Consider the following setting

- Say we are a baby trying to figure out the effects our actions have on our environment...
 - Perform actions
 - Get observations
 - Try to make an internal model of what is happening.

A model: learning a finite state environment

- Let's model the world as a DFA. We perform actions, we get observations.
- Our actions can also change the state of the world. # states is finite.

Another way to put it

- We have a box with buttons and lights.
 - Can press the buttons, observe the lights.
 - lights = f(current state)
 - next state = g(button, current state)
 - Goal: learn predictive model of device.

Learning a DFA

In the language of our standard models...
- Asking if we can learn a DFA from Membership Queries.
 - Issue of whether we have counterexamples (Equivalence Queries) or not.
 [for the moment, assume not]
 - Also issue of whether or not we have a reset button.
 [for today, assume yes]

Learning DFAs

This seems really hard. Can't tell for sure when world state has changed.

Let's look at an easier problem first: state = observation.
An example w/o hidden state
2 actions: a, b.

Generic algorithm for lights=state:
• Build a model.
• While not done, find an unexplored edge and take it.
Now, let's try the harder problem!

Can we design a procedure to do this in general?
One problem: what if we always see the same thing? How do we know there isn't something else out there?

Our model:
Real world:
Called “combination-lock automaton”

Can we design a procedure to do this in general?
Combination-lock automaton: basically simulating a conjunction.
This means we can't hope to efficiently come up with an exact model of the world from just our own experimentation. (I.e., MQs only.)

How to get around this?
• Assume we can propose model and get counterexample. (MQ+EQ)
• Equivalently, goal is to be predictive. Any time we make a mistake, we think and perform experiments. (MQ+MB)
• Goal is not to have to do this too many times. For our algorithm, total # mistakes will be at most # states.

Algorithm by Dana Angluin
(with extensions by Rivest & Schapire)
• To simplify things, let's assume we have a RESET button. [Back to basic DFA problem]
• Can get rid of that using something called a "homing sequence" that you can also learn.

Some examples
Example #1 (3 states)
Example #2 (3 states)
The problem (recap)

- We have a DFA:
- observation = f(current state)
- next state = g(button, prev state)
- Can feed in sequence of actions, get observations. Then resets to start.
- Can also propose/field-test model. Get counterexample.

Key Idea

Key idea is to represent the DFA using a state/experiment table.

<table>
<thead>
<tr>
<th>states</th>
<th>experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>λ</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>aa</td>
<td>aa</td>
</tr>
<tr>
<td>ab</td>
<td>ab</td>
</tr>
<tr>
<td>ba</td>
<td>ba</td>
</tr>
<tr>
<td>bb</td>
<td>bb</td>
</tr>
</tbody>
</table>

Guarantee will be: either this is correct, or else the world has > n states. In that case, need way of using counterexs to add new state to model.

The algorithm

We'll do it by example...

Algorithm (formally)

Begin with $S = \{\lambda\}, E = \{\lambda\}$.

1. Fill in transitions to make a hypothesis FSM.
2. While exists $s \in SA$ such that no $s' \in S$ has $row(s') = row(s)$, add s into S, and go to 1.
3. Query for counterexample x.
4. Consider all splits of x into (p_i, s_i), and replace p_i with its predicted equivalent $a_i \in S$.
5. Find $a_i r_i$ and $a_{i+1} r_{i+1}$ that produce different observations.
6. Add r_{i+1} as a new experiment into E, go to 1.