and concludes that smooth representations become more efficient than polyhedral
representations in the neighborhood ofn = 100. For the problem of determining disjointness
of two convex polyhedra withn vertices (without regard to the distance between them), anO(n)
algorithm is readily available, based on Megiddo’s work on linear programming problems with
constant dimension[34][37].

Unfortunately, the above algorithms, although they achieve small asymptotic time complexity,
do so at the price of large run time constants. For example, the linear time algorithm for deciding
disjointness between convex polyhedra withn vertices is not practical unlessn is quite large.
More importantly, the use of discrete view algorithms essentially ignores any similarity that
may exist with the current collision/contact determination problem and previous collision/contact
determination problems. Proper use of previous information can result in very simple, yet efficient
collision/contact determination algorithms.

The earliest example of such an algorithm occurs in work by Cundall[11]. Cundall’s work
on dynamic simulation of polyhedral blocks uses a collision/contact determination algorithm that
specifically exploits information obtained from the previous determination. However, Cundall’s
approach is somewhat more complicated than needed for dynamic simulation and is restricted to
polyhedra. The collision detection algorithm in Gilbert, Johnson, and Keerthi[18] is structured so
that it can use information previously computed to obtain a faster running time, but this is not a
main consideration of the algorithm. Recently, work by Baraff[2] and Lin and Canny[26][27] has
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focused on collision detection methods for dynamic simulation that efficiently reuse previously
computed information. In particular, Lin and Canny describe a collision detection algorithm for
convex polyhedra that takes roughlyO(1) time to test a pair of polyhedra. Baraff[3] describes
a coherence based bounding box test that detects overlap betweenn bounding boxes in roughly
O(n) time over the course of a simulation. Methods for coherence-based collision detection among
convex curved surfaces are also described. A disadvantage of coherence-based detection methods
is that they may miss collisions that occur between the sampled time steps. (Consider simulating a
bullet fired through a thin pane of glass). While continuum based methods do not suffer from this
problem, the more comprehensive continuum methods (notably those based on interval analysis)
are considerably more complicated to implement and are not (currently) as fast as coherence-based
methods.

4.0 Frictionless Systems

Assuming that one can solve the collision detection problem and determine when and where
objects contact each other, the problem of enforcing non-interpenetration constraints remains.
In this section, we describe the two basic approaches for preventing interpenetration between
contacting objects without friction. The first approach computes constraint forces that are designed
to exactly cancel any external accelerations that would result in interpenetration. This method
requires solving nonlinear systems of equations, and is fairly complicated. However, it results in
simulations where interpenetration is completely eliminated (within numerical tolerances).

The second method, called thepenalty methodis much less complicated, but does not completely
eliminate interpenetration. Essentially, the penalty method models contacts by placing a spring
(possibly damped) at each contact point, between the two contacting bodies. Interpenetration is
allowed between the bodies at a contact point, but as the amount of interpenetration increases at a
contact point, a repulsive restoring or “penalty” force acts between the objects, pushing them apart.

4.1 The Constraint-Based Method

We can maintain non-interpenetration constraints by computing a constraint force at each contact
point that depends directly on any external forces acting on the bodies in the system. Each constraint
force acts in a direction normal to the contact surface at the point of contact and exactly prevents
interpenetration.

Consider again the inequality-constrained particle/surface problem of section 2.1. We introduce
a constraint forceFc(t) into the problem. Let the surface normal at the pointx(t) be given by the
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vectorrC(x(t)) where
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SinceFc(t) acts in this normal direction, we can writeFc(t) = ƒN(t)rC(x(t)) whereƒN(t) is an
unknown scalar. We will assume thatrC(x(t)) points towards the region of space that the particle
is allowed to occupy. The equation of motion for the particle then becomes

�x(t) = F(t) + Fc(t) = F(t) + ƒN(t)rC(x(t)): (4)

Since we are modeling contact between objects, the constraint forceFc(t) acting on the particle
must be directed away from the surface, in therC(x(t)) direction. That is, the surface can exert
a “pushing” force on the particle to prevent interpenetration, but cannot “pull” on the particle to
prevent it from leaving the surface. This means thatƒN(t) must satisfyƒN(t) � 0. If ƒN(t) was
allowed to be negative, the particle, once in contact with the surface, could be held to the surface
forever after.

4.1.1 Collisions

If the particle’s velocity at timet0 is directed inwards, towards the surface when it first comes
into contact with the surface, the particle is said to have collided with the surface. Since the particle
and the surface are both rigid, the particle’s velocity must change discontinuously at the moment of
impact. This is modeled by lettingFc(t0) be animpulsiveforce; that is,Fc(t0) has the dimensions
of mass times velocity, and acts for a single instant. The strength of the impulse is calculated
according to Newton’s empirical law of restitution[23].

For the case when rigid bodies collide with only a single point of contact, the constraint impulse
Fc(t0) is trivially computed by solving a system of one equation in one unknown. (Thedirectionof
Fc(t0) is already known to be normal to the surface. Only the scalar magnitudeƒN(t0) needs to be
determined.) If equality constraints involving one or both of the colliding bodies exist (as happens
when an articulated rigid body undergoes a collision), additional impulsive constraint forces are
needed to maintain the equality constraints. In this case, a number of constraint impulses must be
computed simultaneously. If there aren equality constraints to be maintained, then a system of
n+ 1 linear equations inn+ 1 unknowns must be solved. This is simply a special case of solving
equality constrained dynamics problems, and is not particularly difficult. If the collision involves
more than one contact point, the contacts can be regarded as occurring either simultaneously,
or sequentially. Recent work on rigid-body simulations with impulsive collision forces include
Lötstedt[30], Featherstone[14], Moore and Wilhelms[36], Baraff[1], and Cremer[10].

10



Eurographics ’93 State of the Art Reports Non-penetrating Rigid Body Simulation

Figure 4. Constraint forces parallel to the surface normalrC(x(t)) for an inequality constrained problem. (a) A

constraint force Fc(t), with magnitude �(t) = ƒN(t) > 0 and directionrC(x(t)) acts to prevent the particle from

accelerating downwards. (b) The external forceF(t) accelerates the particle upwards, and contact is broken.

No constraint force acts on the particle.
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S x (t)

∇C (x (t))

F (t)

λ(t)∇C (x (t))

(b)

S x (t)

∇C (x (t))

F (t)

11



Eurographics ’93 State of the Art Reports Non-penetrating Rigid Body Simulation

4.1.2 Contact

Now consider the case when the particle in section 2.1 has no velocity normal to the surface,
but only velocity tangential to the surface (or possibly no velocity at all). In this case, we need to
compute a constraint force that maintains the non-interpenetration constraint. Again, for a single
point of contact, the scalarƒN(t0) is easily computed. The conditions onƒN(t0) can be stated
as follows. First, since the constraint force must be repulsive, we requireƒN(t0) � 0. Second,
the constraint forceFc(t0) = ƒ(t0)rC(x(t0)) must be strong enough to prevent the particle from
accelerating downwards. If we let the scalaraN denote the acceleration of the particle in the normal
directionrC at time t0, then to prevent interpenetration, we requireaN � 0 as well. IfaN = 0,
the particle remains on the surface, otherwiseaN > 0 indicates the particle breaks contact with the
surface. Lastly, since constraint forces must be workless, the constraint force must be zero if the
particle is breaking contact. This condition is written asƒN(t0)aN = 0 which ensures that ifaN is
positive,ƒN(t0) is zero.

For the simple particle surface example, it turns out thataN is a linear function ofƒN(t0) and can
be expressed asaN = cƒN(t0) + d. Thus, solving the system

ƒN(t0) � 0; cƒN(t0) + d� 0 and ƒN(t0)(cƒN(t0) + d) = 0 (5)

is trivial for a single particle. (In the frictionless case,c is always positive, ensuring that a unique
solutionƒN(t0) exists.)

Suppose however that we have a configuration withncontact points. For each contact point, there
will be a constraint force normal to the surface at the contact point. Let us denote the magnitude
of the ith constraint force, at timet0, asƒNi. Similarly, let the acceleration normal to the surface at
the ith contact point beaNi. If we let fN be the vector ofƒNi ’s, andaN be the vector ofaNi ’s, then
we can write[28][2]

aN = AfN + b (6)

whereA is ann� n positive semidefinite symmetric matrix, andb is ann-vector.

The same conditions as in equation (5) must hold at each contact point. This yields the system

fN � 0; aN � 0; and ƒNiaNi = 0 ƒor 1� i � n: (7)

where0 is the null vector ofn dimensions. Since eachƒNi andaNi must be nonnegative, requiring
each productƒNiaNi to be zero is equivalent to requiring

nX
i=1

aNiƒNi

to be zero. Since this is just the dot product ofƒNi andaNi, usingaN = AfN + b we can rewrite the
conditions onƒNi as

fN � 0; aN = AfN + b � 0; and fN
TaN = fN

T(AfN + b) = 0: (8)

12



Eurographics ’93 State of the Art Reports Non-penetrating Rigid Body Simulation

Equation (8) is known as a linear complementarity problem (LCP). Equivalently, we can regard
this system as a quadratic programming problem by viewing equation (8) as an attempt to minimize
the quadratic termfN

TaN subject to the conditionsfN � 0 andaN � 0.

Relatively little has been written about simulation methods using constraint forces (as compared
with the amount of work done using the penalty method). Descriptions of the system of equations
in terms of a quadratic program for calculating multiple constraint forces without friction (for
polyhedra) appear in Kilmister and Reeve[23] and Ingleton[21]. Cottle[9] clarifies and simplifies
some of Ingleton’s results. In particular, it is shown that for frictionless systems, the matrixA
is positive semidefinite. As a result, equation (8) always has at least one solutionfN. Although
multiple solutions are possible (ifA is singular), theaccelerationof the bodies from any solution
fN is unique.

All of the above work took place before the discovery of the importance ofP andNP time-
complexities. As a result, the computational complexity of computing multiple contact forces was
not of concern in any of the above work. In work done subsequent to this discovery, Erdmann[13]
discusses the problem of computing constraint forces without friction, and notes that the problem is
simply solved by an exhaustive search method, requiring exponential time. The earliest description
of a simulator using exact methods to calculate constraint forces (by quadratic programming)
appears to be by L̈otstedt[29]. L̈otstedt notes that the quadratic program can be solved efficiently
because it is convex. (It was shown in 1979 that convex quadratic programming is a polynomial-
time problem.) More recently, Featherstone[14] has described a heuristic algorithm for solving
the quadratic programs generated for configurations without friction that is intended to improve
upon the obvious (but exponential) exhaustive search method. However, Featherstone’s heuristic
requires that configurations of bodies be statically determinate; that is, the normal forces that
prevent inter-penetration for the configuration must be unique. Later work in Baraff[2] extends
this formulation to deal with contacting curved surfaces. Baraff[4] discusses issues involved in
the actual solution of equation (8) and presents simulations that solve equation (8) using quadratic
programming and linear complementarity methods.

4.2 The Penalty Method

A vast number of simulations[11][20][24] [33][35][36][41] [42][45] have employed the penalty
to enforce non-interpenetration constraints. Applications include the simulation of deformable
bodies, cloth, and articulated rigid bodies. The penalty method is a very attractive model in some
respects, because it is extremely simple to implement and very versatile. As a numerical method,
it is nowhere near as complex as constraint-based methods. In particular, exploiting parallelism
and/or hardware implementations with the penalty method is much easier to imagine than with the
constraint-based methods discussed above.

The penalty method for constrained dynamics problems is based on a numerical solution method
for constrained optimizationproblems. In both fields, the penalty method converts a constrained
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problem to an unconstrained problem where deviation from the constraint is penalized; that is, in
the new problem, satisfaction of the constraint is encouraged, but not strictly enforced.

In optimization, a typical equality constrained problem such as

minimizeƒ(z) such that g(z) = 0 (9)

can be rewritten as an unconstrained problem

minimizeƒ(z) + kg(z)2 ask!1: (10)

The termkg(z)2 is called thepenalty function. The idea is that ask grows larger, potential solutions
for z must makeg(z)2 smaller, to minimize equation (10). In the limit, ask goes to infinity,
the solution of equation (10) must satisfyg(z) = 0 while minimizing ƒ(z). In practice,z is
obtained by solving equation (10) for a series of increasing values ofk until the series of solutions
converges (within numerical tolerance) to a limit. Although the method has a theoretically firm
basis, in practice, it is not a very robust numerical method. The main problem is that ask grows,
equation (10) can become very poorly conditioned and difficult to solve[15]. The main attraction
of the method is that it a very simple way of turning a constrained problem into an unconstrained
problem.

The equality constrained particle/surface problem in section 2.1 can be converted to an un-
constrained dynamics problem in a similar fashion. The idea is that the particle is not explicitly
constrained to lie on the surface. However, if the particle drifts off the surface, a penalty force acts
on the particle, in a direction normal to the surface, so as to pull the particle back to the surface.
Typically, the penalty force is modeled as a linear spring force; that is, the penalty force pulls the
particle back towards the surface with a a strength equal to some constantk times the distance of
the particle from the surface. If we letp(x(t)) denote the closest point on the surface tox(t), then
the penalty force is1

� k(x(t)� p(x(t))) :

Note that asx(t) drifts farther from the surface, the force�k(x(t)� p(x(t))) grows larger in
magnitude. The introduction of the penalty force reduces the dynamics problem to simply an
evaluation of the ordinary differential equation

�x(t) = �k(x(t)� p(x(t))) + F(t): (11)

If the penalty method for dynamics were to completely emulate the penalty method for con-
strained optimization, the simulation would be repeated with increasing values ofk until the
behavior of the particle approached a limit. However, the penalty method, as used by dynamics,
chooses a single value fork. If the value chosen fork is too small, it may do an inadequate job

1If the surface is a plane, the closest point on the plane to the particle is unique. Otherwise, the closest point on the
surface to the particle is unique as long as the particle remains in some neighborhood containing the surface; the extent
of this neighborhood depends on the curvature of the surface. Since the penalty method is intended to keep the particle
close to the surface, the closest point on the surface to the particle is always assumed to be well-defined.
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of enforcing the constraint; in this case, the simulation would be rerun with a higher value ofk.
Unfortunately, as in the optimization problem, ill-conditioning occurs askgrows larger, in the guise
of “stiffness” for the differential equation of motion. Stiff differential equations are expensive and
difficult to solve.

The penalty method can also be used for the inequality constrained particle/surface problem. The
modification is straightforward; whenever the particle lies below the surface, a penalty force acts
upwards on the particle, as in the equality constrained case. However, when the particle lies above
the surface, no penalty force acts on the particle. No distinction need be made between a collision
at a contact point and simple resting behavior at a contact point. Moore and Wilhems[36] describe
a system in which constraint-based methods are used to compute impulsive constraint forces for
collisions and penalty forces are used for resting contact.

A basic question on the use of the penalty method for simulation arises: since the penalty
method does not exactly maintain constraints, but allows some deviation, how does the penalty
method compare with the constraint-based method of exactly enforcing the non-interpenetration
constraints? For the equality-constrained case where no constraints are allowed to break, Rubin
and Ungar[38] show that as the penalty constantk is increased without limit, the trajectory of the
particle converges to the exact solution obtained using constraint methods. Baraff[3] contains a
simpler proof of this behavior of the penalty method, and some additional discussion on modifying
the penalty method for the inequality constrained case. While the penalty method is shown to work
over any time interval which does not involve a constraint either breaking or forming, it has not
been proven that simply setting penalty forces to zero when contact breaks will necessarily give
the correct behavior.

Although the penalty method is useful in some contexts (namely largely static environments),
it has become increasingly apparent that the performance of spring-and-damper systems for simu-
lating rigid body motion is inefficient and has unpredictable accuracy in dynamic settings, where
objects undergo large-scale displacements. For example, setting the penalty stiffnesses (the spring
constants) too high significantly increases the cost of the simulation, while setting the stiffness too
low can lead to an unacceptable degree of interpenetration. Moreover, a good choice for the penalty
stiffnesses can vary greatly over the course of a simulation, and it is usually impossible to make a
reasonable prediction for a suitable stiffness. Additionally, it is unclear how (or even if) one can use
the penalty method to determine where contact between objects should break, and the penalty-force
completely removed.

5.0 The Coulomb Friction Model

Friction adds considerable complication to rigid-body simulation. In this section, the classical
Coulomb friction model is defined. Although the penalty method can be extended to add a
tangential friction-like force, it is not clear how or if the complete Coulomb friction model, with
its varying “dry” and “sliding” friction modes, can be best accommodated within the framework of

15



Eurographics ’93 State of the Art Reports Non-penetrating Rigid Body Simulation

the penalty method. In the next section, we survey work on constraint-based rigid-body simulation
with friction.

5.1 Coordinate geometry at a contact point

We will call the force that arises between two bodies at a contact point acontact force. A contact
force is the sum of a workless constraint force, and a friction force. The constraint force does no
work on the system and acts normal to the contact surface; the constraint force is sometimes called
thenormal force. The friction force acts tangential to the contact surface, and may perform work
by dissipating kinetic energy between contacting bodies.

At each contact point, let us define a local coordinate system as follows. Letn̂, t̂x andt̂y denote
mutually perpendicular unit vectors. The vectorn̂ is normal to the contact surface at the contact
point while t̂x andt̂y span the plane tangent to the contact surface. We have already definedƒN and
aN, as the contact force and relative acceleration in then̂ direction. (In situations where we are
discussing only a single contact point, we will drop subscripts and writeƒN andaN in place ofƒNi

andaNi.) Similarly, we decompose the friction force along thet̂x and̂ty axes into magnitudesƒx and
ƒy.

Since friction acts to oppose any slipping motion, let us consider the slip velocity tangent to the
contact surface. Letsdenote the relative velocity between bodies at their point of contact and lets
be projected onto the tangent plane and then decomposed along thet̂x andt̂y axes into magnitudes
vx andvy:

vx = t̂x � s and vy = t̂y � s: (12)

Thus, the tangential slip velocity (henceforth called the tangential velocity) is

vx̂tx + vŷty:

When the tangential velocitys is zero, let the tangential slip acceleration be described by magni-
tudesax anday where

ax = t̂x �
d
dt

s and ay = t̂y �
d
dt

s: (13)

If the tangential velocity is initially zero, then as long as the tangential accelerationax̂tx + aŷty
remains zero (and contact is not broken), the tangential velocity also remains zero.

The Coulomb model of friction is an accepted empirical relationship between the normal force
magnitudeƒN and the friction force magnitudeƒ2

x + ƒ2
y. At all times, the condition

ƒ2
x + ƒ2

y � (�ƒN)
2 (14)

holds, where� is a coefficient of friction that depends on material properties, and may be different
at each contact point. If the tangential velocity is nonzero, we say that the friction force isdynamic;
otherwise, the friction force is calledstatic.
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Typically, the coefficient� of static friction (�static) is larger than the coefficient� of dynamic
friction (�dynamic). Aside from this,� is roughly independent of the tangential velocity. Since we
are computing contact forces for a specific instant of timet0, we know which coefficient of friction
to use, and we will not bother to make a distinction between�static and�dynamic. (We also will not
bother to index� over different contact points.)

5.2 Dynamic friction conditions

When dynamic friction arises, the friction force magnitude achieves its upper bound of�ƒN.
Also, the friction force acts directly opposite the slip velocity. Knowing thatƒ2

x + ƒ2
y = (�ƒN)

2 and
that the friction force is opposite the slip,

ƒx̂tx + ƒŷty = ��ƒN
vx̂tx + vŷtyq

v2
x + v2

y

(15)

or
ƒx = ��ƒN

vxq
v2

x + v2
y

and ƒy = ��ƒN
vyq

v2
x + v2

y

: (16)

Thus, given� and the tangential velocity, the dynamic friction force can be written solely in terms

of ƒN. Since

ƒNn̂+ ƒx̂tx + ƒŷty = ƒNn̂+
��ƒNvx̂tx� �ƒNvŷtyq

v2
x + v2

y

= ƒN(n̂+
��vx̂tx � �vŷtyq

v2
x + v2

y

); (17)

the direction of the net contact force is predetermined given the tangential velocity and�.

5.3 Static friction conditions

The conditions betweenƒx, ƒy andƒN are more complex when the tangential velocity is zero,
resulting in static friction. There are two possibilities, according to whether or not the tangential
acceleration is zero. First,ƒx andƒy may satisfy

ax = ay = 0 and ƒ2
x + ƒ2

y � (�ƒN)
2; (18)

indicating that the friction remains static. Second,ƒx andƒy may satisfy

ƒ2
x + ƒ2

y = (�ƒN)
2 and (ƒx̂tx + ƒŷty) � (ax̂tx + aŷty) � 0; (19)

indicating that slipping is occurring, and that the static friction force has become dynamic. In this
case, the friction force must oppose the initial tangential acceleration and have magnitude�ƒN. The
friction force direction does not have to be directly opposite the tangential acceleration direction.
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6.0 Collisions with Friction

When two bodies collide at a contact point with friction, we can consider the collision as taking
place over some small but nonzero time interval. We then consider the limiting value of the product
of the force acting between the bodies and the time interval, as we let the time interval tend to zero.
This limiting value is the impulsive force of the collision. During the time interval of the collision,
the normal and friction forces must satisfy the conditions of the previous two sections. It is possible
that during this time interval, the direction of the relative tangential velocity between the bodies
may change. For planar collisions, this happens if the relative tangential velocity passes through
zero and reverses itself. Wang and Mason[31,44] describe the computation of the impulsive forces
for all possible planar collisions involving one contact point. For three-dimensional collisions, the
velocity direction can vary in the tangent plane of the collision, and the computational problem
becomes much more difficult.

Thus, the analysis of a frictional collision involving a single contact point is complicated,
although the actual computation is simple, for two-dimensional systems. However, Wang and
Mason’s results are difficult to extend to three dimensions, which can be seen by considering
Keller[22], which presents a differential description of the three-dimensional motion of bodies
undergoing a collision with friction at a single contact point. The differential equations appear easy
to solve numerically, but very difficult to treat analytically. Keller’s analysis involves regarding the
collision as occurring over an arbitrarily small time interval, and examining the limiting behavior
of the system as the time interval is brought to zero. The animation system described by Moore
and Wilhelms[36] computes constraint impulses directly for collisions involving a single contact
point. Moore and Wilhelms use a simplified description of the Coulomb friction law to compute
frictional impulses at a single contact point in three dimensions.

Modeling simultaneous collisions is more complicated. For example, consider a cube dropped
onto a level plane so that all four vertices of the bottom face of the cube strike the plane together.
There are large computational savings to be gained by modeling the collisions as occurring simul-
taneously. Cremer[10] discusses the advantages and disadvantages of the simultaneous model of
collisions. L̈otstedt[30] computes simultaneous frictional impulses in three dimensions by using
a modification of the Coulomb friction law that causes impacts to dissipate as much energy as
possible. In general, it is unclear how to deal correctly with simultaneous impacts with friction,
in either two or three dimensions. The simulator described in Baraff[3] computes simultaneous
frictional impulses for three-dimensional bodies, based on a modification of the model proposed
by Lötstedt. For frictionless systems, the model is equivalent to the model in Featherstone[14].
However, for systems with friction, the model does not always properly conserve energy for
impacts[6,44]. The general problem of correctly computing frictional impulses in three dimensions,
and simultaneous frictional impulses in either two or three dimensions is still an open problem.
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7.0 Contact with Friction

Finding contact forces that satisfy the conditions in section 5.0 is extremely difficult. In fact,
it is even possible for situations to arise in whichno solution for the contact forces exist! When
a solution does exist, it can be found (for two-dimensional problems) by an obvious exhaustive
search method. Unfortunately, this is not a suitable solution method in practice because it requires
exponential time in the number of contact points.

7.1 Dynamic Friction

When only dynamic friction is present at all contact points, the formulation of the contact forces
is greatly simplified. Since the direction of the contact force at a contact point with dynamic friction
is knowna priori, it is only the magnitude of the force that need be calculated. As in the frictionless
case, an LCP or quadratic program can be formulated to find the contact force magnitudes.

Unlike the frictionless case, there is no guarantee that a solution to the LCP exists. Furthermore,
if distinct solutions do exist, again, unlike the frictionless case, these distinct solutions may give
rise to different accelerations of the objects. We call the first possibility, nonexistence of solution,
inconsistency. The second problem, nonuniqueness of motion behavior, is calledindeterminacy.

Configurations with one contact point that exhibit inconsistency and indeterminacy have been
discussed by Erdmann[13], Lötstedt[28], and Mason and Wang[32]. Lötstedt[30], realizing that
indeterminacy and inconsistency present major difficulties for a simulation process, proposes a
modification of the Coulomb friction law that eliminates both inconsistency and indeterminacy,
and further causes the LCP to always be convex. Baraff[4] shows that determining if a given
configuration of objects with dynamic friction is inconsistent isNP-complete. Baraff[3] discusses
Lötstedt’s modification (which avoids theNP-complete complexity issue by making inconsistency
impossible) and proposes a reinterpretation of the correct behavior of inconsistent configurations.
The reinterpretation leads to an algorithm which makes an arbitrary choice among several pos-
sible motion behaviors. Empirical evidence in the optimization literature suggests that Baraff’s
algorithm runs in expected polynomial time.

7.2 Static Friction

Currently, it is unknown how to directly solve for friction forces when contact points with static
friction exist. The conditions in section 5.3 do not equate to any known optimization problem, even
in the two-dimensional case (when the friction limit is

jƒxj � �ƒN
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as opposed to
ƒ2

x + ƒ2
y � (�ƒN)

2

for the three-dimensional problem).

Baraff[4] shows that the solution set of friction forces is not necessarily connected. This suggests
that solving for friction forces might require minimization of a nonconvex function. It is known
that configurations with static friction can be indeterminate, but no inconsistent configurations have
been found. Baraff shows that all one-point configurations with static friction are consistent and
speculates that all configurations with static friction are consistent.

Lötstedt[30]’s modification of the Coulomb friction model enables him to solve for static friction
forces using quadratic programming. Baraff[4] proposes a solution method that uses an iterative
technique combined with quadratic programming to solve for friction forces according to the
standard Coulomb friction model. The method is not guaranteed to return a solution, and is
incompatible with his method for dealing with inconsistency due to dynamic friction.
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