Learning when there is no perfect hypothesis

- Hoeffding/Chernoff bounds: minimizing training error will approximately minimize true error: just need $O(1/\epsilon^2)$ samples versus $O(1/\epsilon)$.
- What about polynomial-time algorithms? Seems harder.
 - Given data set S, finding apx best conjunction is NP-hard.
 - Can do other things, like minimize hinge-loss, maxent type loss, but not directly connected to error rate.
- One way to make progress: make assumptions on the "noise" in the data. E.g., Random Classification Noise model.

Learning from Random Classification Noise

• PAC model, target $f \in C$, but assume labels from noisy channel.
• "noisy" Oracle $\text{EX}_\eta(f,D)$. η is the noise rate.
 - Example x is drawn from D.
 - With probability $1-\eta$ see label $\ell(x) = f(x)$.
 - With probability η see label $\ell(x) = 1-f(x)$.
• E.g., if h has non-noisy error p, what is the noisy error rate?
 - $p(1-\eta) + (1-p)\eta = \eta + p(1-2\eta)$.

Notation

• Use "$\text{Pr}[..]$" for probability with respect to non-noisy distribution.
• Use "$\text{Pr}_{\eta}[..]$" for probability with respect to noisy distribution.

Learning OR-functions (assume monotone)

• Let’s assume noise rate η is known. Any ideas?
• Say $p_i = \text{Pr}[f(x)=0 \land x_i=1]$
• Any h that includes all x_i such that $p_i=0$ and no x_i such that $p_i > \epsilon/n$ is good.
• So, just need to estimate p_i to $\pm \epsilon/2n$.
 - Rewrite as $p_i = \text{Pr}[f(x)=0|x=1] \times \text{Pr}[x=1]$.
 - 2nd part unaffected by noise (and if tiny, can ignore x_i). Define q_i as 1st part.
 - Then $\text{Pr}_{\eta}[\ell(x)=0|x=1] = q_i(1-\eta) + (1-q_i)\eta = \eta + q_i(1-2\eta)$.
 - So, enough to approx LHS to $\pm O((\epsilon/n)(1-2\eta))$.

Learning from Random Classification Noise

Algorithm A PAC-learns C from random classification noise if for any $f \in C$, any distrib D, any $\eta < 1/2$, any ϵ, $\delta > 0$, given access to $\text{EX}_\eta(f,D)$, A finds a hyp h that is ϵ-close to f, with probability $\geq 1-\delta$.

Allowed time $\text{poly}(1/\epsilon, 1/\delta, 1/(1-2\eta), n, \text{size}(f))$

• Q: is this a plausible goal? We are asking the learner to get closer to f than the data is.
• A: OK because noisy error rate is linear in true error rate (squashed by $1-2\eta$)
Learning OR-functions (assume monotone)

• If noise rate not known, can estimate with smallest value of $Pr_\eta[\eta(x)=0|x_i=1]$.

Generalizing the algorithm

Basic idea of algorithm was:

• See how can learn in non-noisy model by asking about probabilities of certain events with some “slop”.
• Try to learn in noisy model by breaking events into:
 - Parts predictably affected by noise.
 - Parts unaffected by noise.

Let’s formalize this in notion of “statistical query” (SQ) algorithm. Will see how to convert any SQ alg to work with noise.

The Statistical Query Model

• No noise.
• Algorithm asks: “what is the probability a labeled example will have property χ? Please tell me up to additive error τ."
 - Formally, $\chi : X \times \{0,1\} \rightarrow \{0,1\}$. Must be poly-time computable. $\tau \geq 1/poly(______)$.
 - Let $P_\chi = Pr[\chi(x,f(x))=1].$
 - World responds with $P_\chi' \in [P_\chi - \tau, P_\chi + \tau].$
 - Can extend to $[0,1]$-valued or vector-valued χ.
• May repeat poly(______) times. Can also ask for unlabeled data. Must output h of error $\leq \epsilon$. No δ in this model.

The Statistical Query Model

• Many algorithms can be simulated with statistical queries:
 - Perceptron: ask for $E[f(x)\mid h(x)=f(x)]$ (formally define vector-valued $\chi = f(x)$ if $h(x)=f(x)$, and 0 otherwise. Then divide by $Pr(h(x)=f(x))$.
 - Hill-climbing type algorithms: what is error rate of h? What would it be if I made this tweak?
• Properties of SQ model:
 - Can automatically convert to work in presence of classification noise.
 - Can give a nice characterization of what can and cannot be learned in it.

The Statistical Query Model

• Examples of queries:
 - What is the probability that $x_i=1$ and label is negative?
 - What is the error rate of my current hypothesis h? $[\chi(x) = 1 \text{ iff } h(x) \neq \ell]$.
 - Get back answer to $\pm \tau$. Can simulate from $\approx 1/\tau^2$ examples. [That’s why need $\tau \geq 1/poly(_____________)$.
 - To learn OR-functions, ask for $Pr[x_i=1 \land f(x)=0]$ with $\tau = \epsilon/(2n)$. Produce OR of all x_i such that $P_\chi \leq \epsilon/(2n)$.

SQ-learnable \Rightarrow (PAC+Noise)-learnable

• Given query χ, need to estimate from noisy data. Idea:
 - Break into part predictably affected by noise, and part unaffected.
 - Estimate these parts separately.
 - Can draw fresh examples for each query or estimate many queries from same sample if VCDim of query space is small.
• Running example: $\chi(x,\ell)=1 \text{ iff } x_i=1 \land \ell=0$.
How to estimate $\Pr[\chi(x, f(x)) = 1]$?

- Let $\text{CLEAN} = \{x : \chi(x, 0) = \chi(x, 1)\}$
- Let $\text{NOISY} = \{x : \chi(x, 0) \neq \chi(x, 1)\}$
 - What are these for $\chi(x, l) = 1$ iff $x_l = 1$ \& $l = 0$?
- Now we can write:
 - $\Pr[\chi(x, f(x)) = 1] = \Pr[\chi(x, f(x)) = 1 \land x \in \text{CLEAN}] + \Pr[\chi(x, f(x)) = 1 \land x \in \text{NOISY}]$.
- Step 1: first part is easy to estimate from noisy data (easy to tell if $x \in \text{CLEAN}$).
- What about the 2nd part?

Characterizing what's learnable using SQ algorithms

- Key tool: Fourier analysis of boolean functions.
- Sounds scary but it's a cool idea!
- Let's think of functions from $\{0, 1\}^n \rightarrow \{-1, 1\}$.
- View function f as a vector of 2^n entries: $(D[000]f(000), D[001]f(001), \ldots, D[x]f(x), \ldots)$
- What is (f, f)? What is (f, g)?
- What is an orthonormal basis? Will see connection to SQ algs next time…

How to estimate $\Pr[\chi(x, f(x)) = 1]$?

- Let $\text{CLEAN} = \{x : \chi(x, 0) = \chi(x, 1)\}$
- Let $\text{NOISY} = \{x : \chi(x, 0) \neq \chi(x, 1)\}$
 - What are these for $\chi(x, l) = 1$ iff $x_l = 1$ \& $l = 0$?
- Now we can write:
 - $\Pr[\chi(x, f(x)) = 1] = \Pr[\chi(x, f(x)) = 1 \land x \in \text{CLEAN}] + \Pr[\chi(x, f(x)) = 1 \land x \in \text{NOISY}]$.
- Can estimate $\Pr[x \in \text{NOISY}]$.
- Also estimate $\eta = \Pr_x[\chi(x, l) = 1 \mid x \in \text{NOISY}]$.
- Want $P = \Pr[\chi(x, f(x)) = 1 \mid x \in \text{NOISY}]$
- Write $P_\eta = P(1-\eta) + (1-P)\eta = \eta + P(1-2\eta)$.
- So, $P = (P_\eta - \eta)/(1-2\eta)$.
 - Just need to estimate P_η to additive error $(1-2\eta)$.
 - If don't know η, can have “guess and check” wrapper around entire algorithm.